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It is not mandatory to submit solutions and sample solutions will be published in two weeks. If you
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The problems marked with an asterisk * are intended for deeper understanding. One should look at these problems
as an opportunity to have more insight into the theory. Note that these problems are not necessarily harder than
the other ones.

Problem 1 (EM for Censored Linear Regression):
Suppose you are trying to learn a model that can predict how long a program will take to run for different settings.
In some situations, when the program is taking too long, you abort the program and just note down the time at
which you aborted. These values are lower bounds for the actual running time of the program. We call this type
of data right-censored. Concretely, all you know is that the running time yi ≥ ci, where ci is the censoring time.
Written in another way, one can say yi = min{zi, ci} where zi is the true running time. Our goal is to derive an
EM algorithm for fitting a linear regression model to right-censored data.

(a) Let zi = µi + σεi, where εi ∼ N (0, 1). Suppose that we do not observe zi, but we observe the fact that it
is higher than some threshold. Namely, we observe the event E = I(zi ≥ ci). Show that

E[zi | zi ≥ ci] = µi + σR

(
ci − µi

σ

)
and

E[z2
i | zi ≥ ci] = µ2

i + σ2 + σ(ci + µi)R
(
ci − µi

σ

)
,

where we have defined
R(x) := φ(x)

1− Φ(x) .

Here, φ(x) is the pdf of the standard Gaussian, and Φ(x) is its cdf.

(b) Derive the EM algorithm for fitting a linear regression model to right-censored data. Describe completely
the E-step and M-step.



Problem 2 (Soft k-means, Revisited):

(a) Consider the following optimization problem:

max
c∈Rk

k∑
i=1

vi log(ci) s.t. ci > 0,
k∑

i=1
ci = 1,

where v ∈ Rk
+ is a vector of non-negative weights. Check that the M-step of soft k-means includes solving

such an optimization problem.

(b) Let c? = 1∑
i

vi
v. Verify that c? is a probability vector.

(c) Show that the optimization problem is equivalent to the following problem:

min
c∈Rk

DKL(c?‖c) s.t. ci > 0,
k∑

i=1
ci = 1,

(d) Using the properties of KL divergence, prove that c? is indeed the solution to the optimization problem.
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Problem 3 (Yet another perspective on EM):
The EM algorithm is a general technique for finding maximum likelihood solutions for probabilistic models having
latent variables. Take a probabilistic model in which we denote all of the observed variables as X and all of the
hidden variables as Z (here we assume Z is discrete, for the sake of simplicity). Let us assume that the joint
distribution is p(X,Z |θ), where θ is the set of all parameters describing this distribution (e.g. for a Gaussian
distribution, θ = (µ,Σ)). The goal is to maximize the likelihood function

p(X |θ) =
∑

Z

p(X,Z |θ).

(a) For an arbitrary distribution q(Z) over the latent variables, show that the following decomposition holds:

ln p(X |θ) = L(q,θ) + DKL(q‖ppost), (1)

where ppost = p(Z |X,θ) is the posterior distribution. Also find the formulation of L(q,θ).

(b) Verify that L(q,θ) ≤ ln p(X |θ), and that equality holds if and only if q(Z) = p(Z |X,θ).

(c) Suppose that the current value of the parameters is θcurr. Verify that in the E-step, the lower bound
L(q,θcurr) is maximized with respect to the distribution q(Z), while keeping θcurr fixed. Since the left-
hand-side of (1) does not depend on q(Z), maximizing L(q,θcurr) will result in minimizing the KL divergence
between q and ppost, which happens at q? = ppost.

(d) Verify that in the M-step, the lower bound L(q,θ) is maximized with respect to θ while keeping q(Z) fixed,
resulting in a new value of parameters θnew. This step will result in an increase in left-hand-side of (1) (if
it is not already in a local maximum).

(e) Substitute q(Z) = p(Z |X,θcurr) in (1), and observe that

L(q,θ) = Eq[complete-data log likelihood]−H(q).

In other words, in the M-step we are maximizing the expectation of the complete-data log likelihood1, since
the entropy term is independent of θ. Compare this result with the EM for Gaussian mixture models.

(f) Show that the lower bound L(q,θ), where q(Z) = q?(Z) = p(Z |X,θcurr), has the same gradient w.r.t. θ
as the log likelihood function p(X |θ) at the point θ = θcurr. This shows that the lower bound becomes
tangent to the log likelihood function at the end of E-step.

(g) Have you found an argument to prove the convergence of EM algorithm?

1p(X, Z | θ)
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Problem 4 (On Statistical Distances*):
In some situations in statistics and machine learning, the objective that we are going to optimize is some dis-
tribution (e.g. in the E-step of EM algorithm). This motivates us to understand a bit more about the space of
probability distributions.
For simplicity, let P be the set of all probability distributions over the set {1, . . . , n}, i.e.

P = {(p1, . . . , pn) |
∑
pi = 1, pi ≥ 0}.

Usually P is called the probability simplex, or simply the n-simplex. One can equip P with a metric, inducing a
geometry on P. Recall that a metric is a function d : P × P → R+ satisfying the following criteria:

• (Non-negativity) d(p, q) ≥ 0 for all p, q ∈ P and equality holds iff p = q,

• (Symmetry) d(p, q) = d(q, p),

• (Triangle inequality) d(p, q) + d(q, r) ≥ d(p, r).

A metric on the probability simplex is also called a statistical distance. Here we mention a few distances and
some of their properties:

(a) Total Variation Distance. For p, q ∈ P, we define their TV distance as

DTV(p, q) := 1
2‖p− q‖1 = 1

2

n∑
i=1
|pi − qi|.

Prove that TV distance is indeed a metric, and equals to the largest possible difference between the
probabilities that the two probability distributions p and q can assign to the same event, i.e.

DTV(p, q) = max
E⊆{1,...,n}

|p(E)− q(E)|.

(b) Kullback-Leibler Divergence. For p, q ∈ P, we define their KL divergence as

DKL(p‖q) = −
n∑

i=1
pi log qi

pi
.

(b.1) Prove that KL divergence satisfies the first property of a metric: it is non-negative, and it is zero if
and only if the distributions are equal.

(b.2) Give an example that DKL(p‖q) 6= DKL(q‖p).
(b.3) Give a counter-example for the triangle inequality for KL divergence.
(b.4) Prove the Pinsker’s Inequality:

DTV(p, q) ≤
√

1
2 DKL(p‖q).

(b.5) Although KL divergence fails to be a metric on P, it satisfies some convergence properties. As an
example, prove the following theorem: Let p(1), p(2), . . . be a sequence of probability distributions in
P, such that

lim
n→∞

DKL(p(n)‖q) = 0,

i.e. the sequence is “converging” to q with respect to KL divergence. Prove that this sequence is
actually converging to q in Euclidean sense, i.e.

lim
n→∞

‖p(n) − q‖2 = 0.
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(b.6) Let X and Y be two random variables with distributions pX and pY and joint distribution pX,Y . If
X and Y were independent, the we had pX,Y = pXpY . Otherwise, if one tries to give a “measure of
independence” of X and Y , one idea is to consider

DKL(pX,Y ‖pXpY ).

This value is called the mutual information between X and Y , denoted by I(X,Y ). Prove that

I(X,Y ) = H(X)−H(X |Y ),

where H(X) is the entropy2 of X and H(X |Y ) is the conditional entropy of X given Y . In Bayesian
point-of-view, the mutual information shows how much information does knowledge about Y reveal
about X.

2Entropy of a random variable X is defined as H(X) := EX [− log X] = −
∑

x
pX(x) log pX(x), and is a measure of “uncertainty”

of X. For example if X has the uniform distribution, it has the highest entropy. If the base of log is 2, entropy is measured with the
unit “bits”, suggesting the idea that one needs H(X) bits to encode the outcome of X with zeros and ones. Convince yourself that
this definition makes sense.
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