
Data Mining: Learning from Large Data Sets
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Time limit: 120 minutes
Number of pages: 15
Total points: 100

You can use the back of the pages if you run out of space. Collaboration on the exam is strictly
forbidden. Please show all of your work and always justify your answers.

Please write your answers with a pen.

(1 point) Please �ll in your name and student ID.

Please leave the table below empty.

Problem Maximum points Obtained

1. 16

2. 18

3. 30

4. 20

5. 15

Total 100
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1. Map Reduce (16 points)

In this task, you are provided with a list of n > 2 sensor measurements x1, x2, . . . , xn ∈ R. Let µ̂ be
the sample mean, i.e.

µ̂ =
1

n

n∑
i=1

xi

and σ̂2 the unbiased sample variance, i.e.

σ̂2 =
1

n− 1

n∑
i=1

(xi − µ̂)2 .

(a)(6 points) Show that σ̂2 can be decomposed into the form

σ̂2 = α(n)
n∑

i=1

x2i − β(n)µ̂2

where α(n) and β(n) are functions that do not depend on the value of the measurements xi.
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(b)(10 points) �e goal of this task is to calculate σ̂2 with a MapReduce program under the following conditions:

• �e Map function receives as input a list of measurements xi, e.g. (1.0, 2.5, 3.5, 2.0).
• �e Map function returns a single (key, value) pair where value is a list of three real num-
bers, e.g. value = (5.3, 1.0, 2.1).

• �e Reduce function returns σ̂2.
• You are guaranteed that each measurement xi is sent to exactly one mapper.
• �e input lists to di�erent mappers may be of di�erent lengths.

Write down both a Map and a Reduce function calculating σ̂2.
Hint: Use the decomposition from part (a). You may call the functions α(n) and β(n) in your code.
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2. Near-duplicate Detection using Hashing (18 points)

Let X be a set of n songs and let s : X × X → [0, 1] be a symmetric function measuring the
similarity between two songs and satisfying s(x, x) = 1 for all x ∈ X . LetH be a random family of
hash functions with the property that for a randomly sampled hash function h ∈ H and all x, y ∈ X

Ph∈H [h(x) = h(y)] = s(x, y).

In the following, let h1, h2, . . . , hm bem independently sampled hash functions fromH.

(a)(3 points) Consider the eventA1 that two songs x, y ∈ X agree on allm hash functions, i.e. hi(x) = hi(y)
for all i = 1, 2, . . . ,m. Plot the relationship between the probability of A1, i.e. P[A1], and the
similarity s(x, y) for the casesm = 1 andm→∞.
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(b)(3 points) Consider the event A2 that two songs x, y ∈ X agree on any of the m hash functions, i.e.
hi(x) = hi(y) for some i = 1, 2, . . . ,m. Plot the relationship between the probability of A2,
i.e. P[A2], and the similarity s(x, y) for the casesm = 1 andm→∞.
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(c)(4 points) Our goal is to identify all pairs of songs that have a similarity of at least 0.8, i.e. the set

D = {(x, y) | x, y ∈ X such that s(x, y) ≥ 0.8} .

Assume that you are penalized for false negatives, but not for false positives. Your goal is to
mimimize the total penalty. Form→∞, would you rather output the pairs x, y ∈ X that agree
on all hash functions as in (a) or on any of the hash functions as in (b)? Justify your answer.

(d)(2 points) Consider two elements x, y ∈ X with similarity s(x, y). Let A3 be the event that an algorithm
labels these two elements as near-duplicates. For a randomized algorithm that perfectly detects
pairs with similarity of at least 0.8, plot below the relationship between the probability ofA3, i.e.
P[A3], and the similarity s(x, y).
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(e)(6 points) Consider four arbitrary songs q, r, x, y ∈ X such that s(q, r) = s(x, y) = 0.8. Sample a random
hash function h ∈ H and denote by A4 the event that both h(q) = h(r) and h(x) = h(y).
Provide an upper bound c ∈ R for Ph∈H[A4] and show that this bound Ph∈H[A4] ≤ c is tight.
Hint: To show tightness, provide an example q, r, x, y ∈ X such that Ph∈H[A4] = c.
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3. Online Convex Programming (30 points)

Assume you are given a data set D = {(x1, y1), . . . , (xn, yn)} with xi ∈ Rd and yi ∈ {−1, 1}. In
class we discussed how to optimize the hinge loss using online convex programming (OCP), where

`h(x, y;w) = max
(
0, 1− ywTx

)
.

Here we will consider two di�erent loss functions, `A and `B , de�ned as follows:

`A(x, y;w) = exp

(
−1

2
ywTx

)

`B(x, y;w) =


exp

(
−1

2
ywTx

)
, if ywTx ≥ −2 ln 2

1− ywTx , otherwise

(a)(6 points) Sketch the three loss functions described above in the same plot as functions of ywTx.
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(b)(8 points) We want to compute a classi�er using online convex programming, that is, by solving

minimize
w

n∑
i=1

`k(xi, yi;w), for k = A,B. (1)

Compute a subgradient of `A and `B at w given �xed x and y.
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(c)(6 points) For the 2-D data set shown in plot (i) we solve the minimization problem (1) using `A and `B ,
and obtain the classi�ers shown in plots (ii) and (iii), respectively. Which classi�er corresponds
to which loss function? Brie�y explain your reasoning.

(i) (ii) (iii)
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(d)(10 points) Finally, we want to add a regularization constraint to our objective to hopefully achieve a smaller
generalization error. �e regularized version of our problem is

minimize
w

n∑
i=1

`k(xi, yi;w)

subject to ‖w‖∞ ≤ λ,

where ‖w‖∞ = max
j=1,...,d

|wj |.

Formulate and solve the projection step of the OCP algorithm.
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4. Active Learning (20 points)

Let X = {x1,x2, · · · ,xn} be a set of n unlabeled examples where each example xi = (x1i , x
2
i ) is

a point within the unit square (i.e., xi ∈ [0, 1]2). Each example xi has a binary label yi ∈ {−1, 1}
determined according to

yi =

{
1 if x1i > v1 and x2i > v2

−1 else

for some unknown (v1, v2) ∈ [0, 1]2.

(a)(2 points) For v1 = v2 = 0.6, mark the areas where the labels are 1 and where they are −1.
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(b)(4 points) Let X consist of the data points x1 = (0.4, 0.4) and x2 = (0.6, 0.6) with labels y1 = −1 and
y2 = 1. Mark all values of (v1, v2) which are consistent with the data.
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(c)(7 points) Consider a dataset X of n examples xi = ( i
n+1 ,

i
n+1). For n = 9, the dataset is plo�ed below.
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In the active learning se�ing, the labels yi of the data points as well as v1 and v2 are not known
a priori. An active learning algorithm sequentially chooses an example xi and then observes its
label yi. Based on the label, it then selects subsequent examples to query.
Your task it to provide an algorithm that infers the labels of all n examples, while performing
O(log n) queries. You may use the �gure above to illustrate your algorithm.
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(d)(7 points) Consider a datasetX of n examples xi = ( i
n+1 , 1−

i
n+1). For n = 9, the dataset is plo�ed below.
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Show that, in the worst case, any active learning algorithm needs to query at least n points in
order to be certain about the labels for all n points. You may use the �gure above to illustrate
your proof.
Hint: Assume that the algorithm has labels for n− 1 points and then consider the last point.
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5. Bandits (15 points)

You are part of a team that has to decide between two di�erent con�gurations for a new component
you have developed. As you do not know the e�ects of these con�gurations on the overall system,
you pose this as a 2-armed stochastic bandit problem. In each of t = 1, 2, . . . , T rounds, you can
choose a con�guration to deploy (i.e., an arm to pull) and then obtain a random pay-o�. We denote
by µ1 and µ2 the (unknown) expected pay-o�s of the two con�gurations and assume that all payo�s
are independent. �e goal is to have a zero regret strategy in expectation, i.e. one that satis�es

lim
T→∞

E[RT ]

T
= 0,

where RT is the total regret up to time T ∈ {1, 2, . . .}.

(a)(7 points) Due to ease of implementation, one of your colleagues suggests to use the ε-greedy strategy
with a �xed (not time-varying) ε > 0. Brie�y describe the ε-greedy strategy and prove that for
µ1 6= µ2, you cannot achieve zero regret in expectation.
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(b)(8 points) Another colleague argues that the zero regret condition might be too restrictive. For example, it
becomes harder to achieve as µ1 and µ2 get closer to one another, while practically it might not
ma�er which con�guration you use. To illustrate this, consider the case where the payo� of the
�rst con�guration is drawn from a Gaussian with mean µ1 = 0 and variance 1 while the payo�
of the second con�guration is also Gaussian but with mean µ2 > 0 and variance 1.
Assume that you have selected each con�guration n times, and from that point onwards you will
only deploy the con�guration that had the larger empirical mean, as computed from these 2n
samples. Show that the probability you pick the correct con�guration (necessary for achieving
zero regret) decreases as µ2 decreases.
Hint: You may use that if X ∼ N (µ, σ2) and Y ∼ N (ν, τ2) are independent, then we have
Z ∼ N (µ± ν, σ2 + τ2) for Z = X ± Y .
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