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The problems marked with an asterisk * are intended for deeper understanding. One should look at these problems
as an opportunity to have more insight into the theory. Note that these problems are not necessarily harder than
the other ones.

Problem 1 (EM for Censored Linear Regression):
Suppose you are trying to learn a model that can predict how long a program will take to run for different settings.
In some situations, when the program is taking too long, you abort the program and just note down the time at
which you aborted. These values are lower bounds for the actual running time of the program. We call this type
of data right-censored. Concretely, all you know is that the running time yi ≥ ci, where ci is the censoring time.
Written in another way, one can say yi = min{zi, ci} where zi is the true running time. Our goal is to derive an
EM algorithm for fitting a linear regression model to right-censored data.

(a) Let zi = µi + σεi, where εi ∼ N (0, 1). Suppose that we do not observe zi, but we observe the fact that it
is higher than some threshold. Namely, we observe the event E = I(zi ≥ ci). Show that

E[zi | zi ≥ ci] = µi + σR

(
ci − µi
σ

)
and

E[z2
i | zi ≥ ci] = µ2

i + σ2 + σ(ci + µi)R
(
ci − µi
σ

)
,

where we have defined
R(x) := φ(x)

1− Φ(x) .

Here, φ(x) is the pdf of the standard Gaussian, and Φ(x) is its cdf.

(b) Derive the EM algorithm for fitting a linear regression model to right-censored data. Describe completely
the E-step and M-step.



Solution 1:

(a) First note that p(εi|E) = p(εi,E)
p(E) . Also for brevity, define ai := ci−µi

σ . Then we have E = I(zi ≥ ci) =
I(εi ≥ ai). So we can write

E[zi | zi ≥ ci] =
∫
R
zi p(εi|E) dεi

=
∫
R
zi
p(εi, E)
p(E) dεi

= 1
p(E)

∫ ∞
ai

(µi + σεi) p(εi) dεi

= µi + σ

p(E)

∫ ∞
ai

εi p(εi) dεi

The equality follows from the fact that p(E) =
∫∞
ai
p(εi) dεi = 1 − Φ(ai). Now observe that for the Standard

Normal distribution density φ(x), we have

d

dx
φ(x) = −xφ(x),

implying that ∫ ∞
ai

εi p(εi) dεi = φ(ai)− φ(+∞) = φ(ai).

Putting all together we get

E[zi | zi ≥ ci] = µi + σ
φ(ai)

1− Φ(ai)
= µi + σR

(
ci − µi
σ

)
.

To compute E[z2
i | zi ≥ ci], we first note that

d2

dx2φ(x) = −φ(x) + x2φ(x),

implying that ∫ b

a

x2φ(x) dx = Φ(b)− Φ(a) + aφ(a)− bφ(b). (1)

Now we have

E[z2
i | zi ≥ ci] = 1

p(E)

∫ ∞
ai

(µ2
i + 2µiσεi + σ2ε2

i ) p(εi) dεi

= µ2
i + 2µiσ

p(E)

∫ ∞
ai

εi p(εi) dεi + σ2

p(E)

∫ ∞
ai

ε2
i p(εi) dεi

= µ2
i + 2µiσ

p(E)φ(ai) + σ2

p(E) (1− Φ(ai) + aiφ(ai))

= µ2
i + 2µiσ

1− Φ(ai)
φ(ai) + σ2

1− Φ(ai)
(1− Φ(ai) + aiφ(ai))

= µ2
i + σ2 + (2µiσ + aiσ

2)R(ai)
= µ2

i + σ2 + σ(µi + ci)R(ai)
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(b) The model we have for linear regression is zi ∼ N (w>xi, σ) where zi is missing. Our observed variable is
yi = min{zi, ci}. For ease of notation, let

di =
{

1 if zi ≤ ci
0 if zi > ci

to be the censoring indicator, i.e. it is 1 if the observation is not censored, and is 0 otherwise. We denote by z
the set of all zi’s, by X the set of all xi’s, by y the set of all yi’s, by c the set of all ci’s, and by d the set of all
di’s.
The complete-data log-likelihood would be

log p(zi |w) = − 1
2σ2 (zi −w>xi)2 + const.

For the first step, we need to find the posterior of the missing data given the observed data and parameters. We
have

p(zi | xi, yi, ci, di︸ ︷︷ ︸
observed

,w) =

 δ(zi − yi) if di = 1
N (zi |w>xi,σ)
1−Φ

(
ci−w>xi

σ

) if di = 0 ,

in which δ(·) is the dirac delta function, and 1− Φ( ci−µiσ ) is the probability that zi > ci.
Now we should compute the expected value of the complete-data log-likelihood w.r.t the posterior p(zi |xi, yi, ci, di,w′).
This can be computed as ∫

R
log p(zi |w) · p(zi |xi, yi, ci, di,w′) dzi.

Note that if di = 1, the integral is evaluated as − 1
2σ2 (yi−w>xi)2, and if di = 0, we can use part (a) to compute

the expectation. For ease of notation, we call µi := w>xi and µ′i := w′>xi and ai = ci−µ′i
σ . We then have

E[log p(zi |w) | zi > ci] = − 1
2σ2

{
µ2
i + E[z2

i | zi > ci]− 2µi E[zi | zi > ci]
}

= − 1
2σ2

µ2
i + µ′i +R(ai)− 2µi((µ′i)2 + σ2 + σ(µ′i + ci)R(ai)︸ ︷︷ ︸

:=bi

)

 .

Adding the evaluated expectation for all data, and removing the terms that are not dependent on w we get

Q(w,w′) = − 1
2σ2

n∑
i=1

(yi − µi)2 · di + (µ2
i − 2biµi) · (1− di)

.= − 1
2σ2

n∑
i=1

(µ2
i − 2yiµi) · di + (µ2

i − 2biµi) · (1− di)

= − 1
2σ2

n∑
i=1

µ2
i − 2µi(yidi + bi(1− di)︸ ︷︷ ︸

:=ei

)

= − 1
2σ2 (w>X>Xw− 2w>X>e)

The maximizer for Q(w,w′) would be

w? = −1
2(X>e)(X>X)−1,

which sums up the M-step.
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Problem 2 (Soft k-means, Revisited):

(a) Consider the following optimization problem:

max
c∈Rk

k∑
i=1

vi log(ci) s.t. ci > 0,
k∑
i=1

ci = 1,

where v ∈ Rk+ is a vector of non-negative weights. Check that the M-step of soft k-means includes solving
such an optimization problem.

(b) Let c? = 1∑
i
vi

v. Verify that c? is a probability vector.

(c) Show that the optimization problem is equivalent to the following problem:

min
c∈Rk

DKL(c?‖c) s.t. ci > 0,
k∑
i=1

ci = 1,

(d) Using the properties of KL divergence, prove that c? is indeed the solution to the optimization problem.
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Solution 2:

(a) check the slides of the course.
(b) The components of c? are non-negative (since v is nonnegative), and add up to 1.
(c) Since the optimization is over c, it makes no difference if we divide it by a positive number or add/subtract
terms which are not dependent on c. We first divide the objective by

∑
i vi and then subtract from the sum∑k

i=1 c
?
i log c?i . We get

k∑
i=1

c?i log(ci)−
k∑
i=1

c?i log(c?i ) =
k∑
i=1

c?i log ci
c?i

= −DKL(c?‖c).

Thus maximizing the objective is equivalent to minimizing DKL(c?‖c).
(d) Since KL Divergence is always nonnegative and is zero if and only if the two distributions are equal, we get
that the optimal solution to the optimization problem is indeed c = c?.
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Problem 3 (Yet another perspective on EM):
The EM algorithm is a general technique for finding maximum likelihood solutions for probabilistic models having
latent variables. Take a probabilistic model in which we denote all of the observed variables as X and all of the
hidden variables as Z (here we assume Z is discrete, for the sake of simplicity). Let us assume that the joint
distribution is p(X,Z |θ), where θ is the set of all parameters describing this distribution (e.g. for a Gaussian
distribution, θ = (µ,Σ)). The goal is to maximize the likelihood function

p(X |θ) =
∑

Z

p(X,Z |θ).

(a) For an arbitrary distribution q(Z) over the latent variables, show that the following decomposition holds:

ln p(X |θ) = L(q,θ) + DKL(q‖ppost), (2)

where ppost = p(Z |X,θ) is the posterior distribution. Also find the formulation of L(q,θ).

(b) Verify that L(q,θ) ≤ ln p(X |θ), and that equality holds if and only if q(Z) = p(Z |X,θ).

(c) Suppose that the current value of the parameters is θcurr. Verify that in the E-step, the lower bound
L(q,θcurr) is maximized with respect to the distribution q(Z), while keeping θcurr fixed. Since the left-
hand-side of (2) does not depend on q(Z), maximizing L(q,θcurr) will result in minimizing the KL divergence
between q and ppost, which happens at q? = ppost.

(d) Verify that in the M-step, the lower bound L(q,θ) is maximized with respect to θ while keeping q(Z) fixed,
resulting in a new value of parameters θnew. This step will result in an increase in left-hand-side of (2) (if
it is not already in a local maximum).

(e) Substitute q(Z) = p(Z |X,θcurr) in (2), and observe that

L(q,θ) = Eq[complete-data log likelihood]−H(q).

In other words, in the M-step we are maximizing the expectation of the complete-data log likelihood1, since
the entropy term is independent of θ. Compare this result with the EM for Gaussian mixture models.

(f) Show that the lower bound L(q,θ), where q(Z) = q?(Z) = p(Z |X,θcurr), has the same gradient w.r.t. θ
as the log likelihood function p(X |θ) at the point θ = θcurr. This shows that the lower bound becomes
tangent to the log likelihood function at the end of E-step.

(g) Have you found an argument to prove the convergence of EM algorithm?

1p(X, Z | θ)
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Solution 3:

(a) By computing the KL Divergence of q to ppost we get

DKL(q‖ppost) =
∑

Z

q(Z) log q(Z)
p(Z|X,θ) .

Knowing that p(Z|X,θ) = p(X,Z|θ)
p(X|θ) , we get

DKL(q‖ppost) =
∑

Z

q(Z) log q(Z) p(X|θ)
p(Z,X|θ) =

∑
Z

q(Z) log q(Z)
p(Z,X|θ) + log p(X|θ).

This implies that
log p(X|θ) = DKL(q‖ppost) + L(q,θ),

where
L(q,θ) =

∑
Z

q(Z) log p(Z,X|θ)
q(Z) . (3)

(b) Since KL divergence is always nonnegative and is zero only if the distributions are the same, we have

L(q,θ) ≤ log p(X|θ).

with equality iff q = ppost.
(c) This is for you to verify. As seen in the examples in the slides of the course, in some situations, the E-step is
just computing the posterior, which is equivalent to minimizing the KL divergence of q to the posterior.
(d) Another thing to verify by yourself. Look at GMMs as an example and try to relate the variables defined in
here and the parameters and variables there.
(e) Putting q = ppost in (3) we get

L(ppost,θ) =
∑

Z

p(Z|X,θcurr) log p(Z,X|θ)
p(Z|X,θ)

=
∑

Z

p(Z|X,θ) log p(Z,X|θ)−
∑

Z

p(Z|X,θ) log p(Z|X,θ)

= Eq[complete-data log likelihood] +H(q)

(f) We have

∇θ L(q,θ)|θ=θcurr = ∇θ

∑
Z

q(Z) log p(Z,X|θ)
q(Z)

=
∑

Z

q(Z)∇θ p(Z,X|θ)|θ=θcurr

p(Z,X|θcurr)

=
∑

Z

∇θ p(Z,X|θ)|θ=θcurr

p(X|θcurr)

= ∇θ p(X|θ)|θ=θcurr

p(X|θcurr)
= ∇θ log p(X|θ)|θ=θcurr .

(g) Compare with Homework 6.
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Problem 4 (On Statistical Distances*):
In some situations in statistics and machine learning, the objective that we are going to optimize is some dis-
tribution (e.g. in the E-step of EM algorithm). This motivates us to understand a bit more about the space of
probability distributions.
For simplicity, let P be the set of all probability distributions over the set {1, . . . , n}, i.e.

P = {(p1, . . . , pn) |
∑
pi = 1, pi ≥ 0}.

Usually P is called the probability simplex, or simply the n-simplex. One can equip P with a metric, inducing a
geometry on P. Recall that a metric is a function d : P × P → R+ satisfying the following criteria:

• (Non-negativity) d(p, q) ≥ 0 for all p, q ∈ P and equality holds iff p = q,

• (Symmetry) d(p, q) = d(q, p),

• (Triangle inequality) d(p, q) + d(q, r) ≥ d(p, r).

A metric on the probability simplex is also called a statistical distance. Here we mention a few distances and
some of their properties:

(a) Total Variation Distance. For p, q ∈ P, we define their TV distance as

DTV(p, q) := 1
2‖p− q‖1 = 1

2

n∑
i=1
|pi − qi|.

Prove that TV distance is indeed a metric, and equals to the largest possible difference between the
probabilities that the two probability distributions p and q can assign to the same event, i.e.

DTV(p, q) = max
E⊆{1,...,n}

|p(E)− q(E)|.

(b) Kullback-Leibler Divergence. For p, q ∈ P, we define their KL divergence as

DKL(p‖q) = −
n∑
i=1

pi log qi
pi
.

(b.1) Prove that KL divergence satisfies the first property of a metric: it is non-negative, and it is zero if
and only if the distributions are equal.

(b.2) Give an example that DKL(p‖q) 6= DKL(q‖p).
(b.3) Give a counter-example for the triangle inequality for KL divergence.
(b.4) Prove the Pinsker’s Inequality:

DTV(p, q) ≤
√

1
2DKL(p‖q).

(b.5) Although KL divergence fails to be a metric on P, it satisfies some convergence properties. As an
example, prove the following theorem: Let p(1), p(2), . . . be a sequence of probability distributions in
P, such that

lim
n→∞

DKL(p(n)‖q) = 0,

i.e. the sequence is “converging” to q with respect to KL divergence. Prove that this sequence is
actually converging to q in Euclidean sense, i.e.

lim
n→∞

‖p(n) − q‖2 = 0.
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(b.6) Let X and Y be two random variables with distributions pX and pY and joint distribution pX,Y . If
X and Y were independent, the we had pX,Y = pXpY . Otherwise, if one tries to give a “measure of
independence” of X and Y , one idea is to consider

DKL(pX,Y ‖pXpY ).

This value is called the mutual information between X and Y , denoted by I(X,Y ). Prove that

I(X,Y ) = H(X)−H(X |Y ),

where H(X) is the entropy2 of X and H(X |Y ) is the conditional entropy of X given Y . In Bayesian
point-of-view, the mutual information shows how much information does knowledge about Y reveal
about X.

2Entropy of a random variable X is defined as H(X) := EX [− log X] = −
∑

x
pX(x) log pX(x), and is a measure of “uncertainty”

of X. For example if X has the uniform distribution, it has the highest entropy. If the base of log is 2, entropy is measured with the
unit “bits”, suggesting the idea that one needs H(X) bits to encode the outcome of X with zeros and ones. Convince yourself that
this definition makes sense.
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Solution 4:

(a) We first prove that Total Variation is a distance function. Let p, q, r ∈ P be three probability distributions
over the set {1, . . . , n}. Non-negativity follows by definition,

DTV(p, q) = 1
2‖p− q‖1 ≥ 0.

Symmetry follows from ‖p− q‖1 = ‖q − p‖1. Also Triangle inequality follows from the triangle inequality for `1
norm.
These three properties show that the Total Variation distance is indeed a distance function.
Now we prove the second argument. Let E = {i : pi ≥ qi} be the event that contains the elements which p
gives higher probability than q. We claim that E attains the maximum value of |p(F )− q(F )| among all events
F ⊆ {1, . . . , n}.
By writing F = (F ∩ E) ∪ (F ∩ Ec) we observe that

p(F )− q(F ) = p(F ∩ E)− q(F ∩ E) + p(F ∩ Ec)− q(F ∩ Ec)︸ ︷︷ ︸
≤0

≤ p(E)− q(E). (4)

This is true since for all elements i ∈ Ec we have pi < qi, which makes p(F ∩Ec)− q(F ∩Ec) ≤ 0, and adding
elements in E to F ∩E will not decrease the difference in probability, meaning p(F ∩E)−q(F ∩E) ≤ p(E)−q(E).
With the same argument, but for Ec this time, we arrive at

q(F )− p(F ) ≤ q(Ec)− p(Ec). (5)

Since p(E)− q(E) = q(Ec)− p(Ec), the upper bounds for (4) and (5) become the same and we get

p(E)− q(E) = max
F
|p(F )− q(F )|.

Also, by definition of E we can write

‖p− q‖1 =
∑
i∈E

(pi − qi) +
∑
j 6∈E

(qj − pj) = p(E)− q(E) + q(Ec)− p(Ec) = 2(p(E)− q(E)),

where the last equality is because p(E)− q(E) = q(Ec)− p(Ec).

(b.1) We prove that for p, q ∈ P, we have DKL(p‖q) ≥ 0. Note that postivity of the KL Divergence is regardless
of the basis of the logarithm, since for all a > 1 we have loga(x) = ln(x)/ ln(a). Hence we prove that for all
p, q ∈ P we have

−
n∑
i=1

pi ln qi
pi
≥ 0.

A useful inequality about logarithms is ln(x) ≤ x− 1 for all x > 0, with equality iff x = 1. Using this inequality
we have

−
n∑
i=1

pi ln qi
pi
≥ −

n∑
i=1

pi

(
qi
pi
− 1
)

= −
n∑
i=1

(qi − pi) = 0.
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The equality only happens if pi = qi for all i, or equivalently when p = q.

(b.2) Take p = (0.1, 0.9) and q = (0.5, 0.5). Then we have

DKL(p‖q) = 0.1× log 0.2 + 0.9× log 1.8 ≈ 0.531,

while
DKL(q‖p) = 0.5× log 5 + 0.5× log 5

9 ≈ 0.737.

(b.3) To give an counterexample for Triangle inequality, we should provide three distributions p, q, r ∈ P, such
that

DKL(p‖q) + DKL(q‖r) < DKL(p‖r).
By moving the first term to the right hand side and expanding the definition of KL divergence we need to have∑

i

qi log qi
ri
<
∑
i

pi

(
log pi

ri
− log pi

qi

)
=
∑
i

pi log qi
ri
.

This suggests that we take q and r two arbitrary distributions and the find a p that makes this inequality possible.
Take q = (0.5, 0.5) and r = (0.1, 0.9). Then log q1

r1
≈ 2.322 and log q2

r2
≈ −0.847. Now take p = (1, 0). In this

way we have ∑
i

qi log qi
ri
≈ 0.737,

but ∑
i

pi log qi
ri

= log q1

r1
≈ 2.322.

(b.4) We first prove this inequality for the case that p and q are two probability distributions over a set of two
elements, i.e. p = (p, 1− p) and q = (q, 1− q). In this case we have ‖p− q‖1 = 2|p− q|. We shall prove

2(p− q)2 = 1
2‖p− q‖

2
1

?
≤ DKL(p‖q) = p log p

q
+ (1− p) log 1− p

1− q .

To prove this inequality, we fix p and look at

f(q) = p log p
q

+ (1− p) log 1− p
1− q − 2(p− q)2.

So it suffices to prove f(q) is always nonnegative. First, observe that at q = p, we have f(p) = 0. Taking the
derivative w.r.t. q we have

f ′(q) = −p
q

+ 1− p
1− q + 4(p− q) = (q − p)

(
1

q(1− q) − 4
)

Since for 0 < q < 1 we know q(1− q) ≤ 1
4 , it follows immediately that the sign of the derivative is the same as

q − p. This concludes that the point p is the minimum of f , with a value of 0.
For the more general case, we try to reduce the problem to the case we already solved. Before doing this, let us
state (without proof; the proof can be carried out by the reader) a useful and important lemma:
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Lemma 1 (Log-Sum inequality) Let a1, . . . , an and b1, . . . , bn be nonnegative numbers. Then
n∑
i=1

ai log ai
bi
≥ a log a

b
,

where a =
∑
ai and b =

∑
bi.

Now let p and q be two probability distributions over a set of n elements. Let A = {i : pi ≥ qi}. Define
p̃ =

∑
i∈A pi and q̃ =

∑
i∈A qi and take the distributions p̃ = (p̃, 1 − p̃) and q̃ = (q̃, 1 − q̃). We show that the

Pinsker’s inequality for p and q is reduced to the Pinsker inequality for p̃ and q̃, which we have already proved.
To show this reduction, we first show that DTV(p, q) = DTV(p̃, q̃). This follows from

DTV(p, q) = 1
2

n∑
i=1
|pi − qi|

= 1
2
∑
i∈A

(pi − qi) + 1
2
∑
i 6∈A

(qi − pi)

= p̃− q̃ = DTV(p̃, q̃)

Next, we show that DKL(p‖q) ≥ DKL(p̃‖q̃):

DKL(p‖q) =
n∑
i=1

pi log pi
qi

=
∑
i∈A

pi log pi
qi

+
∑
i 6∈A

pi log pi
qi

≥ p̃ log p̃
q̃

+ (1− p̃) log 1− p̃
1− q̃ = DKL(p̃‖q̃),

where the inequality follows from the Log-Sum inequality. Putting all together we have

DKL(p‖q) ≥ DKL(p̃‖q̃) ≥ 2DTV(p̃, q̃)2 = 2DTV(p, q)2.

(b.5) By the Pinsker’s inequality, we know that if DKL(p(n)‖q) → 0, then DTV(p(n), q) → 0, meaning that
‖p(n)− q‖1 → 0. But since in finite dimensions all norms are equivalent, meaning that there is a constant C such
that ‖p− q‖2 ≤ C‖p− q‖1 for all p, q, then this implies that ‖p(n) − q‖2 → 0.

(b.6) By definition we have

I(X,Y ) = DKL(pX,Y ‖pXpY ) =
∑
i,j

pX,Y (i, j) log pX,Y (i, j)
pX(i) pY (j) .

Using the chain rule for probabilities, we have pX,Y (i, j) = pX|Y (i|j) pY (j). Hence

I(X,Y ) =
∑
i,j

pX,Y (i, j) log
pX|Y (i|j) pY (j)
pX(i) pY (j)

= −
∑
i,j

pX,Y (i, j) log pX(i) +
∑
i,j

pX,Y (i, j) log pX|Y (i|j).
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In the first sum, the summation on j changes pX,Y (i, j) to pX(i) and the sum becomes H(X). The second sum,
is by definition, minus the conditional entropy. So we have

I(X,Y ) = H(X)−H(X|Y ).
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