Exercises

Introduction to Machine Learning FS 2018

Series 2, Mar 16th, 2018 (Model selection and Classification)

Institute for Machine Learning

Dept. of Computer Science, ETH Zürich

Prof. Dr. Andreas Krause

Web: https://las.inf.ethz.ch/teaching/introml-s18
Email questions to:
Natalie Davidson, natalie.davidson@inf.ethz.ch

Problem 1 (Model selection and cross-validation):

Suppose we are given a noise-free set of points $X=\left\{x_{i}\right\}_{i=1}^{n} \subset(-1,1), Y=\left\{\sin \left(x_{i}\right)\right\}$, which we want to fit with a polynomial, but we do not know which degree to choose. Suppose our candidate polynomial families are $\mathcal{P}_{k}=\left\{\mathbb{P}_{2 i+1}\right\}_{i=0}^{k}$, where $\mathbb{P}_{2 i+1}$ denotes the family of polynomials with real-valued coefficients of maximum degree $2 i+1$. We want to find the optimal hyperparameter value $\hat{k} \in\{1, \ldots, k\}$.

Given a family of polynomials $\mathbb{P}_{2 \ell+1}$ and a training set, suppose we have an oracle (i.e. an exact algorithm) that is able to find the polynomial $\hat{p} \in \mathbb{P}_{2 \ell+1}$ with optimal coefficients with respect to the square loss objective

$$
\mathcal{L}(X, Y, p)=\sum_{i=1}^{n}\left(y_{i}-p\left(x_{i}\right)\right)^{2}, \quad p \in \mathbb{P}_{2 \ell+1}
$$

1. Show that when the optimization is performed on each family in \mathcal{P}_{k}, the lowest score is achieved when $\hat{p} \in \mathbb{P}_{2 k+1} \backslash \mathbb{P}_{2 k-1}$ (i.e., \hat{p} will be of degree $2 k+1$).

Answer:
Note: We should consider polynomials of the following type, not the odd-ordered polynomials stated in the question previously

$$
\begin{aligned}
& \mathcal{P}_{1}=w_{1} x \\
& \mathcal{P}_{3}=w_{1} x-w_{2} x^{3} \\
& \mathcal{P}_{5}=w_{1} x-w_{2} x^{3}+w_{3} x^{5} \\
& \mathcal{P}_{7}=w_{1} x-w_{2} x^{3}+w_{3} x^{5}-w_{3} x^{7}
\end{aligned}
$$

We also remember the taylor-series approximation of $\sin (x)$

$$
\sin (x)=x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\frac{x^{7}}{7!} \cdots
$$

The loss can be calculated as:

$$
\begin{aligned}
\mathcal{L}(X, Y, p, k) & =\sum_{i=1}^{n}\left(y_{i}-p\left(x_{i}\right)\right)^{2}, \quad p \in \mathbb{P}_{2 \ell+1} . \\
& =\sum_{i=1}^{n}\left(\sin \left(x_{i}\right)-p_{2 k+1}\left(x_{i}\right)\right)^{2} \quad \text { all terms in taylor series expansion will be eliminated up to } 2 \mathbf{k}+1 \\
& =\sum_{i=1}^{n} \mathcal{O}\left(x_{i}^{2 k+3}\right)^{2} \\
& =\sum_{i=1}^{n} \mathcal{O}\left(x_{i}^{4 k+6}\right) \\
& >\sum_{i=1}^{n} \mathcal{O}\left(x_{i}^{4(k+1)+6}\right) \\
& =\sum_{i=1}^{n} \mathcal{O}\left(x_{i}^{4 k+10}\right)
\end{aligned}
$$

2. What potential issue with using cross-validation does this demonstrate?

Answer:
When fitting a model, even when using cross-validation, we can still choose overly complex models. In this case, it occurred because of a special relationship between our data and the family of functions we were using to approximate it.
3. Suppose we add noise to the data, $\tilde{Y}=\left\{y_{i}+\varepsilon_{i}\right\}_{i=1}^{n}$, where $\varepsilon_{i} \sim \mathcal{N}\left(0, \sigma^{2}\right)$. For which values of σ^{2} will the result from part 1 hold with $>95 \%$ probability?
Answer:
This question was mistakenly added, please consider next question for a similar intuition.
4. Suppose we widen the boundaries of X to $(-2 \pi, 2 \pi)$. Write a short script to simulate samples (X_{i}, \tilde{Y}_{i}) with different values of σ_{i}^{2} and use 10 -fold cross-validation to find corresponding optimal values \hat{k}_{i}. How do $\mathcal{L}\left(X_{i}, \hat{Y}_{i}, p\right)$ and \hat{k}_{i} behave as k and σ^{2} increase? Answer:

As σ^{2} begins to increase, we will and no longer have a special relation between our learned function and $\sin (x)$. This means that we will no longer be guaranteed to get the more complex model when using cross-validation.

Problem 2 (Classification):

Consider the data set plotted below,

Show that $a=\frac{1}{\|w\|}$. How would L_{2} regularization on w affect the margin around $w^{T} x=0$?
Answer:
First we use the fact that the minimal euclidean distance from any point on a plane $\left(w^{T} x=b\right)$ to the origin is $\frac{|b|}{\|w\|}$ We know that our other vectors are $w^{T} x+b=1$ and $w^{T} x+b=-1$.

This is re-written as $w^{T} x=1-b$ and $w^{T} x=-1-b$.

The distance between these two vectors is then $\frac{2}{\|w\|}$.
Therefore a is $\frac{1}{\|w\|}$.
We see that the margin around $w^{T} x=0$ is maximized when $\|w\|$ is minimized.

