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Problem 1 (Model selection and cross-validation):

Suppose we are given a noise-free set of points X = {xi}ni=1 ⊂ (−1, 1), Y = {sin(xi)}, which we want to fit
with a polynomial, but we do not know which degree to choose. Suppose our candidate polynomial families are
Pk = {P2i+1}ki=0, where P2i+1 denotes the family of polynomials with real-valued coefficients of maximum degree

2i+ 1. We want to find the optimal hyperparameter value k̂ ∈ {1, . . . , k}.
Given a family of polynomials P2`+1 and a training set, suppose we have an oracle (i.e. an exact algorithm) that
is able to find the polynomial p̂ ∈ P2`+1 with optimal coefficients with respect to the square loss objective

L(X,Y, p) =
n∑

i=1

(yi − p(xi))2, p ∈ P2`+1.

1. Show that when the optimization is performed on each family in Pk, the lowest score is achieved when
p̂ ∈ P2k+1 \ P2k−1 (i.e., p̂ will be of degree 2k + 1).

Answer:
Note: We should consider polynomials of the following type, not the odd-ordered polynomials stated in the
question previously

P1 = w1x

P3 = w1x− w2x
3

P5 = w1x− w2x
3 + w3x

5

P7 = w1x− w2x
3 + w3x

5 − w3x
7

...

We also remember the taylor-series approximation of sin(x)

sin(x) = x− x3

3!
+
x5

5!
− x7

7!
...

The loss can be calculated as:



L(X,Y, p, k) =
n∑

i=1

(yi − p(xi))2, p ∈ P2`+1.

=

n∑
i=1

(sin(xi)− p2k+1(xi))
2 all terms in taylor series expansion will be eliminated up to 2k+1

=

n∑
i=1

O(x2k+3
i )2

=

n∑
i=1

O(x4k+6
i )

>

n∑
i=1

O(x4(k+1)+6
i )

=

n∑
i=1

O(x4k+10
i )

2. What potential issue with using cross-validation does this demonstrate?

Answer:
When fitting a model, even when using cross-validation, we can still choose overly complex models. In this
case, it occurred because of a special relationship between our data and the family of functions we were
using to approximate it.

3. Suppose we add noise to the data, Ỹ = {yi + εi}ni=1, where εi ∼ N (0, σ2). For which values of σ2 will the
result from part 1 hold with > 95% probability?

Answer:
This question was mistakenly added, please consider next question for a similar intuition.

4. Suppose we widen the boundaries of X to (−2π, 2π). Write a short script to simulate samples (Xi, Ỹi)

with different values of σ2
i and use 10-fold cross-validation to find corresponding optimal values k̂i. How

do L(Xi, Ŷi, p) and k̂i behave as k and σ2 increase? Answer:

As σ2 begins to increase, we will and no longer have a special relation between our learned function and
sin(x). This means that we will no longer be guaranteed to get the more complex model when using
cross-validation.
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Problem 2 (Classification):

Consider the data set plotted below,
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Show that a = 1
||w|| . How would L2 regularization on w affect the margin around wTx = 0?

Answer:
First we use the fact that the minimal euclidean distance from any point on a plane (wTx = b) to the origin is |b|

||w||

We know that our other vectors are wTx+ b = 1 and wTx+ b = −1.

This is re-written as wTx = 1− b and wTx = −1− b.

The distance between these two vectors is then 2
||w|| .

Therefore a is 1
||w|| .

We see that the margin around wTx = 0 is maximized when ||w|| is minimized.
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