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Problem 1 (Linear Regression and Ridge Regression):

Let D = {(x1, y1), (x2, y2), . . . (xn, yn)} where xi ∈ Rd and yi ∈ R be the training data that you are given. As
you have to predict a continuous variable, one of the simplest possible models is linear regression, i.e. to predict
y as wTx for some parameter vector w ∈ Rd.1 We thus suggest minimizing the following loss

argmin
w

R̂(w) = argmin
w

n∑
i=1

(
yi −wTxi

)2
. (1)

Let us introduce the n×d matrix X ∈ Rn×d with the xi as rows, and the vector y ∈ Rn consisting of the scalars
yi. Then, (1) can be equivalently re-written as

argmin
w

‖Xw − y‖2.

We refer to any w∗ that attains the above minimum as a solution to the problem.

(a) Show that if XTX is invertible, then there is a unique w∗ that can be computed as w∗ =
(
XTX

)−1
XTy.

(b) Show for n < d that (1) does not admit a unique solution. Intuitively explain why this is the case.

(c) Consider the case n ≥ d. Under what assumptions on X does (1) admit a unique solution w∗? Give an
example with n = 3 and d = 2 where these assumptions do not hold.

The ridge regression optimization problem with parameter λ > 0 is given by

argmin
w

R̂Ridge(w) = argmin
w

[
n∑
i=1

(
yi − wTxi

)2
+ λwTw

]
. (2)

(d) Show that R̂Ridge(w) is convex with regards to w. You can use the fact that a twice differentiable function
is convex if and only if its Hessian H ∈ Rd×d satisfies wTHw ≥ 0 for all w ∈ Rd (is positive semi-definite).

(e) Derive the closed form solution w∗Ridge =
(
XTX + λId

)−1
XTy to (2) where Id denotes the identity matrix

of size d× d.

(f) Show that (2) admits the unique solution w∗Ridge for any matrix X. Show that this even holds for the cases
in (b) and (c) where (1) does not admit a unique solution w∗.

(g) What is the role of the term λwTw in R̂Ridge(w)? What happens to w∗Ridge as λ→ 0 and λ→∞?

1Without loss of generality, we assume that both xi and yi are centered, i.e. they have zero empirical mean. Hence we can neglect
the otherwise necessary bias term b.



Solution 1:

(a) Note that

R̂(w) = ‖Xw − y‖2 = (Xw − y)T (Xw − y) = wTXTXw − 2wTXTy + yTy.

The gradient of this function is equal to (see Lemma 1)

∇R̂(w) = 2XTXw − 2XTy.

Because R̂(w) is convex (formally proven in (d)), its optima are exactly those points that have a zero
gradient, i.e. those w∗ that satisfy XTXw∗ = XTy. Under the given assumption, the unique minimizer is

indeed equal to w∗ =
(
XTX

)−1
XTy.

(b) Consider the singular value decomposition X = UΣVT where U is an unitary n×n matrix, V is a unitary
d×d matrix and Σ is a diagonal n×d matrix with the singular values of X on the diagonal. We then have

argmin
w

R̂(w) = argmin
w

[
wTVΣ2VTw − 2yTUΣVTw

]
Since V is unitary (and hence it is a bijection), we may rotate w using V to z = VTw and formulate the
optimization problem in terms of z, i.e.

argmin
z

[
zTΣ2z− 2yTUΣz

]
= argmin

z

d∑
i=1

[
z2i σ

2
i − 2(UTy)iziσi

]
where σi is the i entry in the diagonal of Σ. Note that this problem decomposes into d independent
optimization problems of the form

zi = argmin
z

[
z2σ2

i − 2(UTy)izσi
]

for i = 1, 2, . . . , d. Since each problem is quadratic with positive coefficient and thus convex we may obtain
the solution by finding the root of the first derivative. For i = 1, 2, . . . d we require that zi satisfies

ziσ
2
i − (Uty)iσi = 0.

For all i = 1, 2, . . . d such that σi 6= 0, the solution zi is thus given by

zi =
(Uty)i
σi

.

For the case n < d, however, X has at most rank n as it is a n × d matrix and hence at most n of its
singular values are nonzero. This means that there is at least one index j such that σj = 0 and hence any
zj ∈ R is a solution to the optimization problem. As a result the set of optimal solutions for z is a linear
subspace of at least one dimension. By rotating this subspace back using V, i.e. w = Vz, it is evident
that the optimal solution to the optimization problem in terms of w is also a linear subspace of at least one
dimension and that thus no unique solution exists. Furthermore, since X has at most rank n, XTX is not
of full rank (see Lemma 2). As a result (XTX)−1 does not exist and w∗ is ill-defined.

The intuition behind these results is that the “linear system” Xw ≈ y is underdetermined as there are less
data points than parameters that we want to estimate.

(c) We showed in (b) that the optimization problem admits a unique solution only if all the singular values of
X are nonzero. For n ≥ d, this is the case if and only if X is of full rank, i.e. all the columns of X are
linearly independent. As an example for a matrix not satisfying these assumptions, any matrix with linearly
dependent dependent suffices, e.g.

Xdegenerate =

 1 −2
0 0
−2 4

 .
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(d) Because convex functions are closed under addition, we will show that each term in the objective is convex,
from which the claim will follow. Each data term (yi − wTxi)

2 has a Hessian xix
T
i , which is positive

semi-definite because for any w ∈ Rd we have wTxix
T
i w = (xTi wi)

2 ≥ 0 (note that xTi w = wTxi are
scalars). The regularizer λwTw has the identity matrix λId as a Hessian, which is also postive semi-definite
because for any w ∈ Rd we have wTλIdw = λ‖w‖2 ≥ 0, and this completes the proof.

(e) The gradient of R̂Ridge(w) with respect to w is given by

∇R̂Ridge(w) = 2XT (Xw − y) + 2λw.

Similar to (a), because R̂Ridge(w) is convex, we only have to find a point w∗Ridge such that

∇R̂Ridge(w
∗
Ridge) = 2XT (Xw∗Ridge − y) + 2λw∗Ridge = 0.

This is equivalent to
(XTX + λId)w

∗
Ridge = XTy

which implies the required result

w∗Ridge =
(
XTX + λId

)−1
XTy.

(f) Note that XTX is a positive semi-definite matrix2 since ∀w ∈ Rd : wTXTXw =
∑n
i=1 [(Xw)i]

2 ≥ 0,
which implies that it has non-negative eigenvalues. But then, XTX + λId has eigenvalues bounded from
below by λ > 0, which means that it is invertible and thus the optimum is uniquely defined.

Note. Since XTX is symmetric, all of its eigenvalues are real, and it is clear that µ is an eigenvalue of
XTX if and only if µ + λ is an eigenvalue of XTX + λI. Also note that if a linear function is injective,
then its kernel is {0}, meaning that it does not have a zero eigenvalue. The converse is also true.

(g) The term λwTw “biases” the solution towards the origin, i.e. there is a quadratic penalty for solutions w
that are far from the origin. The parameter λ determines the extend of this effect: As λ → 0, R̂Ridge(w)

converges to R̂(w). As a result the optimal solution w∗Ridge approaches the solution of (1). As λ → ∞,

only the quadratic penalty wTw is relevant and w∗Ridge hence approaches the null vector (0, 0, . . . , 0).

One can also pose this interesting question: Assume n < d (as the situation discussed in (b)). Then w∗

for linear regression is not unique. Denote by w∗λ the unique solution to the Ridge regression problem for
λ > 0. Does the limit limλ→0 w∗λ exist? If yes, because of completeness of Rd, the limit point should fall
inside the space of solutions to linear regression problem. What is this solution?

2An equivalent notion for a matrix A being positive semi-definite is that for all x ∈ Rn we have x>Ax ≥ 0.
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Problem 2 (Normal Random Variables):

Let X be a Normal random variable with mean µ ∈ R and variance τ2 > 0, i.e. X ∼ N (µ, τ2). Recall that the
probability density of X is given by

fX(x) =
1√
2πτ

e−(x−µ)
2/2τ2

, −∞ < x <∞.

Furthermore, the random variable Y given X = x is normally distributed with mean x and variance σ2, i.e.
Y |X=x ∼ N (x, σ2).

(a) Derive the marginal distribution of Y .

(b) Use Bayes’ theorem to derive the conditional distribution of X given Y = y.

Hint: For both tasks derive the density up to a constant factor and use this to identify the distribution.

Solution 2:

Before starting calculations, it is good to mention that one can easily compute the following integral for a > 0
by creating complete squares:∫

R
e−(ax

2+2bx+c)dx =

∫
R

exp

(
−a

[(
x+

b

a

)2

− b2 − ac
a2

])
dx

= exp

(
b2 − ac
a

)
·
∫
R

exp

(
− 1

2

(
x+ b

a

)2
1/2a

)
dx

= exp

(
b2 − ac
a

)√
π/a

As a prelude to both (a) and (b) we consider the joint density function fX,Y (x, y) of X and Y

fX,Y (x, y) = fY |X(y|X = x)fX(x) =
1

2πστ
exp

−1

2

[
(x− µ)2

τ2
+

(y − x)2

σ2

]
︸ ︷︷ ︸

(A)

 .

For brevity, let us define

a :=
σ2 + τ2

2σ2τ2
,

b := −σ
2µ+ τ2y

2σ2τ2
,

c :=
σ2µ2 + τ2y2

2σ2τ2
.

Using simple algebraic operations, we obtain that (A) = ax2 + 2bx+ c.

(a) The marginal density of Y is given by

fY (y) =

∫
R
fX,Y (x, y)dx =

∫
R
fY |X(y|X = x)fX(x)dx.

4



Using the formula discussed at the beginning of the solution, we can compute this integral by just putting
in the values of a, b and c:

fY (y) =

∫
R
fX,Y (x, y)dx

=

∫
R

1

2πστ
e−(ax

2+2bx+c)dx

=
1

2πστ
exp

(
b2 − ac
a

)√
π/a

∝ exp

(
b2 − ac
a

)
(a does not depend on y)

Now we try to write (b2 − ac)/a as a complete square:

b2 − ac
a

=
1

a

{(
σ2µ+ τ2y

2σ2τ2

)2

− (σ2 + τ2)(σ2µ2 + τ2y2)

(2σ2τ2)2

}

= −1

a
· 1

(2σ2τ2)2
· (σ2τ2y2 − 2τ2σ2µy + σ2τ2µ2)

= −1

a
· σ2τ2

(2σ2τ2)2
· ((y − µ)2 + · · · )

= −1

2

1

(σ2 + τ2)
· ((y − µ)2 + · · · )

Putting everything together yields

fY (y) ∝ exp

[
−1

2

(y − µ)2

(σ2 + τ2)

]
,

meaning that Y has a Gaussian distribution with mean µ and variance σ2 + τ2.

(b) The conditional density of X given Y = y is proportional to the joint density function, i.e.

fX|Y (x|Y = y) =
fX,Y (x, y)

fY (y)
∝ fX,Y (x, y).

By the discussion at the beginning of the solution, fX,Y (x, y) ∝ exp(−(ax2 + 2bx+ c)). Since c does not
depend on x (and y is considered as fixed/given), we can say :

fX|Y (x|Y = y) ∝ exp

(
− 1

2

(
x+ b

a

)2
1/2a

)

So the mean would be −b/a and the variance will be 1/2a. Concretely:

mean = − b
a

=
σ2µ+ τ2y

σ2 + τ2
=

σ2

σ2 + τ2
µ+

τ2

σ2 + τ2
y

Note that the mean is a convex combination of µ and the observation y. Also

variance =
1

2a
=

σ2τ2

σ2 + τ2
.
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Problem 3 (Bivariate Normal Random Variables):

Let X be a bivariate Normal random variable (taking on values in R2) with mean µ = (1, 1) and covariance
matrix Σ = ( 3 1

1 2 ). The density of X is then given by

fX(x) =
1√

(2π)2 det(Σ)
exp

(
−1

2
(x− µ)TΣ−1(x− µ)

)
.

Find the conditional distribution of Y = X1 +X2 given Z = X1 −X2 = 0.

Solution 3:

We present two approaches for this exercise:

Approach 1. Note that Z = 0 implies X1 = X2. Furthermore by the definition of Y , we have X1 = X2 = Y/2
given Z = 0. Hence the marginal density of Y given Z = 0 is proportional to

fY |Z(y|Z = 0) =
fY,Z(y, 0)

fZ(0)
∝ fY,Z(y, 0) ∝ fX

[(
y/2
y/2

)]
.

We then have

fX

[(
y/2
y/2

)]
∝ exp

(
−1

2

(
y
2 − 1
y
2 − 1

)T (
3 1
1 2

)−1(y
2 − 1
y
2 − 1

))

= exp

(
−1

2

(
y
2 − 1
y
2 − 1

)T
1

5

(
2 −1
−1 3

)(
y
2 − 1
y
2 − 1

))

= exp

(
−1

2

(y − 2)2

20
3

)
.

Clearly the conditional distribution of Y given Z = 0 is hence Normal with mean 2 and variance 20
3 .

Approach 2. We define the random variable R as

R =

(
Y
Z

)
=

(
1 1
1 −1

)
︸ ︷︷ ︸

=A

X.

By linearity of expectation, the mean µR of R is

E[R] = AE[X] = Aµ =

(
2
0

)
.

The covariance matrix ΣR of R is given by

ΣR = E[(R− E[R])(R− E[R])T ] = E[A(X− E[X])(X− E[X])TAT ]

= AE[(X− E[X])(X− E[X])T ]AT = AΣAT

=

(
1 1
1 −1

)(
3 1
1 2

)(
1 1
1 −1

)
=

(
4 3
2 −1

)(
1 1
1 −1

)
=

(
7 1
1 3

)
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Since X is multivariate Gaussian and R is an affine transformation of X, R is a bivariate Normal random variable
with mean µR and covariance matrix ΣR.3 The conditional density of Y given Z = 0 is then given by

fY |Z(y|Z = 0) =
fY,Z(y, 0)

fZ(0)
∝ fY,Z(y, 0)

∝ exp

(
−1

2

(
y − 2

0

)T (
7 1
1 3

)−1(
y − 2

0

))

= exp

(
−1

2

(
y − 2

0

)T
1

20

(
3 −1
−1 7

)(
y − 2

0

))

= exp

(
−1

2

(y − 2)2

20
3

)
.

Clearly the conditional distribution of Y given Z = 0 is hence Normal with mean 2 and variance 20
3 .

1 Supplementary Material

Lemma 1 Let A ∈ Rn×n be a real matrix and define f(x) = x>Ax to be the quadratic form defined via A.
Then we have ∇f(x) = (A+A>)x. Moreover, if A is symmetric, then ∇f(x) = 2Ax.

Proof Let us compute the derivative of f at point x. We know

f(x + h)− f(x) = h>Ah + h>Ax + x>Ah = (h>A+ x>A> + x>A)h.

By taking the limit ‖h‖ → 0, the linear operator (x>A> + x>A) would be the derivative. So the gradient would
be

∇f(x) = (A+A>)x.

Lemma 2 Let A ∈ Rm×n and B ∈ Rn×k be two matrices. Then

rank(AB) ≤ rank(A).

Proof If we denote the columns of B by b1, . . . ,bk, then we can write AB = [Ab1, . . . , Abk]. Now Abi is a
linear combination of columns of A, so the columns of AB are all linear combinations of columns of A. It follows
that the subspace spanned by the columns of AB is included in the span of columns of A. Hence we will have
the desired inequality.

3This result can be easily derived from the characteristic function of the multivariate Normal distribution. R is bivariate Normal
if and only if for any t ∈ R2

E
[
eit

T R
]
= eit

T µR−tT ΣRt/2.

This holds since the corresponding property holds for X with s = tTA, i.e.

E
[
eit

T R
]
= E

[
eit

T AX
]
= E

[
eis

T X
]
= eis

T µ−sT Σs/2 = eit
T Aµ−tT AΣAT t/2 = eit

T µR−tT ΣRt/2.
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