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Problem 1 ( Regression ):

Let D = {(x1, y1), (x2, y2), . . . (xn, yn)} where xi ∈ Rd and yi ∈ R be the training data that you are given. To
predict y as wTx for some parameter vector w ∈ Rd we can use

The ordinary least square optimization (OLS) problem :

argmin
w

R̂(w) = argmin
w

n∑
i=1

(
yi −wTxi

)2
. (1)

The ridge regression optimization problem with parameter λ > 0:

argmin
w

R̂ridge(w) = argmin
w

[
n∑
i=1

(
yi −wTxi

)2
+ λwTw

]
. (2)

We define the OLS and ridge estimator as, ŵ =
(
XTX

)−1
XT y and ŵridge (λ) =

(
XTX + λId

)−1
XT y, re-

spectively.

Regression and Shrinkage

1. Let UΣV T be the Singular Value Decomposition (SVD) of X. What is ŵ?
Here we use the compact SVD. Xn×d = Un×rΣr×rV

T
d×r, where r ≤ min{m,n}. Assume XTX is

invertible.

(a) V ΣUT y

(b) V Σ−1UT y

(c) V Σ−1ΣUTY

(d) V Σ−2ΣUT y

Solution:
(b) and (d) are both correct solutions.
Both the OLS and the ridge estimators can be rewritten in term of the SVD matrices.

ŵ =
(
XTX

)−1
XTy

=
(
VΣUTUΣVT

)−1
VΣUTy

=
(
VΣ2VT

)−1
VΣUTy

= VΣ−2VTVΣUTy

= VΣ−2ΣUTy



2. What is ŵridge?

(a) V (Σ + λI)−1ΣUT y

(b) V (Σ2 + λI)−1ΣUT y

(c) V (λI)−1ΣUT y

(d) V (Σ2 + λI)ΣUT y

Solution:
The correct answer is (b).

ŵridge(λ) =
(
XTX + λI

)−1
XTy

=
(
VΣ2VT + λI

)−1
VΣUTy

= V
(
Σ2 + λI

)−1
VTVΣUTy

= V
(
Σ2 + λI

)−1
ΣUTy

3. The ridge penalty term, λwTw, :

(a) shrinks the low variance components

(b) shrinks the high variance components

(c) amplifies the low variance components

(d) does not change the components

Solution:
The correct answer is (a).

Writing Σjj = djj we have: d−1jj ≥
djj

d2jj+λ
for all λ > 0

Thus, the ridge penalty will shrink the singular values and the low variance components will be shrunk
to a greater extent.

Regression and Bias

4. Compute Eε|X [ŵ].

(a) w

(b) (XTX)w

(c) (XTX)−1w

(d) 2w

Solution:
The correct answer is (a).

Eε|X [ŵ] = Eε|X [(XTX)−1(XT y)] = Eε|X [(XTX)−1(XT (Xw + ε))] = Eε|X [w + (XTX)−1(XT ε))] = w

5. Compute Eε|X [ŵridge].

(a) (XTX + λI)−1(XTX)w

(b) w

(c) (XTX)w
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(d) (XTX − λI)−1(XTX)w

Solution:
The correct answer is (a).

E [ŵridge(λ)] = E
[(

XTX + λI
)−1

XTy
]

= E
[(

XTX + λI
)−1 (

XTX
) (

XTX
)−1

XTy
]

= E
[(

XTX + λI
)−1 (

XTX
)
ŵ
]

=
(
XTX + λI

)−1 (
XTX

)
E (ŵ)

=
(
XTX + λI

)−1 (
XTX

)
w

We can see that E [ŵridge(λ)] 6= w for any λ > 0 . Hence, the ridge estimator is biased.

6. Pick the true statements.

(a) The Ordinary Least Squares estimator is biased.

(b) The ridge regression estimator is biased.

Solution:
Only (b) is True.
We can see that E [ŵridge(λ)] 6= w for any λ > 0 . Hence, the ridge estimator is biased.

7. When λ→∞, all the regression weights converge to:

(a) 1

(b) 0

(c) ∞
(d) π

Solution:
The correct answer is (b).
When λ→∞ :

lim
λ→∞

E [ŵridge(λ)] = lim
λ→∞

(
XTX + λI

)−1 (
XTX

)
w = 0d

All the regression coefficients are shrunken towards zero as the penalty parameter increases.

Variance of Regression Estimates

8. Compute the variance of ŵ.
V ar(AY ) = AV ar(Y )AT

(a) (XTX)σ2
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(b) (XTX)−1σ2

(c) σ2/2

(d) 2σ2

Solution:
The correct answer is (b).

V ar(ŵ) = V ar((XTX)−1XT y)

= V ar((XTX)−1XT (Xw + ε))

= V ar((XTX)−1XT (ε))

= (XTX)−1XTV ar(ε)X(XTX)−1

= σ2(XTX)−1

9. Compute the variance of ŵridge.

(a) σ2
(
XTX + λI

)−1 (
XTX

) [(
XTX + λI

)−1]T
(b) σ2

(
XTX − λI

)−1 (
XTX

) [(
XTX − λI

)−1]T
(c) σ2

(
XTX + 2λI

)−1 (
XTX

) [(
XTX + 2λI

)−1]T
(d) σ2

(
XTX + λ

2 I
)−1 (

XTX
) [(

XTX + λ
2 I
)−1]T

Solution:
The correct answer is (a).

We have: ŵridge(λ) =
(
XTX + λI

)−1 (
XTX

)
ŵ

We define: Ωλ =
(
XTX + λI

)−1 (
XTX

)
It can be seen that,

V ar [ŵridge(λ)] = V ar [Ωλŵ]

= ΩλV ar [ŵ] ΩTλ

= σ2Ωλ
(
XTX

)−1
ΩTλ

= σ2
(
XTX + λI

)−1 (
XTX

) [(
XTX + λI

)−1]T

Note that we have used the fact that V ar (AY) = AV ar(Y)AT for a non random matrix A , and

the fact that V ar (ŵ) = σ2
(
XTX

)−1
10. Var(ŵ) � Varŵridge. This statement is:

(Try to prove your statement)

(a) True

(b) False
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Solution:
The given statement is False.
Comparing it to the variance of the OLS estimator,

V ar [ŵ]− V ar [ŵridge(λ)] = σ2
[(

XTX
)−1 − Ωλ

(
XTX

)−1
ΩTλ

]
= σ2Ωλ

[(
I + λ

(
XTX

)−1) (
XTX

)−1 (
I + λ

(
XTX

)−1)T − (XTX
)−1]

ΩTλ

= σ2Ωλ

[
2λ
(
XTX

)−2
+ λ2

(
XTX

)−3]
ΩTλ

= σ2
(
XTX + λI

)−1 [
2λI + λ2

(
XTX

)−1] [(
XTX + λI

)−1]T
The difference is non-negative definite. Hence, the variance of the OLS estimator exceeds that of the ridge
estimator.

V ar [ŵ] � V ar [ŵridge(λ)]

11. When λ→∞, the variance of the ridge estimator,

(a) reduces to zero

(b) converges to 1

(c) increases to ∞

Solution:
The correct answer is (a).

Now, let us look at the case where λ→∞ :

lim
λ→∞

V ar [ŵridge(λ)] = lim
λ→∞

σ2Ωλ
(
XTX

)−1
ΩTλ = 0d

The variance of the ridge estimator vanishes. Hence, the variance of the ridge regression coefficient estimates
decreases towards zero as the penalty parameter becomes large.

Regularized loss for regression
In this problem you will help Ada solve a linear regression problem. From the domain experts she has learned
that it makes sense to use the following regularizer1,

R(w) =

d−1∑
i=1

|wi − wi+1|

for the weight vector w ∈ Rd. She is given n data points (x1, y1), (x2, y2), . . . , (xn, yn), where each
xi ∈ Rd and each yi ∈ R. Hence, she has to minimize the following objective

f(w) =
1

n

n∑
i=1

(wT
i xi − yi)2︸ ︷︷ ︸

loss(w|yi,xi)︸ ︷︷ ︸
L(w)

+λR(w).

12. Ada wrote a program and then solved the above problem for the same data points and four different positive
penalizers λ1 < λ2 < λ3 < λ4. Unfortunately, she has misnamed the files holding the results and does not
know which file corresponds to which λi. Your task is to help Ada by assigning to each file the corresponding
λi that was used. Try to justify your answer.

Match the following computed weight vectors, w∗, to the corresponding λs used.

1This regularizer makes sense if we would like to prefer solutions whose entries do not change much between adjacent coordinates.
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File name Computed weight vector w∗ Penalizer

solution a.pkl (1, 1, 2, 2, 1, 1)
solution b.pkl (9, 10, 10, 8, 2, 2)
solution c.pkl (2, 2, 4, 5, 5, 5)
solution d.pkl (1, 2, 2, 2, 3, 1)

Solution:

File name Computed weight vector w∗ Penalizer

solution a.pkl (1, 1, 2, 2, 1, 1) λ4
solution b.pkl (9, 10, 10, 8, 2, 2) λ1
solution c.pkl (2, 2, 4, 5, 5, 5) λ3
solution d.pkl (1, 2, 2, 2, 3, 1) λ2

Take any w and w′ satisfying R(w) < R(w′) that are optimal for some λ 6= λ′. Then, because they are
optimal for the corresponding losses

L(w) + λR(w) ≤ L(w′) + λR(w′), and

−L(w)− λ′R(w) ≤ −L(w′)− λ′R(w′).

Adding both equations we have (λ − λ′)R(w) ≤ (λ − λ′)R(w′). Because R(w) ≤ R(w′), the above is
satisfied if λ ≥ λ′, and this inequality has to be strict as λ 6= λ′ by assumption.

Because the regularizer for the four parameter vectors evaluates to 2, 9, 3 and 4 respectively, this means
that the order is λ4, λ1, λ3, λ2.

13. Ada’s colleague Alan wrote another program to solve the same optimization problem, but arrived at a
different optimum for the same penalizer λ > 0.

Does this mean that one of them has an implementation bug? Justify your answer (for yourself).

(a) Yes

(b) No

Solution:
The correct answer is (b). No it does not, consider the case where all xi and all yi are equal to zero. Then
any constant vector is a solution.

14. To ensure that her algorithm is correctly implemented, Ada wants to implement the following test procedure.
First, come up with some synthetic distribution P (x, y) where the data comes from. Then, compute the
optimal vector w∗ on a finite sample from P (x, y), and finally compute the generalization error of w∗. If
she defined the distribution generating the data as

P (x, y) =

{
1
8 if x ∈ {0, 1}3 and y = x1 + 2x2 + 2x3, or

0 otherwise,

and she computed the vector w∗ = (2, 2, 2) on the finite sample, what is the generalization error?

(a) 1
2

(b) 1
4

(c) 1
8
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(d) 1
16

Solution:
The correct answer is (a).

Note that there will be no loss if x1 = 0, since in this case w∗
>x = y. On the other hand if x1 = 1 then

the loss is always 1 irrespective of the values of x2 and x3, since in this case w∗
>x = 2x1 + 2x2 + 2x3 =

x1 + y = 1 + y. Hence, the expected loss is equal to 1 · P (x1 = 1) = 1
2 .

Problem 2 ( Perceptron ):

15. Construct a perceptron which correctly classifies the following data. Choose appropriate values for the
weights w0,w1 and w2

Training Example x1 x2 class
a 0 1 -1
b 2 0 -1
c 1 1 +1

(a) w0 = −5,w1 = 2,w2 = 4

(b) w0 = 5,w1 = 2,w2 = −4

(c) w0 = −5,w1 = 0,w2 = −4

(d) w0 = 5,w1 = 2,w2 = 4

Solution:
The correct answer is (a).
Solution: We can plot the data and trace a separation line. This line has slope -1/2 and x2-intersect 5/4.
x2 = 5/4− x1/2 i.e. 2x1 + 4x2− 5 = 0 Thus we can choose , w0 = −5, w1 = 2, w2 = 4

16. Use the perceptron learning algorithm on the data above, using a learning rate ν of 1.0 and initial weight
values of w0 = −0.5,w1 = 0 and w2 = 1.

Choose the correctly filled table from the options below. In practice, we would apply stochastic gradient
descent. But to facilitate this exercise, we do not pick the data-points at random. Instead, we take a, b
and c sequentially.

Iteration i w0 w1 w2 Training Example (a, b or c ) Class s=w0+w1x1+w2x2 Action
1 -0.5 0 1 a. - 0.5 Update
2 -1.5 0 0 b. - -1.5 None
3 -1.5 0 0 c. + -1.5 Update
4 -0.5 1 1 a. - 0.5 Update
5 -1.5 1 0 b. - 0.5 Update

(a)

Iteration i w0 w1 w2 Training Example (a, b or c ) Class s=w0+w1x1+w2x2 Action
1 -0.5 0 1 a. + 0.5 None
2 -0.5 0 1 b. + -1.5 Update
3 1.5 0 0 c. - -1.5 None
4 1.5 0 0 a. + 0.5 None
5 1.5 0 0 b. + 0.5 None
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(b)

Iteration i w0 w1 w2 Training Example (a, b or c ) Class s=w0+w1x1+w2x2 Action
1 -0.5 0 1 a. - 0.5 Update
2 -1.5 1 1 b. - 1.5 Update
3 -1.5 0 0 c. + -1.5 None
4 -0.5 1 1 a. - 0.5 Update
5 -1.5 1 0 b. - 0.5 Update

(c)

Solution:
The correct answer is (a).
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