Introduction to Machine Learning

Non-linear prediction with kernels

Prof. Andreas Krause
Learning and Adaptive Systems (las.ethz.ch)

Recall: Linear classifiers

Recall: The Perceptron problem

- Solve

$$
\hat{\mathbf{w}}=\arg \min _{\mathbf{w}} \frac{1}{n} \sum_{i=1}^{n} \ell_{P}\left(\mathbf{w} ; \mathbf{x}_{i}, y_{i}\right)
$$

where

$$
\ell_{P}\left(\mathbf{w} ; y_{i}, \mathbf{x}_{i}\right)=\max \left(0,-y_{i} \mathbf{w}^{T} \mathbf{x}_{i}\right)
$$

- Optimize via Stochastic Gradient Descent

Solving non-linear classification tasks

- How can we find nonlinear classification boundaries?
- Similar as in regression, can use non-linear transformations of the feature vectors, followed by linear classification

$$
x_{1}=x_{1} x_{2}=x^{2}
$$

Recall: linear regression for polynomials

- We can fit non-linear functions via linear regression, using nonlinear features of our data (basis functions)

$$
f(\mathbf{x})=\sum_{i=1}^{d} w_{i} \phi_{i}(\mathbf{x})
$$

- For example: polynomials (in 1-D)

$$
f(x)=\sum_{i=0}^{m} w_{i} x^{i}
$$

Polynomials in higher dimensions

- Suppose we wish to use polynomial features, but our input is higher-dimensional
- Can still use monomial features
- Example: Monomials in 2 variables, degree $=2$

$$
x=\left[x_{1}, x_{2}\right] \quad \mapsto \phi(x)=\left[x_{1}^{2}, x_{2}^{2}, x_{1} x_{2}\right]
$$

Avoiding the feature explosion

- Need O(dk) dimensions to represent (multivariate) polynomials of degree k on d features
- Example: $d=10000, k=2 \rightarrow$ Need $\sim 100 \mathrm{M}$ dimensions
- In the following, we can see how we can efficiently implicitly operate in such high-dimensional feature spaces (i.e., without ever explicitly computing the transformation)

Revisiting the Perceptron/SVM

- Fundamental insight: Optimal hyperplane lies in the span of the data n of for some $\alpha_{\text {lin }} \in \mathbb{R}^{n}$

$$
\hat{\mathbf{w}}=\sum_{i=1}^{n} \alpha_{i} y_{i} \mathbf{x}_{i}
$$

- (Handwavy) proof: (Stochastic) gradient descent starting from 0 constructs such a representation

Perceptron: $\mathbf{w}_{t+1}=\mathbf{w}_{t}+\eta_{t} y_{t} \mathbf{x}_{t}\left[y_{t} \mathbf{w}_{t}^{T} \mathbf{x}_{t}<0\right]$
SVM: $\quad \mathbf{w}_{t+1}=\mathbf{w}_{t}\left(1-2 \lambda \eta_{t}\right)+\eta_{t} y_{t} \mathbf{x}_{t}\left[y_{t} \mathbf{w}_{t}^{T} \mathbf{x}_{t}<1\right]$

- More abstract proof: Follows from the „representer theorem" (not discussed here)

Reformulating the Perceptron
(A8) $\hat{w} \in \underset{w \in \mathbb{R}^{d}}{\operatorname{argmin}} \underbrace{\sum_{i=1}^{n} \max \left(0,-y_{i} w^{\top} x_{i}\right)} \quad$ Ansatz: $\hat{w}=\sum_{j=1}^{n} d_{j} y_{j} x_{j}$

$$
\begin{aligned}
(x) & =\sum_{i=1}^{n} \max \left(0_{1}-y_{i}\left(\sum_{j=1}^{n} \alpha_{j} y_{j} x_{j}\right)^{\top} x_{i}\right) \\
& =\sum_{i=1}^{n} \max \left(0_{1}-y_{i} \sum_{j=1}^{n} \alpha_{j} y_{j}\left(x_{j}^{T} x_{i}\right)\right)
\end{aligned}
$$

$$
\left(h_{R}\right)=\hat{\alpha} \in \underset{\alpha \in \mathbb{R}^{n}}{\operatorname{argmin}} \sum_{i=1}^{n} \max \left(0_{1}-y_{i} \sum_{j=1}^{n} \alpha_{j} y_{j}\left(x_{j}^{\top} x_{i}\right)\right)
$$

Advantage of reformulation

$$
\hat{\alpha}=\arg \min _{\alpha_{1: n}} \frac{1}{n} \sum_{i=1}^{n} \max \{0,-\sum_{j=1}^{n} \alpha_{j} y_{i} y_{j} \underbrace{\left.\mathbf{x}_{i}^{T} \mathbf{x}_{j}\right\}}_{\substack{山 \\ k\left(x_{i}, x_{j}\right)}}
$$

- Key observation: Objective only depends on inner products of pairs of data points
- Thus, we can implicitly work in high-dimensional spaces, as long as we can do inner products efficiently

$$
\begin{aligned}
\mathbf{x} & \mapsto \phi(\mathbf{x}) \\
\mathbf{x}^{T} \mathbf{x}^{\prime} & \mapsto \phi(\mathbf{x})^{T} \phi\left(\mathbf{x}^{\prime}\right)=: k\left(\mathbf{x}, \mathbf{x}^{\prime}\right)
\end{aligned}
$$

„Kernels = efficient inner products"

- Often, $k\left(\mathbf{x}, \mathbf{x}^{\prime}\right)$ can be computed much more efficiently than $\phi(\mathbf{x})^{T} \phi\left(\mathbf{x}^{\prime}\right)$
- Simple example: Polynomial kernel in degree 2

$$
\begin{aligned}
& x \mapsto \phi(x):=\left[x_{1}^{2}, x_{2}^{2}, \sqrt{2} x_{1} x_{2}\right] \quad(2+10) \gg(1+3) \\
& \in \mathbb{R}^{2} \quad \pi \\
& \begin{aligned}
\phi(x)^{\top} \phi\left(x^{\prime}\right) & =x_{1}^{2} \cdot x_{1}^{\prime 2}+x_{2}^{2} \cdot x_{2}^{\prime 2}+2 x_{1} x_{2} x_{1}^{\prime} x_{2}^{\prime} \left\lvert\, \begin{array}{l}
\text { Nair: } \\
\phi(x)^{\top} \Phi(x) \\
\#+: 2
\end{array}\right. \\
& =\left(x_{1} \cdot x_{1}^{\prime}+x_{2} x_{2}^{\prime}\right)^{2}
\end{aligned} \\
& =\left(x_{1} \cdot x_{1}^{\prime}+x_{2} x_{2}^{\prime}\right)^{2} \\
& =\left(x^{\top} x^{\prime}\right)^{2}=k\left(x, x^{\prime}\right) \\
& \text { A. }=3+3+6=10 \\
& \text { using gomel: } \\
& \begin{array}{l}
\text { 有t: } 1 \\
\text { 4. } 3
\end{array}
\end{aligned}
$$

Polynomial kernels (degree 2)

- Suppose $\mathbf{x}=\left[x_{1}, \ldots, x_{d}\right]^{T}$ and $\mathbf{x}^{\prime}=\left[x_{1}^{\prime}, \ldots, x_{d}^{\prime}\right]^{T}$
- Then $\left(\mathbf{x}^{T} \mathbf{x}^{\prime}\right)^{2}=\left(\sum_{i=1}^{d} x_{i} x_{i}^{\prime}\right)^{2}=\sum_{i=1}^{d} x_{i}^{2} x_{i}^{\prime 2}+\underset{1 \leq i<j \leq d}{ } \sum_{i} x_{i}^{\prime} x_{j} x_{j}^{\prime}$

$$
=\phi(x)^{\top} \phi\left(x^{\prime}\right)
$$

for $\phi(x):=\underbrace{\left[x_{1}^{2} \ldots x_{d}^{2}, \sqrt{2} x_{1} x_{2}, \sqrt{2} x_{1} x_{3} \ldots \sqrt{2} x_{d-1} x_{d}\right]}_{\theta\left(d^{2}\right)}$

$$
\Rightarrow \theta\left(d^{2}\right) \rightarrow \theta(d)_{12}
$$

Polynomial kernels: Fixed degree

- The kernel $k\left(\mathbf{x}, \mathbf{x}^{\prime}\right)=\left(\mathbf{x}^{T} \mathbf{x}^{\prime}\right)^{m}$ implicitly represents all monomials of degree m

$$
x_{1}^{m}\left|x_{2}^{m}, \ldots x_{d}^{m}, x_{1}^{m-1} x_{2} \cdots x_{1}^{m-1} \cdot x_{d}\right| \cdots\left|x_{1} \cdots x_{m}\right| \cdots x_{d-m+1} \cdots x_{d}
$$

\# Monomials of degree m in d variables

$$
\binom{d+m-1}{m}=O\left(d^{m}\right)
$$

- How can we get monomials up to order m ?

Polynomial kernels ${ }_{1}\left([1 ; x]^{\top}[1 ; x]\right)^{m}$

- The polynomial kernel $k\left(\mathbf{x}, \mathbf{x}^{\prime}\right)=\left(1+\mathbf{x}^{T} \mathbf{x}^{\prime}\right)^{m}$ implicitly represents all monomials of up to degree m

$$
1, x_{1}, x_{2} \ldots x_{d}, x_{1}^{2}, x_{2}^{2}, \ldots x_{d}^{2}, x_{1} x_{2} \ldots x_{d-1} x_{d}, \ldots
$$

\# Monomials of degree up to m in d variables?

$$
\rightarrow\binom{d+m}{m}
$$

- Representing the monomials (and computing inner product explicitly) is exponential in m !!

The „Kernel Trick"

- Express problem s.t. it only depends on inner products
- Replace inner products by kernels

$$
\mathbf{x}_{i}^{T} \mathbf{x}_{j} \Rightarrow k\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right)
$$

- This „trick" is very widely applicable!

The „Kernel Trick"

- Express problem s.t. it only depends on inner products
- Replace inner products by kernels
- Example: Perceptron

The „Kernel Trick"

- Express problem s.t. it only depends on inner products
- Replace inner products by kernels
- Example: Perceptron

$$
\begin{aligned}
& \hat{\alpha}=\arg \min _{\alpha_{1: n}} \frac{1}{n} \sum_{i=1}^{n} \max \left\{0,-\sum_{j=1}^{n} \alpha_{j} y_{i} y_{j}\left(\mathbf{x}_{i}^{T} \mathbf{x}_{j}\right)\right\} \\
& \hat{\alpha}=\arg \min _{\alpha_{1: n}} \frac{1}{n} \sum_{i=1}^{n} \max \left\{0,-\sum_{j=1}^{n} \alpha_{j} y_{i} y_{j} k\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right)\right\}
\end{aligned}
$$

- Will see further examples later

Derivation: Kernelized Perceptron

Training
$w_{0} \in O$
For $t=1,2, \ldots$

$$
\begin{aligned}
& \text { Sample }\left(x_{i}, y_{i}\right) \sim D \\
& \text { If }\left(y_{i} w^{\top} x_{i}\right) \geqslant 0 \\
& w_{t+1} \leftarrow w_{t}
\end{aligned}
$$

else

$$
w_{t+1} \in w_{t}+\eta_{t} y_{i} x_{1}
$$

Prediction:

$$
w^{\top} x \curvearrowright \sum_{j=1}^{n} \alpha_{j} y_{j} \frac{\left(x_{j}{ }^{\top} x_{i}\right)}{k\left(x_{i}, x_{j}\right)}
$$

$$
\alpha_{0} \in 0
$$

$$
w_{t}=\sum_{j=1}^{n} \alpha_{t j} y_{j}, x_{j}
$$

for $t=1$.
Sample $\left(x_{i}\left(y_{i}\right)_{2}\right)$

$$
\begin{aligned}
& \text { if }(y_{i} \sum_{j=1}^{n} \alpha_{j} y_{j} \underbrace{}_{k\left(x_{j} T_{i} x_{j}\right)}) \geqslant 0 \\
& \alpha_{t+1} \in \alpha_{t}
\end{aligned}
$$

else

$$
\begin{aligned}
& \alpha_{t+1} \in \alpha_{t} \\
& \alpha_{t+1, i} \in \alpha_{t+1, i}+\eta_{t}
\end{aligned}
$$

Kernelized Perceptron

- Initialize $\alpha_{1}=\cdots=\alpha_{n}=0$
- For $t=1,2, \ldots$
- Pick data point $\left(\boldsymbol{x}_{\boldsymbol{i}}, y_{i}\right)$ uniformly at random
- Predict

$$
\hat{y}=\operatorname{sign}\left(\sum_{j=1}^{n} \alpha_{j} y_{j} k\left(\mathbf{x}_{j}, \mathbf{x}_{i}\right)\right)
$$

- If $\hat{y} \neq y_{i}$ set $\alpha_{i} \leftarrow \alpha_{i}+\eta_{t}$
- For new point x, predict

Prediction

$$
\hat{y}=\operatorname{sign}\left(\sum_{j=1}^{n} \alpha_{j} y_{j} k\left(\mathbf{x}_{j}, \mathbf{x}\right)\right)
$$

Demo: Kernelized Perceptron

Questions

- What are valid kernels?
- How can we select a good kernel for our problem?
- Can we use kernels beyond the perceptron?
- Kernels work in very high-dimensional spaces. Doesn't this lead to overfitting?

Properties of kernel functions

- Data space X
- A kernel is a function $k: X \times X \rightarrow \mathbb{R}$
- Can we use any function?
- k must be an inner product in a suitable space
$\rightarrow k$ must be symmetric!

$$
\forall x, x^{\prime} \in X^{\prime}: \quad k\left(x, x^{\prime}\right)=\phi(x)^{\top} \phi\left(x^{\prime}\right)=\phi\left(x^{\prime}\right)^{\top} \phi(x)=k\left(x^{\prime}, x\right)
$$

\rightarrow Are there other properties that it must satisfy?

Positive semi-definite matrices
Symmetric matrix $M \in \mathbb{R}^{n \times n}$ is positive semidefinite iff
(i) $\forall x \in \mathbb{R}^{n}: x^{\top} M x \geq 0$
(ii) All eigenvalues of $M \geq 0$
(i) \Rightarrow (ii): M is symmetric $\Rightarrow M=U D u^{\top}$ for $D=\left(\begin{array}{ll}\lambda_{1} & 0 \\ 0^{\because} & \lambda_{n}\end{array}\right)$
$u=\left(u_{1}|-| u_{d}\right)$ s.t. $M_{u_{i}}=\lambda u_{i} \quad$ and $U^{\top} U=I=u u^{\top}$
wop: $\lambda_{i} \geq 0 \quad \forall i$

$$
u_{i}^{T} M_{u_{i}}=u_{i}\left(\lambda_{i} u_{i}\right)=\lambda_{i} u_{i}^{\top} u_{i}=\lambda_{i} \stackrel{(i)}{\geq}
$$

Kernels $>$ semi-definite matrices

- Data space X (possibly infinite)
- Kernel function $k: X \times X \rightarrow \mathbb{R}$
- Take any finite subset of data $S=\left\{\mathbf{x}_{1}, \ldots, \mathbf{x}_{n}\right\} \subseteq X$
- Then the kernel (gram) matrix

$$
\mathbf{K}=\left(\begin{array}{ccc}
k\left(\mathbf{x}_{1}, \mathbf{x}_{1}\right) & \ldots & k\left(\mathbf{x}_{1}, \mathbf{x}_{n}\right) \\
\vdots & & \vdots \\
k\left(\mathbf{x}_{n}, \mathbf{x}_{1}\right) & \ldots & k\left(\mathbf{x}_{n}, \mathbf{x}_{n}\right)
\end{array}\right)=\left(\begin{array}{ccc}
\phi\left(\mathbf{x}_{1}\right)^{T} \phi\left(\mathbf{x}_{1}\right) & \ldots & \phi\left(\mathbf{x}_{1}\right)^{T} \phi\left(\mathbf{x}_{n}\right) \\
\vdots & & \vdots \\
\phi\left(\mathbf{x}_{n}\right)^{T} \phi\left(\mathbf{x}_{1}\right) & \ldots & \phi\left(\mathbf{x}_{n}\right)^{T} \phi\left(\mathbf{x}_{n}\right)
\end{array}\right)
$$

is positive semidefinite

$$
K=\phi^{\top} \phi \text { where } \phi=\left(\phi\left(x_{1}\right)|\ldots| \phi\left(x_{n}\right)\right)
$$

Semi-definite matrices $>$ kernels

- Suppose the data space $X=\{1, \ldots, n\}$ is finite, and we are given a positive semidefinite matrix $\quad \mathbf{K} \in \mathbb{R}^{n \times n}$
- Then we can always construct a feature map

$$
\begin{aligned}
& \phi: X \rightarrow \mathbb{R}^{n} \\
& \text { such that } \mathbf{K}_{i, j}=\phi(i)^{T} \phi(j) \\
& K \text { is s.p.d. } \Rightarrow K=U D U^{\top} \text { where } D=\left(\begin{array}{ll}
\lambda_{1} & 0 \\
0 & 0 \\
0 & \lambda_{n}
\end{array}\right) \\
& \text { and } \lambda_{i} \geq 0 \quad \forall i,\left(\sqrt{\lambda_{1}}, \lambda_{n}\right) \quad \phi: X \rightarrow \mathbb{R}^{n} \\
& D=D^{\frac{1}{2}} D^{\frac{1}{2} \top} \text {, where } D^{\frac{1}{2}}=\left(\begin{array}{ccc}
\sqrt{\lambda_{1}} & 0 \\
& \ddots & 0 \\
0 & \sqrt{\lambda_{n}}
\end{array}\right) \quad \phi \quad i \mapsto \phi_{i} \\
& \Rightarrow K=\underbrace{u D^{\frac{1}{2}}}_{\phi^{T}} e_{\phi}^{e^{\frac{1}{2}} u^{T}}=\phi^{\top} \phi \text {, where } \phi=\left[\phi_{1}\left(\cdots \phi_{n}\right]\right.
\end{aligned}
$$

Now it holds that $E\left(i_{j}\right)=K_{i j}=d_{i}^{\top} \phi_{j}$

Outlook: Mercer's Theorem

Let X be a compact subset of \mathbb{R}^{n} and $k: X \times X \rightarrow \mathbb{R}^{n}$ a kernel function

Then one can expand k in a uniformly convergent series of bounded functions ϕ_{i} s.t.

$$
k\left(x, x^{\prime}\right)=\sum_{i=1}^{\infty} \lambda_{i} \phi_{i}(x) \phi_{i}\left(x^{\prime}\right)
$$

Can be generalized even further

Definition: kernel functions

- Data space X
- A kernel is a function $k: X \times X \rightarrow \mathbb{R}$ satisfying
- 1) Symmetry: For any $\mathbf{x}, \mathbf{x}^{\prime} \in X$ it must hold that $k\left(\mathbf{x}, \mathbf{x}^{\prime}\right)=k\left(\mathbf{x}^{\prime}, \mathbf{x}\right)$
- 2) Positive semi-definiteness: For any n, any set $S=\left\{\mathbf{x}_{1}, \ldots, \mathbf{x}_{n}\right\} \subseteq X$, the kernel (Gram) matrix

$$
\mathbf{K}=\left(\begin{array}{ccc}
k\left(\mathbf{x}_{1}, \mathbf{x}_{1}\right) & \ldots & k\left(\mathbf{x}_{1}, \mathbf{x}_{n}\right) \\
\vdots & & \vdots \\
k\left(\mathbf{x}_{n}, \mathbf{x}_{1}\right) & \ldots & k\left(\mathbf{x}_{n}, \mathbf{x}_{n}\right)
\end{array}\right)
$$

must be positive semi-definite

Examples of kernels on \mathbb{R}^{d}

- Linear kernel:

$$
k\left(\mathbf{x}, \mathbf{x}^{\prime}\right)=\mathbf{x}^{T} \mathbf{x}^{\prime}
$$

- Polynomial kernel:

$$
k\left(\mathbf{x}, \mathbf{x}^{\prime}\right)=\left(\mathbf{x}^{T} \mathbf{x}^{\prime}+1\right)^{d}
$$

- Gaussian (RBF,

- Laplacian kernel:

$$
k\left(\mathbf{x}, \mathbf{x}^{\prime}\right)=\exp \left(-\left\|\mathbf{x}-\mathbf{x}^{\prime}\right\|_{1} / h\right)
$$

