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Problem 1 (Sampling):

In this problem, we want to draw samples from a random variable X, knowing its cumulative distribution function
(CDF). We will investigate two methods: inverse sampling and rejection sampling.

1. Inverse Sampling
Suppose that X has distribution function F and that F is invertible. Which of the following statements
are true?

(a) If U ∼ Unif(0,1), then F−1(U) is always distributed as X.

(b) If U ∼ N (0, 1), then F−1(U) is always distributed as X.

(c) If U ∼ Unif(-1,1), then F−1(U) is always distributed as X.

Solution:
Only (a) is true. Define Y = F−1(U), where U ∼ Unif(0, 1) and F is a CDF. Computing the CDF of Y
gives

FY (y) = P(Y ≤ y) = P(F−1(U) ≤ y) = P(U ≤ F (y)) = F (y),

where we used the fact that F−1(u) ≤ y ⇐⇒ u ≤ F (y). Thus, Y has F as its distribution function.
Remark: Hence, if the CDF F is invertible, we have just found a way to sample from X. This is called
inverse sampling.

Rejection Sampling
In situations where the inverse of F is not easy to compute, one can use the following method (known as
the rejection method) for generating random variables with a density f . Suppose that γ is a function such
that γ(x) ≥ f(x) for all x ∈ R, and∫∞
−∞ γ(x) dx = α <∞.

Then, g(x) = γ(x)/α is a probability density function. Suppose we generate a random variable X by the
following algorithm:

i. Generate a random variable T with density function g.

ii. Generate a random variable U ∼ Unif(0, 1), independent of T .

If U ≤ f(T )/γ(T ) then set X = T ; if U > f(T )/γ(T ), then repeat steps i. and ii. Answering the following
questions should help you conclude that the above process generates a random variable of density f .

2. What is the value of P(U ≤ f(T )
γ(T ) ) ?

(a) 1/α2

(b) 1/α



(c) 1/(α(1− α))

(d) 1/(1− α)2

Solution:
The correct answer is (b).
As a reminder, this probability is defined on the joint distribution of U and T . As U and T are independent,
the joint probability space is simply the product space defined over (0, 1)× R.

By conditioning on the value of T , and using the fact that T has density g, we get the following:

P
(
U ≤ f(T )

γ(T )

)
=

∫
R
P
(
U ≤ f(T )

γ(T ) | T = t
)
g(t) dt

=

∫
R
P
(
U ≤ f(t)

γ(t)

)
g(t) dt

=

∫
R

f(t)

γ(t)
g(t) dt

=

∫
R

1

α
f(t) dt =

1

α
,

where in the second line, we used the fact that T and U are independent, thus we can remove the
conditioning.

3. What is the value of P (T ≤ x, U ≤ f(T )
γ(T ) )?

(a) 1
α

∫ x
−∞ f(t) dt

(b) 1
α2

∫ x
−∞ f(t) dt

(c) 1
α(1−α)

∫ x
−∞ f(t) dt

(d) 1
(1−α)2

∫ x
−∞ f(t) dt

Solution:
The correct answer is (a).
Computing the following probability for x ∈ R:

P
(
T ≤ x, U ≤ f(T )

γ(T )

)
=

∫
R
P
(
T ≤ x, U ≤ f(T )

γ(T ) | T = t
)
g(t) dt

=

∫ x

−∞

f(t)

γ(t)
g(t) dt =

1

α

∫ x

−∞
f(t) dt.

4. What is the value of P (T ≤ x|U ≤ f(T )
γ(T ) )?

(a) 1
α2

∫ x
−∞ f(t) dt

(b)
∫ x
−∞ f(t) dt

(c) 1
α2(1−α)

∫ x
−∞ f(t) dt

(d) 1
(1−α)

∫ x
−∞ f(t) dt

Solution:
The correct answer is (b). Now, by the definition of conditional probability, we have

P
(
T ≤ x | U ≤ f(T )

γ(T )

)
=

P
(
T ≤ x, U ≤ f(T )

γ(T )

)
P
(
U ≤ f(T )

γ(T )

) =
1
α

∫ x
−∞ f(t) dt

1/α
=

∫ x

−∞
f(t) dt.

This means that if the choice of T and U resulted in an acceptance, the density of T is f .
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5. What is the distribution of the number of rejections before X is generated?

(a) Geometric distribution with parameter 1/α

(b) Bernoulli distribution with parameter 1/α

(c) Poisson distribution with parameter 1/α

(d) Geometric distribution with parameter α

(e) Bernoulli distribution with parameter α

(f) Poisson distribution with parameter α

Solution:
The correct answer is (a).
As computed in question 2., the probability of acceptance is 1/α. One can think of it as a coin with bias
(probability of heads) p = 1/α. Thus, the number of throws (rejections) until the first heads (the first
acceptance) has a Geometric distribution with parameter 1/α.

Problem 2 (Multivariate normal distribution):

Recall the following fact about characteristic functions:

For a random vector X in Rd, define its characteristic function ϕX as

ϕX(t) = E[exp(it>X)], for all t ∈ Rd.

The characteristic function completely identifies a distribution. For a multivariate Normal distribution N (µ,Σ),
one has

ϕ(t) = exp(it>µ− 1
2t
>Σt).

6. Let X = (X1, . . . , Xd) be a d-dimensional standard Gaussian random vector, that is, X ∼ Nd(0, I). Define
Y = AX + µ, where A is a d× d matrix and µ ∈ Rd. What is the distribution of Y ?

(a) N (µ,AA>)

(b) N (µ,A)

(c) N (µ,A>A)

(d) N (µ,A2)

Solution:
The correct answer is (a).
Let us compute the characteristic function of Y . Define s = A>t. We have

ϕY (t) = E[exp(it>Y )]

= E[exp(it>AX) · exp(it>µ)]

= E[exp(is>X)] · exp(it>µ)

= ϕX(s) · exp(it>µ)

= exp(− 1
2s
>s + it>µ)

= exp(it>µ− 1
2t
>AA>t),

which means that Y ∼ N (µ,AA>).
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7. If B is an r × d matrix, what is the distribution of BY ?

(a) N (µ,BAA>B>)

(b) N (Bµ,BAA>)

(c) N (Bµ,BAA>B>)

(d) N (µ,BAA>B>)

Solution:
The correct answer is (c).
With the same argument as the previous question, one gets BY ∼ N (Bµ,BAA>B>).

8. Let X be a bivariate Normal random variable (taking on values in R2) with mean µ = (1, 1) and covariance
matrix Σ = ( 3 1

1 2 ). What is the mean of the conditional distribution of Y = X1 +X2 given Z = X1−X2 =
0?

Solution:
The correct answer is 2.

9. What is the variance of the conditional distribution of Y = X1 +X2 given Z = X1 −X2 = 0?

Enter your answer up to two decimal places (rounded up or down). Solution:
The correct answer is 6.67.
First, take a look at the following facts:

Let A,B be events. The definition of conditional probability P(A | B) assumes that P(B) 6= 0. So
one essentially cannot condition on events of zero probability in the usual way. The following is a
workaround to this issue.

Let X,Y be random variables with joint density f and joint CDF F . For ε > 0 and x, y ∈ R, we
compute

P(X ≤ x | Y ∈ [y, y + ε]) =
P(X ≤ x, Y ∈ [y, y + ε])

P(Y ∈ [y, y + ε])

=
F (x, y + ε)− F (x, y)

FY (y + ε)− FY (y)

=
[F (x, y + ε)− F (x, y)]/ε

[FY (y + ε)− FY (y)]/ε
.

Now if ε → 0, the right hand side has the limit
∂yF (x,y)
fY (y) , and the left hand side can be regarded as

P(X ≤ x | Y = y). Taking derivative with respect to x gives the conditional density

fX|Y (x | y) =
f(x, y)

fY (y)
.

One can use this density to compute probabilities like P(X ∈ A | Y = y) =
∫∫
A
f(x,y)
fY (y) dxdy.

We present two approaches for this exercise:

Approach 1. Note that Z = 0 implies X1 = X2. Furthermore by the definition of Y , we have X1 =
X2 = Y/2 given Z = 0. Hence the marginal density of Y given Z = 0 is proportional to

fY |Z(y | 0) =
fY,Z(y, 0)

fZ(0)
∝ fY,Z(y, 0) ∝ fX

[(
y/2
y/2

)]
.
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The last equality is due to the fact that the linear map (x1, x2) 7→ (x1 + x2, x1 − x2) has constant
determinant of −2. Thus, by a change of variables formula, the density changes by a constant factor. We
then have

fX

[(
y/2
y/2

)]
∝ exp

(
−1

2

(
y
2 − 1
y
2 − 1

)T (
3 1
1 2

)−1(y
2 − 1
y
2 − 1

))

= exp

(
−1

2

(
y
2 − 1
y
2 − 1

)T
1

5

(
2 −1
−1 3

)(
y
2 − 1
y
2 − 1

))

= exp

(
−1

2

(y − 2)2

20
3

)
.

Clearly, the conditional distribution of Y given Z = 0 is hence Normal with mean 2 and variance 20
3 .

In this problem, we used the following trick which prevents a lot of computational headaches. If one
is trying to derive the density of a random variable X at x, that is, fX(x), it is easier to neglect all
multiplicative terms that does not include x. The reason is simply because

∫
R fX(x) dx = 1.

Two important examples are single varible Normal random variables and multivariate Gaussian vectors.
In the first case, following the trick above, we conclude that if a density function is of the form

f(x) ∝ exp(−ax2 + bx)

for a > 0 and b ∈ R, by completing the squares, we obtain

−ax2 + bx = −a(x− b
2a )2 +

b2

4a
,

and thus, by removing the terms that does not depend on x, we get

f(x) ∝ exp

(
−

(x− b
2a )2

1/a

)
,

meaning that the distribution is a Normal distribution with mean b
2a and variance 1/a.

The situation for multivariate normal distribution is the same. One needs only to create a proper
quadratic form in the exponent to get the familiar multivariate Gaussian density.

Approach 2. We define the random variable R as

R =

(
Y
Z

)
=

(
1 1
1 −1

)
︸ ︷︷ ︸

=A

X.

Notice that R is a linear tranformation of a Gaussian vector, and by part (a), it is a Gaussian vector. Thus,
we only need to compute its mean and covariance matrix. By linearity of expectation, the mean µR of R is

E[R] = AE[X] = Aµ =

(
2
0

)
.

The covariance matrix ΣR of R is also given by part (a):

ΣR = AΣA> =

(
1 1
1 −1

)(
3 1
1 2

)(
1 1
1 −1

)
=

(
7 1
1 3

)
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The conditional density of Y given Z = 0 is then given by

fY |Z(y | 0) =
fY,Z(y, 0)

fZ(0)
∝ fY,Z(y, 0)

∝ exp

(
−1

2

(
y − 2

0

)T (
7 1
1 3

)−1(
y − 2

0

))

= exp

(
−1

2

(
y − 2

0

)T
1

20

(
3 −1
−1 7

)(
y − 2

0

))

= exp

(
−1

2

(y − 2)2

20
3

)
.

Clearly, the conditional distribution of Y given Z = 0 is hence Normal with mean 2 and variance 20
3 .

For M ∼ Nd(0, I), we say that the random variable V = ‖M‖2 has the χ2 (chi-square) distribution with d
degrees of freedom (V ∼ χ2(d)). Assume that X1, . . . , Xn are i.i.d. samples from the Normal distribution
N (µ, σ2). One way to estimate σ2 from these samples is to look at the sample variance:

S2 = 1
n−1

∑n
i=1(Xi − X̄)2,

where X̄ = 1
n (X1 + · · ·+Xn).

We want to prove that (n−1)
σ2 S2 has a chi-square distribution with n−1 degrees of freedom. Answer

the following questions for a step-by-step guide through the proof.

10. Which of these vectors Y verifies ‖Y ‖2 = (n− 1)S2?

(a) (X1 − X̄, . . . , Xn − X̄)

(b) (X1 − X̄/2, . . . , Xn − X̄/2)

(c) (X1 − 2X̄, . . . , Xn − 2X̄)

(d) (X1 + X̄, . . . , Xn + X̄)

Solution:
The correct answer is (a).
Consider Y = (X1 − X̄, . . . , Xn − X̄).

S2 =
1

n− 1

n∑
i=1

(Xi − X̄)2

(n− 1)S2 =

n∑
i=1

(Xi − X̄)2

(n− 1)S2 = ‖Y ‖2

11. Recall the following fact about orthogonal projections:

Let v be a unit vector in Rd. The orthogonal projection on the hyperplane defined by v is then I − vv>.
Also the reflection about the hyperplane defined by v is I − 2vv> (verify these by drawing a picture).
Sometimes, the last transformation is called a Householder Reflector. If one is searching for a unitary
matrix that maps u to v, one possible way is to consider the Householder reflector about the hyperplane
defined by (v − u)/‖v − u‖.
Note that Y is a Gaussian vector, as it is a linear function of X, obtained by the transformation I−vv>. The
transformation is of rank n− 1. Hence, it is better to transform Y in a way that one component becomes
zero, while keeping the norm of Y fixed. That is, we need a unitary map that maps v to w = (1, 0, . . . , 0)T .
Using Householder reflectors, this map is indeed I − 2uu>, where u = (v − w)/‖v − w‖.
Denote by Z = (I − 2uu>)Y . Observe that Z is a Gaussian vector. What is the mean of Z?
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(a) (0, 0, ..., 0)>

(b) Y

(c) X

(d) (1, 0, . . . , 0)>

Solution:
The correct answer is (a).
µZ = (I − uuT )µY = (I − uuT )(0, 0, ..., 0)> = (0, 0, ..., 0)>

12. What is the covariance matrix of Z?

(a) σ2


1 0 · · · 0
0 1 · · · 0
...

...
. . .

...
0 0 · · · 0



(b) σ2


1 0 · · · 0
0 1 · · · 0
...

...
. . .

...
0 0 · · · 1



(c) σ2


1 1 · · · 1
1 1 · · · 1
...

...
. . .

...
1 1 · · · 1


(d) a null matrix

Solution:
The correct answer is (a).
The covariance matrix can be computed using the approach from Question 6:

ΣZ = (I − 2uu>)(I − vv>)(σ2I)(I − vv>)>(I − 2uu>)>

= σ2(I − 2uu>)(I − vv>)(I − 2uu>)

= σ2


1 0 · · · 0
0 1 · · · 0
...

...
. . .

...
0 0 · · · 0


Thus, Z/σ is a Gaussian random vector, that is supported on a (n − 1)-dimensional space, with mean 0
and covariance In−1. That is, it is a standard Gaussian vector in Rn−1. Hence, 1

σ2 ‖Z‖2 has chi-square
distribution with (n− 1) degrees of freedom. But (n− 1)S2 = ‖Y ‖2 = ‖Z‖2. Thus,

(n− 1)

σ2
S2 ∼ χ2(n− 1).

Problem 3 (Linear Regression and Ridge Regression):

Let D = {(x1, y1), (x2, y2), . . . (xn, yn)} where xi ∈ Rd and yi ∈ R be the training data that you are given.

We want to predict y from x using linear regression, i.e. we want to predict y as wTx for some parameter vector
w ∈ Rd. (Without loss of generality, we assume that both xi and yi are centered, i.e. they have zero empirical
mean. Hence we can neglect the otherwise necessary bias term.) We thus suggest minimizing the following loss
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argmin
w

R̂(w) = argmin
w

n∑
i=1

(
yi −wTxi

)2
. (1)

Let us introduce the n× d matrix X ∈ Rn×d with the xi as rows, and the vector y ∈ Rn consisting of the scalars
yi. Then, (1) can be equivalently re-written as arg minw‖Xw− y‖2. In this exercise, ‖ · ‖ is always the Euclidean
norm. We refer to any w∗ that attains the above minimum as a solution to the problem.

13. Assuming that XTX is invertible, the unique solution for w∗ is:

(a) (X>X)−1(X>Y )

(b) (X>X)−1(X>Y )(X>X)

(c) X>Y

(d) (X>X)−1Y

Solution:
The correct answer is (a).
Note that R̂ : Rd → R and

R̂(w) = ‖Xw − y‖2 = (Xw − y)T (Xw − y) = wTXTXw − 2wTXTy + yTy.

The gradient of this function is equal to (see the recap slides; also note that the gradient is a vector in Rd)

∇R̂(w) = 2XTXw − 2XTy.

Because R̂(w) is convex (formally proven in (d)), its optima (if they exist) are exactly those points that
have a zero gradient, i.e., those w∗ that satisfy XTXw∗ = XTy. Under the given assumption, the unique

minimizer is indeed equal to w∗ =
(
XTX

)−1
XTy.

14. Pick the true statements.

(a) (1) always admits a unique solution if n ≥ d
(b) (1) does not admit a unique solution if n < d

(c) (1) always admits a solution if n ≥ d and the columns of X are independent.

(d) (1) admits a unique solution ⇐⇒ X>X is invertible.

(e) For n > d, (1) always admits a unique solution if X is full rank.

(f) (1) does not admit a solution if n < d

Solution:
The true statements are (b), (c), (d) and (e).

(a) (1) does not a unique solution if n ≥ d when the rows of X are dependent.

(b) The intuition behind this statement is that the “linear system” Xw ≈ y is underdetermined as there
are less data points than parameters that we want to estimate. We now mathematically formulate this
intuition.
Consider the singular value decomposition X = UΣVT where U is an unitary n × n matrix, V is a
unitary d× d matrix and Σ is a diagonal n× d matrix with the singular values of X on the diagonal.
We then have

argmin
w

R̂(w) = argmin
w

[
wTVΣ2VTw − 2yTUΣVTw

]
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Note that yTUΣVTw ∈ R is a number. Thus, we have the equality yTUΣVTw = wTVΣTUTy.
Also, for brevity, we write Σ2 instead of ΣTΣ ∈ Rd×d.

Since V is unitary (and hence it is a bijection), we may rotate w using V to z = VTw and formulate
the optimization problem in terms of z, i.e.

argmin
z

[
zTΣ2z− 2yTUΣz

]
= argmin

z

d∑
i=1

[
z2i σ

2
i − 2(UTy)iziσi

]
where σi is the ith entry in the diagonal of Σ. Note that this problem gets decomposed into d
independent optimization problems of the form

zi = argmin
z

[
z2σ2

i − 2(UTy)izσi
]

for i = 1, 2, . . . , d. Since each problem is quadratic with positive coefficient and thus convex we may
obtain the solution by finding the root of the first derivative. For i = 1, 2, . . . d we require that zi
satisfies

ziσ
2
i − (Uty)iσi = 0.

For all i = 1, 2, . . . d such that σi 6= 0, the solution zi is thus given by

zi =
(Uty)i
σi

.

For the case n < d, however, X has at most rank n as it is a n× d matrix and hence at most n of its
singular values are nonzero.

We use the fact that the rank of a matrix A is equal to the number of nonzero singular values of
A.

This means that there is at least one index j such that σj = 0 and hence any zj ∈ R is a solution
to the optimization problem. As a result, the set of optimal solutions for z is a linear subspace of at
least one dimension. By rotating this subspace back using V, i.e., w = Vz, it is evident that the
optimal solution to the optimization problem in terms of w is also a linear subspace of at least one
dimension and that thus no unique solution exists. Furthermore, since X has at most rank n, XTX
is not of full rank (for a proof, look at the SVD of XTX). As a result (XTX)−1 does not exist and
w∗ is ill-defined.

(c) The columns of X being independent implies that the column rank of X is d. Since the row rank of a
matrix is equal to the column rank, there are d independent equations to determine the d parameters
in w The “linear system” Xw ≈ y is now completely determined.

(d) The truth of this statement can be inferred from Question 13.

(e) X, being a full rank matrix, implies that the “linear system” Xw ≈ y is now completely determined.

(f) Since the “linear system” Xw ≈ y is underdetermined, the system admits infinite solutions.

The ridge regression optimization problem with parameter λ > 0 is given by

argmin
w

R̂ridge(w) = argmin
w

[
n∑
i=1

(
yi −wTxi

)2
+ λwTw

]
. (2)

15. R̂ridge is convex with respect to w if and only if for any w ∈ Rd its Hessian D2R̂ridge(w) ∈ Rd×d is:

(a) invertible
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(b) positive definite

(c) positive semi-definite

(d) its columns are linearly independent

Solution:
The correct answer is (c).
Because convex functions are closed under addition, we will show that each term in the objective is convex,
from which the answer will follow. Each data term (yi −wTxi)

2 has the Hessian xix
T
i , which is positive

semi-definite because for any w ∈ Rd we have wTxix
T
i w = (xTi wi)

2 ≥ 0 (note that xTi w = wTxi are
scalars).

The regularizer λwTw has the identity matrix λId as a Hessian, which is also postive semi-definite because
for any w ∈ Rd we have wT (λId)w = λ‖w‖2 ≥ 0, and this completes the proof.

16. The solution w∗ridge to R̂ridge is:

(a) (X>X)−1(X>Y )

(b) (X>X + λI)−1(X>Y )

(c) (X>X − λI)−1(X>Y )

(d) (X>X)−1(X>Y + λI)

Solution:
The correct answer is (b).

The gradient of R̂ridge(w) with respect to w is given by

∇R̂ridge(w) = 2XT (Xw − y) + 2λw.

Similar to (a), because R̂ridge(w) is convex, we only have to find a point w∗ridge such that

∇R̂ridge(w
∗
ridge) = 2XT (Xw∗ridge − y) + 2λw∗ridge = 0.

This is equivalent to
(XTX + λId)w

∗
ridge = XTy

which implies the required result

w∗ridge =
(
XTX + λId

)−1
XTy.

17. Pick the true statements about ridge regression.

(a) (2) always admits a unique solution, even when (1) does not.

(b) ‖w∗ridge‖ → 0 as λ→∞
(c) If (1) has a solution, then w∗ridge converges to a solution of (1) as λ→ 0

(d) (2) admits a unique solution if and only if n ≥ d and the columns of X are independent.

Solution:
The true statements are (a), (b) and (c).

(a) Note that XTX is a positive semi-definite matrix, since ∀w ∈ Rd : wTXTXw = ‖Xw‖2 ≥ 0, which
implies that it has non-negative eigenvalues. But then, XTX + λId has eigenvalues bounded from
below by λ > 0, which means that it is invertible and thus the optimum is uniquely defined.
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Note. Since XTX is symmetric, all of its eigenvalues are real, and it is clear that µ is an eigenvalue
of XTX if and only if µ+ λ is an eigenvalue of XTX + λI.

(b) The term λwTw “biases” the solution towards the origin, i.e., there is a quadratic penalty for solutions
w that are far from the origin. The parameter λ determines the extend of this effect: As λ → 0,
R̂ridge(w) converges to R̂(w). As a result the optimal solution w∗ridge approaches the solution of (1).

As λ→∞, only the quadratic penalty wTw is relevant and w∗ridge hence approaches the null vector
(0, 0, . . . , 0).

(c) Refer to (b).

(d) Since (2) always admits a unique solution, even when (1) does not, this statement is false.

Problem 4 (Normal random variables):

Let X be a normal random variable with mean µ ∈ R and variance τ2 > 0, i.e. X ∼ N (µ, τ2). Let Y be a random
variable such that Y given X = x is normally distributed with mean x and variance σ2, i.e. Y |X=x ∼ N (x, σ2).

18. The mean of fY ( y), the marginal distribution of Y , is:

(a) µ

(b) µ/2

(c) µ+ x

(d) µ− x

Solution:
The correct answer is (a).

19. The variance of fY ( y), the marginal distribution of Y , is:

(a) σ2

(b) σ2 + τ2

(c) σ2 − τ2

(d) (σ + τ)2

Solution:
The correct answer is (b).

Before starting calculations, it is good to mention that one can easily compute the following integral for
a > 0 by creating complete squares:∫

R
e−(ax

2+2bx+c)dx =

∫
R

exp

(
−a

[(
x+

b

a

)2

− b2 − ac
a2

])
dx

= exp

(
b2 − ac
a

)
·
∫
R

exp

(
− 1

2

(
x+ b

a

)2
1/2a

)
dx

= exp

(
b2 − ac
a

)√
π/a
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As a prelude to both (a) and (b) we consider the joint density function fX,Y (x, y) of X and Y

fX,Y (x, y) = fY |X(y|x)fX(x) =
1

2πστ
exp

−1

2

[
(x− µ)2

τ2
+

(y − x)2

σ2

]
︸ ︷︷ ︸

(A)

 .

For brevity, let us define

a :=
σ2 + τ2

2σ2τ2
,

b := −σ
2µ+ τ2y

2σ2τ2
,

c :=
σ2µ2 + τ2y2

2σ2τ2
.

Using simple algebraic operations, we obtain that (A) = ax2 + 2bx+ c.

The marginal density of Y is given by

fY (y) =

∫
R
fX,Y (x, y)dx =

∫
R
fY |X(y|x)fX(x)dx.

Using the formula discussed at the beginning of the solution, we can compute this integral by just putting
in the values of a, b and c:

fY (y) =

∫
R
fX,Y (x, y)dx

=

∫
R

1

2πστ
e−(ax

2+2bx+c)dx

=
1

2πστ
exp

(
b2 − ac
a

)√
π/a

∝ exp

(
b2 − ac
a

)
(a does not depend on y)

Now we try to write (b2 − ac)/a as a complete square:

b2 − ac
a

=
1

a

{(
σ2µ+ τ2y

2σ2τ2

)2

− (σ2 + τ2)(σ2µ2 + τ2y2)

(2σ2τ2)2

}

= −1

a
· 1

(2σ2τ2)2
· (σ2τ2y2 − 2τ2σ2µy + σ2τ2µ2)

= −1

a
· σ2τ2

(2σ2τ2)2
· ((y − µ)2 + · · · )

= −1

2

1

(σ2 + τ2)
· ((y − µ)2 + · · · )

Putting everything together yields

fY (y) ∝ exp

[
−1

2

(y − µ)2

(σ2 + τ2)

]
,

meaning that Y has a Gaussian distribution with mean µ and variance σ2 + τ2.
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20. Using Bayes’ theorem, find the mean of fX|Y (x|y), the conditional distribution of X given Y = y.

(a) µ+y
σ2+τ2

(b) σ2

σ2+τ2µ+ τ2

σ2+τ2 y

(c) σ2

σ2+τ2µ− τ2

σ2+τ2 y

(d) µ−y
σ2+τ2

Solution:
The correct answer is (b).

21. Find the variance of fX|Y (x|y), the conditional distribution of X given Y = y.

(a) σ2τ2

σ2+τ2

(b) σ2

σ2+τ2

(c) τ2

σ2+τ2

(d) 1
σ2+τ2

Solution:
The correct answer is (a).
The conditional density of X given Y = y is proportional to the joint density function, i.e.

fX|Y (x|y) =
fX,Y (x, y)

fY (y)
∝ fX,Y (x, y).

By the discussion at the beginning of the solution, fX,Y (x, y) ∝ exp(−(ax2 + 2bx+ c)). Since c does not
depend on x (and y is considered as fixed/given), we can say :

fX|Y (x|y) ∝ exp

(
− 1

2

(
x+ b

a

)2
1/2a

)

So the mean would be −b/a and the variance will be 1/2a. Concretely:

mean = − b
a

=
σ2µ+ τ2y

σ2 + τ2
=

σ2

σ2 + τ2
µ+

τ2

σ2 + τ2
y

Note that the mean is a convex combination of µ and the observation y. Also

variance =
1

2a
=

σ2τ2

σ2 + τ2
.
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