Exercises

Introduction to Machine Learning
 FS 2018

Series 1, Feb 22, 2018 (Probability and Linear Algebra)

Institute for Machine Learning

Dept. of Computer Science, ETH Zürich
Prof. Dr. Andreas Krause
Web: https://las.inf.ethz.ch/teaching/introml-s18
Email questions to:
Kfir Levy, yehuda.levy@inf.ethz.ch

Problem 1 (Linear Regression and Ridge Regression):

Let $D=\left\{\left(\mathbf{x}_{1}, y_{1}\right),\left(\mathbf{x}_{2}, y_{2}\right), \ldots\left(\mathbf{x}_{n}, y_{n}\right)\right\}$ where $\mathbf{x}_{i} \in \mathbb{R}^{d}$ and $y_{i} \in \mathbb{R}$ be the training data that you are given. As you have to predict a continuous variable, one of the simplest possible models is linear regression, i.e. to predict y as $\mathbf{w}^{T} \mathbf{x}$ for some parameter vector $\mathbf{w} \in \mathbb{R}^{d} 1$ We thus suggest minimizing the following loss

$$
\begin{equation*}
\underset{\mathbf{w}}{\operatorname{argmin}} \hat{R}(\mathbf{w})=\underset{\mathbf{w}}{\operatorname{argmin}} \sum_{i=1}^{n}\left(y_{i}-\mathbf{w}^{T} \mathbf{x}_{i}\right)^{2} . \tag{1}
\end{equation*}
$$

Let us introduce the $n \times d$ matrix $\mathbf{X} \in \mathbb{R}^{n \times d}$ with the \mathbf{x}_{i} as rows, and the vector $\mathbf{y} \in \mathbb{R}^{n}$ consisting of the scalars y_{i}. Then, (1) can be equivalently re-written as

$$
\underset{\mathbf{w}}{\operatorname{argmin}}\|\mathbf{X w}-\mathbf{y}\|^{2} .
$$

We refer to any \mathbf{w}^{*} that attains the above minimum as a solution to the problem.
(a) Show that if $\mathbf{X}^{T} \mathbf{X}$ is invertible, then there is a unique \mathbf{w}^{*} that can be computed as $\mathbf{w}^{*}=\left(\mathbf{X}^{T} \mathbf{X}\right)^{-1} \mathbf{X}^{T} \mathbf{y}$.
(b) Show for $n<d$ that (1) does not admit a unique solution. Intuitively explain why this is the case.
(c) Consider the case $n \geq d$. Under what assumptions on \mathbf{X} does (1) admit a unique solution \mathbf{w}^{*} ? Give an example with $n=3$ and $d=2$ where these assumptions do not hold.

The ridge regression optimization problem with parameter $\lambda>0$ is given by

$$
\begin{equation*}
\underset{\mathbf{w}}{\operatorname{argmin}} \hat{R}_{\text {Ridge }}(\mathbf{w})=\underset{\mathbf{w}}{\operatorname{argmin}}\left[\sum_{i=1}^{n}\left(y_{i}-w^{T} \mathbf{x}_{i}\right)^{2}+\lambda \mathbf{w}^{T} \mathbf{w}\right] . \tag{2}
\end{equation*}
$$

(d) Show that $\hat{R}_{\text {Ridge }}(\mathbf{w})$ is convex with regards to \mathbf{w}. You can use the fact that a twice differentiable function is convex if and only if its Hessian $\mathbf{H} \in \mathbb{R}^{d \times d}$ satisfies $\mathbf{w}^{T} \mathbf{H w} \geq 0$ for all $\mathbf{w} \in \mathbb{R}^{d}$ (is positive semi-definite).
(e) Derive the closed form solution $\mathbf{w}_{\text {Ridge }}^{*}=\left(\mathbf{X}^{T} \mathbf{X}+\lambda I_{d}\right)^{-1} \mathbf{X}^{T} \mathbf{y}$ to (2) where I_{d} denotes the identity matrix of size $d \times d$.
(f) Show that (2) admits the unique solution $\mathbf{w}_{\text {Ridge }}^{*}$ for any matrix \mathbf{X}. Show that this even holds for the cases in (b) and (c) where (1) does not admit a unique solution w^{*}.
(g) What is the role of the term $\lambda \mathbf{w}^{T} \mathbf{w}$ in $\hat{R}_{\text {Ridge }}(\mathbf{w})$? What happens to $\mathbf{w}_{\text {Ridge }}^{*}$ as $\lambda \rightarrow 0$ and $\lambda \rightarrow \infty$?

[^0]
Solution 1:

(a) Note that

$$
\hat{R}(\mathbf{w})=\|\mathbf{X} \mathbf{w}-\mathbf{y}\|^{2}=(\mathbf{X} \mathbf{w}-\mathbf{y})^{T}(\mathbf{X} \mathbf{w}-\mathbf{y})=\mathbf{w}^{T} \mathbf{X}^{T} \mathbf{X} \mathbf{w}-2 \mathbf{w}^{T} \mathbf{X}^{T} \mathbf{y}+\mathbf{y}^{T} \mathbf{y} .
$$

The gradient of this function is equal to (see Lemma 1)

$$
\nabla \hat{R}(\mathbf{w})=2 \mathbf{X}^{T} \mathbf{X} \mathbf{w}-2 \mathbf{X}^{T} \mathbf{y}
$$

Because $\hat{R}(\mathbf{w})$ is convex (formally proven in (d)), its optima are exactly those points that have a zero gradient, i.e. those \mathbf{w}^{*} that satisfy $\mathbf{X}^{T} \mathbf{X} \mathbf{w}^{*}=\mathbf{X}^{T} \mathbf{y}$. Under the given assumption, the unique minimizer is indeed equal to $\mathbf{w}^{*}=\left(\mathbf{X}^{T} \mathbf{X}\right)^{-1} \mathbf{X}^{T} \mathbf{y}$.
(b) Consider the singular value decomposition $\mathbf{X}=\mathbf{U} \boldsymbol{\Sigma} \mathbf{V}^{T}$ where \mathbf{U} is an unitary $n \times n$ matrix, \mathbf{V} is a unitary $d \times d$ matrix and $\boldsymbol{\Sigma}$ is a diagonal $n \times d$ matrix with the singular values of \mathbf{X} on the diagonal. We then have

$$
\underset{\mathbf{w}}{\operatorname{argmin}} \hat{R}(\mathbf{w})=\underset{\mathbf{w}}{\operatorname{argmin}}\left[\mathbf{w}^{T} \mathbf{V} \boldsymbol{\Sigma}^{2} \mathbf{V}^{T} \mathbf{w}-2 \mathbf{y}^{T} \mathbf{U} \boldsymbol{\Sigma} \mathbf{V}^{T} \mathbf{w}\right]
$$

Since \mathbf{V} is unitary (and hence it is a bijection), we may rotate \mathbf{w} using \mathbf{V} to $\mathbf{z}=\mathbf{V}^{T} \mathbf{w}$ and formulate the optimization problem in terms of \mathbf{z}, i.e.

$$
\underset{\mathbf{z}}{\operatorname{argmin}}\left[\mathbf{z}^{T} \boldsymbol{\Sigma}^{2} \mathbf{z}-2 \mathbf{y}^{T} \mathbf{U} \boldsymbol{\Sigma} \mathbf{z}\right]=\underset{\mathbf{z}}{\operatorname{argmin}} \sum_{i=1}^{d}\left[z_{i}^{2} \sigma_{i}^{2}-2\left(\mathbf{U}^{T} \mathbf{y}\right)_{i} z_{i} \sigma_{i}\right]
$$

where σ_{i} is the i entry in the diagonal of $\boldsymbol{\Sigma}$. Note that this problem decomposes into d independent optimization problems of the form

$$
z_{i}=\underset{z}{\operatorname{argmin}}\left[z^{2} \sigma_{i}^{2}-2\left(\mathbf{U}^{T} \mathbf{y}\right)_{i} z \sigma_{i}\right]
$$

for $i=1,2, \ldots, d$. Since each problem is quadratic with positive coefficient and thus convex we may obtain the solution by finding the root of the first derivative. For $i=1,2, \ldots d$ we require that z_{i} satisfies

$$
z_{i} \sigma_{i}^{2}-\left(\mathbf{U}^{t} \mathbf{y}\right)_{i} \sigma_{i}=0
$$

For all $i=1,2, \ldots d$ such that $\sigma_{i} \neq 0$, the solution z_{i} is thus given by

$$
z_{i}=\frac{\left(\mathbf{U}^{t} \mathbf{y}\right)_{i}}{\sigma_{i}}
$$

For the case $n<d$, however, \mathbf{X} has at most rank n as it is a $n \times d$ matrix and hence at most n of its singular values are nonzero. This means that there is at least one index j such that $\sigma_{j}=0$ and hence any $z_{j} \in \mathbb{R}$ is a solution to the optimization problem. As a result the set of optimal solutions for \mathbf{z} is a linear subspace of at least one dimension. By rotating this subspace back using \mathbf{V}, i.e. $\mathbf{w}=\mathbf{V} \mathbf{z}$, it is evident that the optimal solution to the optimization problem in terms of \mathbf{w} is also a linear subspace of at least one dimension and that thus no unique solution exists. Furthermore, since \mathbf{X} has at most rank $n, \mathbf{X}^{T} \mathbf{X}$ is not of full rank (see Lemma 22). As a result $\left(\mathbf{X}^{T} \mathbf{X}\right)^{-1}$ does not exist and \mathbf{w}^{*} is ill-defined.
The intuition behind these results is that the "linear system" $\mathbf{X w} \approx \mathbf{y}$ is underdetermined as there are less data points than parameters that we want to estimate.
(c) We showed in (b) that the optimization problem admits a unique solution only if all the singular values of \mathbf{X} are nonzero. For $n \geq d$, this is the case if and only if \mathbf{X} is of full rank, i.e. all the columns of \mathbf{X} are linearly independent. As an example for a matrix not satisfying these assumptions, any matrix with linearly dependent dependent suffices, e.g.

$$
\mathbf{X}_{\text {degenerate }}=\left(\begin{array}{cc}
1 & -2 \\
0 & 0 \\
-2 & 4
\end{array}\right)
$$

(d) Because convex functions are closed under addition, we will show that each term in the objective is convex, from which the claim will follow. Each data term $\left(y_{i}-\mathbf{w}^{T} \mathbf{x}_{i}\right)^{2}$ has a Hessian $\mathbf{x}_{i} \mathbf{x}_{i}^{T}$, which is positive semi-definite because for any $\mathbf{w} \in \mathbf{R}^{d}$ we have $\mathbf{w}^{T} \mathbf{x}_{i} \mathbf{x}_{i}^{T} \mathbf{w}=\left(\mathbf{x}_{i}^{T} \mathbf{w}_{i}\right)^{2} \geq 0$ (note that $\mathbf{x}_{i}^{T} \mathbf{w}=\mathbf{w}^{T} \mathbf{x}_{i}$ are scalars). The regularizer $\lambda \mathbf{w}^{T} \mathbf{w}$ has the identity matrix λI_{d} as a Hessian, which is also postive semi-definite because for any $\mathbf{w} \in \mathbf{R}^{d}$ we have $\mathbf{w}^{T} \lambda I_{d} \mathbf{w}=\lambda\|\mathbf{w}\|^{2} \geq 0$, and this completes the proof.
(e) The gradient of $\hat{R}_{\text {Ridge }}(\mathbf{w})$ with respect to \mathbf{w} is given by

$$
\nabla \hat{R}_{\text {Ridge }}(\mathbf{w})=2 \mathbf{X}^{T}(\mathbf{X} \mathbf{w}-\mathbf{y})+2 \lambda \mathbf{w} .
$$

Similar to (a), because $\hat{R}_{\text {Ridge }}(\mathbf{w})$ is convex, we only have to find a point $\mathbf{w}_{\text {Ridge }}^{*}$ such that

$$
\nabla \hat{R}_{\text {Ridge }}\left(\mathbf{w}_{\text {Ridge }}^{*}\right)=2 \mathbf{X}^{T}\left(\mathbf{X} \mathbf{w}_{\text {Ridge }}^{*}-\mathbf{y}\right)+2 \lambda \mathbf{w}_{\text {Ridge }}^{*}=0 .
$$

This is equivalent to

$$
\left(\mathbf{X}^{T} \mathbf{X}+\lambda I_{d}\right) \mathbf{w}_{\text {Ridge }}^{*}=\mathbf{X}^{T} \mathbf{y}
$$

which implies the required result

$$
\mathbf{w}_{\text {Ridge }}^{*}=\left(\mathbf{X}^{T} \mathbf{X}+\lambda I_{d}\right)^{-1} \mathbf{X}^{T} \mathbf{y}
$$

(f) Note that $\mathbf{X}^{T} \mathbf{X}$ is a positive semi-definite matrix ${ }^{2}$ since $\forall \mathbf{w} \in \mathbb{R}^{d}: \mathbf{w}^{T} \mathbf{X}^{T} \mathbf{X} \mathbf{w}=\sum_{i=1}^{n}\left[(\mathbf{X} \mathbf{w})_{i}\right]^{2} \geq 0$, which implies that it has non-negative eigenvalues. But then, $\mathbf{X}^{T} \mathbf{X}+\lambda I_{d}$ has eigenvalues bounded from below by $\lambda>0$, which means that it is invertible and thus the optimum is uniquely defined.

Note. Since $\mathbf{X}^{T} \mathbf{X}$ is symmetric, all of its eigenvalues are real, and it is clear that μ is an eigenvalue of $\mathbf{X}^{T} \mathbf{X}$ if and only if $\mu+\lambda$ is an eigenvalue of $\mathbf{X}^{T} \mathbf{X}+\lambda I$. Also note that if a linear function is injective, then its kernel is $\{0\}$, meaning that it does not have a zero eigenvalue. The converse is also true.
(g) The term $\lambda \mathbf{w}^{T} \mathbf{w}$ "biases" the solution towards the origin, i.e. there is a quadratic penalty for solutions \mathbf{w} that are far from the origin. The parameter λ determines the extend of this effect: As $\lambda \rightarrow 0, \hat{R}_{\text {Ridge }}(\mathbf{w})$ converges to $\hat{R}(\mathbf{w})$. As a result the optimal solution $\mathbf{w}_{\text {Ridge }}^{*}$ approaches the solution of (1). As $\lambda \rightarrow \infty$, only the quadratic penalty $\mathbf{w}^{T} \mathbf{w}$ is relevant and $\mathbf{w}_{\text {Ridge }}^{*}$ hence approaches the null vector $(0,0, \ldots, 0)$.
One can also pose this interesting question: Assume $n<d$ (as the situation discussed in (b)). Then \mathbf{w}^{*} for linear regression is not unique. Denote by \mathbf{w}_{λ}^{*} the unique solution to the Ridge regression problem for $\lambda>0$. Does the limit $\lim _{\lambda \rightarrow 0} \mathbf{w}_{\lambda}^{*}$ exist? If yes, because of completeness of \mathbb{R}^{d}, the limit point should fall inside the space of solutions to linear regression problem. What is this solution?

[^1]
Problem 2 (Normal Random Variables):

Let X be a Normal random variable with mean $\mu \in \mathbb{R}$ and variance $\tau^{2}>0$, i.e. $X \sim \mathcal{N}\left(\mu, \tau^{2}\right)$. Recall that the probability density of X is given by

$$
f_{X}(x)=\frac{1}{\sqrt{2 \pi} \tau} e^{-(x-\mu)^{2} / 2 \tau^{2}}, \quad-\infty<x<\infty
$$

Furthermore, the random variable Y given $X=x$ is normally distributed with mean x and variance σ^{2}, i.e. $\left.Y\right|_{X=x} \sim \mathcal{N}\left(x, \sigma^{2}\right)$.
(a) Derive the marginal distribution of Y.
(b) Use Bayes' theorem to derive the conditional distribution of X given $Y=y$.

Hint: For both tasks derive the density up to a constant factor and use this to identify the distribution.

Solution 2:

Before starting calculations, it is good to mention that one can easily compute the following integral for $a>0$ by creating complete squares:

$$
\begin{aligned}
\int_{\mathbb{R}} e^{-\left(a x^{2}+2 b x+c\right)} d x & =\int_{\mathbb{R}} \exp \left(-a\left[\left(x+\frac{b}{a}\right)^{2}-\frac{b^{2}-a c}{a^{2}}\right]\right) d x \\
& =\exp \left(\frac{b^{2}-a c}{a}\right) \cdot \int_{\mathbb{R}} \exp \left(-\frac{1}{2} \frac{\left(x+\frac{b}{a}\right)^{2}}{1 / 2 a}\right) d x \\
& =\exp \left(\frac{b^{2}-a c}{a}\right) \sqrt{\pi / a}
\end{aligned}
$$

As a prelude to both (a) and (b) we consider the joint density function $f_{X, Y}(x, y)$ of X and Y

$$
f_{X, Y}(x, y)=f_{Y \mid X}(y \mid X=x) f_{X}(x)=\frac{1}{2 \pi \sigma \tau} \exp (-\frac{1}{2} \underbrace{\left[\frac{(x-\mu)^{2}}{\tau^{2}}+\frac{(y-x)^{2}}{\sigma^{2}}\right]}_{(\mathrm{A})})
$$

For brevity, let us define

$$
\begin{aligned}
& a:=\frac{\sigma^{2}+\tau^{2}}{2 \sigma^{2} \tau^{2}} \\
& b:=-\frac{\sigma^{2} \mu+\tau^{2} y}{2 \sigma^{2} \tau^{2}}, \\
& c:=\frac{\sigma^{2} \mu^{2}+\tau^{2} y^{2}}{2 \sigma^{2} \tau^{2}} .
\end{aligned}
$$

Using simple algebraic operations, we obtain that $(\mathrm{A})=a x^{2}+2 b x+c$.
(a) The marginal density of Y is given by

$$
f_{Y}(y)=\int_{\mathbb{R}} f_{X, Y}(x, y) d x=\int_{\mathbb{R}} f_{Y \mid X}(y \mid X=x) f_{X}(x) d x
$$

Using the formula discussed at the beginning of the solution, we can compute this integral by just putting in the values of a, b and c :

$$
\begin{aligned}
f_{Y}(y) & =\int_{\mathbb{R}} f_{X, Y}(x, y) d x \\
& =\int_{\mathbb{R}} \frac{1}{2 \pi \sigma \tau} e^{-\left(a x^{2}+2 b x+c\right)} d x \\
& =\frac{1}{2 \pi \sigma \tau} \exp \left(\frac{b^{2}-a c}{a}\right) \sqrt{\pi / a} \\
& \propto \exp \left(\frac{b^{2}-a c}{a}\right) \quad(a \text { does not depend on } y)
\end{aligned}
$$

Now we try to write $\left(b^{2}-a c\right) / a$ as a complete square:

$$
\begin{aligned}
\frac{b^{2}-a c}{a} & =\frac{1}{a}\left\{\left(\frac{\sigma^{2} \mu+\tau^{2} y}{2 \sigma^{2} \tau^{2}}\right)^{2}-\frac{\left(\sigma^{2}+\tau^{2}\right)\left(\sigma^{2} \mu^{2}+\tau^{2} y^{2}\right)}{\left(2 \sigma^{2} \tau^{2}\right)^{2}}\right\} \\
& =-\frac{1}{a} \cdot \frac{1}{\left(2 \sigma^{2} \tau^{2}\right)^{2}} \cdot\left(\sigma^{2} \tau^{2} y^{2}-2 \tau^{2} \sigma^{2} \mu y+\sigma^{2} \tau^{2} \mu^{2}\right) \\
& =-\frac{1}{a} \cdot \frac{\sigma^{2} \tau^{2}}{\left(2 \sigma^{2} \tau^{2}\right)^{2}} \cdot\left((y-\mu)^{2}+\cdots\right) \\
& =-\frac{1}{2} \frac{1}{\left(\sigma^{2}+\tau^{2}\right)} \cdot\left((y-\mu)^{2}+\cdots\right)
\end{aligned}
$$

Putting everything together yields

$$
f_{Y}(y) \propto \exp \left[-\frac{1}{2} \frac{(y-\mu)^{2}}{\left(\sigma^{2}+\tau^{2}\right)}\right]
$$

meaning that Y has a Gaussian distribution with mean μ and variance $\sigma^{2}+\tau^{2}$.
(b) The conditional density of X given $Y=y$ is proportional to the joint density function, i.e.

$$
f_{X \mid Y}(x \mid Y=y)=\frac{f_{X, Y}(x, y)}{f_{Y}(y)} \propto f_{X, Y}(x, y)
$$

By the discussion at the beginning of the solution, $f_{X, Y}(x, y) \propto \exp \left(-\left(a x^{2}+2 b x+c\right)\right)$. Since c does not depend on x (and y is considered as fixed/given), we can say :

$$
f_{X \mid Y}(x \mid Y=y) \propto \exp \left(-\frac{1}{2} \frac{\left(x+\frac{b}{a}\right)^{2}}{1 / 2 a}\right)
$$

So the mean would be $-b / a$ and the variance will be $1 / 2 a$. Concretely:

$$
\text { mean }=-\frac{b}{a}=\frac{\sigma^{2} \mu+\tau^{2} y}{\sigma^{2}+\tau^{2}}=\frac{\sigma^{2}}{\sigma^{2}+\tau^{2}} \mu+\frac{\tau^{2}}{\sigma^{2}+\tau^{2}} y
$$

Note that the mean is a convex combination of μ and the observation y. Also

$$
\text { variance }=\frac{1}{2 a}=\frac{\sigma^{2} \tau^{2}}{\sigma^{2}+\tau^{2}}
$$

Problem 3 (Bivariate Normal Random Variables):

Let X be a bivariate Normal random variable (taking on values in \mathbb{R}^{2}) with mean $\mu=(1,1)$ and covariance matrix $\Sigma=\left(\begin{array}{ll}3 & 1 \\ 1 & 2\end{array}\right)$. The density of X is then given by

$$
f_{X}(\mathbf{x})=\frac{1}{\sqrt{(2 \pi)^{2} \operatorname{det}(\Sigma)}} \exp \left(-\frac{1}{2}(\mathbf{x}-\mu)^{T} \Sigma^{-1}(\mathbf{x}-\mu)\right)
$$

Find the conditional distribution of $Y=X_{1}+X_{2}$ given $Z=X_{1}-X_{2}=0$.

Solution 3:

We present two approaches for this exercise:
Approach 1. Note that $Z=0$ implies $X_{1}=X_{2}$. Furthermore by the definition of Y, we have $X_{1}=X_{2}=Y / 2$ given $Z=0$. Hence the marginal density of Y given $Z=0$ is proportional to

$$
f_{Y \mid Z}(y \mid Z=0)=\frac{f_{Y, Z}(y, 0)}{f_{Z}(0)} \propto f_{Y, Z}(y, 0) \propto f_{X}\left[\binom{y / 2}{y / 2}\right]
$$

We then have

$$
\begin{aligned}
f_{X}\left[\binom{y / 2}{y / 2}\right] & \propto \exp \left(-\frac{1}{2}\binom{\frac{y}{2}-1}{\frac{y}{2}-1}^{T}\left(\begin{array}{cc}
3 & 1 \\
1 & 2
\end{array}\right)^{-1}\binom{\frac{y}{2}-1}{\frac{y}{2}-1}\right) \\
& =\exp \left(-\frac{1}{2}\binom{\frac{y}{2}-1}{\frac{y}{2}-1}^{T} \frac{1}{5}\left(\begin{array}{cc}
2 & -1 \\
-1 & 3
\end{array}\right)\binom{\frac{y}{2}-1}{\frac{y}{2}-1}\right) \\
& =\exp \left(-\frac{1}{2} \frac{(y-2)^{2}}{\frac{20}{3}}\right)
\end{aligned}
$$

Clearly the conditional distribution of Y given $Z=0$ is hence Normal with mean 2 and variance $\frac{20}{3}$.
Approach 2. We define the random variable \mathbf{R} as

$$
\mathbf{R}=\binom{Y}{Z}=\underbrace{\left(\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right)}_{=\mathbf{A}} \mathbf{X}
$$

By linearity of expectation, the mean $\mu_{\mathbf{R}}$ of \mathbf{R} is

$$
\mathbb{E}[\mathbf{R}]=\mathbf{A} \mathbb{E}[\mathbf{X}]=\mathbf{A} \mu=\binom{2}{0}
$$

The covariance matrix $\boldsymbol{\Sigma}_{\mathbf{R}}$ of \mathbf{R} is given by

$$
\begin{aligned}
\boldsymbol{\Sigma}_{\mathbf{R}} & =\mathbb{E}\left[(\mathbf{R}-\mathbb{E}[\mathbf{R}])(\mathbf{R}-\mathbb{E}[\mathbf{R}])^{T}\right]=\mathbb{E}\left[\mathbf{A}(\mathbf{X}-\mathbb{E}[\mathbf{X}])(\mathbf{X}-\mathbb{E}[\mathbf{X}])^{T} \mathbf{A}^{T}\right] \\
& =\mathbf{A} \mathbb{E}\left[(\mathbf{X}-\mathbb{E}[\mathbf{X}])(\mathbf{X}-\mathbb{E}[\mathbf{X}])^{T}\right] \mathbf{A}^{T}=\mathbf{A} \boldsymbol{\Sigma} \mathbf{A}^{T} \\
& =\left(\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right)\left(\begin{array}{cc}
3 & 1 \\
1 & 2
\end{array}\right)\left(\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right) \\
& =\left(\begin{array}{cc}
4 & 3 \\
2 & -1
\end{array}\right)\left(\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right) \\
& =\left(\begin{array}{cc}
7 & 1 \\
1 & 3
\end{array}\right)
\end{aligned}
$$

Since \mathbf{X} is multivariate Gaussian and \mathbf{R} is an affine transformation of \mathbf{X}, \mathbf{R} is a bivariate Normal random variable with mean $\mu_{\mathbf{R}}$ and covariance matrix $\boldsymbol{\Sigma}_{\mathbf{R}}{ }^{3}$ The conditional density of Y given $Z=0$ is then given by

$$
\begin{aligned}
f_{Y \mid Z}(y \mid Z=0) & =\frac{f_{Y, Z}(y, 0)}{f_{Z}(0)} \propto f_{Y, Z}(y, 0) \\
& \propto \exp \left(-\frac{1}{2}\binom{y-2}{0}^{T}\left(\begin{array}{ll}
7 & 1 \\
1 & 3
\end{array}\right)^{-1}\binom{y-2}{0}\right) \\
& =\exp \left(-\frac{1}{2}\binom{y-2}{0}^{T} \frac{1}{20}\left(\begin{array}{cc}
3 & -1 \\
-1 & 7
\end{array}\right)\binom{y-2}{0}\right) \\
& =\exp \left(-\frac{1}{2} \frac{(y-2)^{2}}{\frac{20}{3}}\right)
\end{aligned}
$$

Clearly the conditional distribution of Y given $Z=0$ is hence Normal with mean 2 and variance $\frac{20}{3}$.

1 Supplementary Material

Lemma 1 Let $A \in \mathbb{R}^{n \times n}$ be a real matrix and define $f(\mathbf{x})=\mathbf{x}^{\top} A \mathbf{x}$ to be the quadratic form defined via A. Then we have $\nabla f(\mathbf{x})=\left(A+A^{\top}\right) \mathbf{x}$. Moreover, if A is symmetric, then $\nabla f(\mathbf{x})=2 A \mathbf{x}$.

Proof Let us compute the derivative of f at point \mathbf{x}. We know

$$
f(\mathbf{x}+\mathbf{h})-f(\mathbf{x})=\mathbf{h}^{\top} A \mathbf{h}+\mathbf{h}^{\top} A \mathbf{x}+\mathbf{x}^{\top} A \mathbf{h}=\left(\mathbf{h}^{\top} A+\mathbf{x}^{\top} A^{\top}+\mathbf{x}^{\top} A\right) \mathbf{h} .
$$

By taking the limit $\|\mathbf{h}\| \rightarrow 0$, the linear operator $\left(\mathbf{x}^{\top} A^{\top}+\mathbf{x}^{\top} A\right)$ would be the derivative. So the gradient would be

$$
\nabla f(\mathbf{x})=\left(A+A^{\top}\right) \mathbf{x}
$$

Lemma 2 Let $A \in \mathbb{R}^{m \times n}$ and $B \in \mathbb{R}^{n \times k}$ be two matrices. Then

$$
\operatorname{rank}(A B) \leq \operatorname{rank}(A)
$$

Proof If we denote the columns of B by $\mathbf{b}_{1}, \ldots, \mathbf{b}_{k}$, then we can write $A B=\left[A \mathbf{b}_{1}, \ldots, A \mathbf{b}_{k}\right]$. Now $A \mathbf{b}_{i}$ is a linear combination of columns of A, so the columns of $A B$ are all linear combinations of columns of A. It follows that the subspace spanned by the columns of $A B$ is included in the span of columns of A. Hence we will have the desired inequality.

[^2]
[^0]: ${ }^{1}$ Without loss of generality, we assume that both \mathbf{x}_{i} and y_{i} are centered, i.e. they have zero empirical mean. Hence we can neglect the otherwise necessary bias term b.

[^1]: ${ }^{2}$ An equivalent notion for a matrix A being positive semi-definite is that for all $\mathbf{x} \in \mathbb{R}^{n}$ we have $\mathbf{x}^{\top} A \mathbf{x} \geq 0$.

[^2]: ${ }^{3}$ This result can be easily derived from the characteristic function of the multivariate Normal distribution. \mathbf{R} is bivariate Normal if and only if for any $\mathbf{t} \in \mathbb{R}^{2}$

 $$
 \mathbb{E}\left[e^{i \mathbf{t}^{T} \mathbf{R}}\right]=e^{i \mathbf{t}^{T} \mu_{\mathbf{R}}-\mathbf{t}^{T} \boldsymbol{\Sigma}_{\mathbf{R}} \mathbf{t} / 2}
 $$

 This holds since the corresponding property holds for \mathbf{X} with $\mathbf{s}=\mathbf{t}^{T} \mathbf{A}$, i.e.

 $$
 \mathbb{E}\left[e^{i \mathbf{t}^{T} \mathbf{R}}\right]=\mathbb{E}\left[e^{i \mathbf{t}^{T} \mathbf{A} \mathbf{X}}\right]=\mathbb{E}\left[e^{i \mathbf{s}^{T} \mathbf{X}}\right]=e^{i \mathbf{s}^{T} \mu-\mathbf{s}^{T} \boldsymbol{\Sigma} \mathbf{s} / 2}=e^{i \mathbf{t}^{T} \mathbf{A} \mu-\mathbf{t}^{T} \mathbf{A} \boldsymbol{\Sigma} \mathbf{A}^{T} \mathbf{t} / 2}=e^{i \mathbf{t}^{T} \mu_{\mathbf{R}}-\mathbf{t}^{T} \boldsymbol{\Sigma}_{\mathbf{R}} \mathbf{t} / 2}
 $$

