Exercises

Introduction to Machine Learning

FS 2020

Series 2, March 16th, 2020 (Regression, Classification)

Institute for Machine Learning

Dept. of Computer Science, ETH Zürich
Prof. Dr. Andreas Krause
Web: https://las.inf.ethz.ch/teaching/introml-s20
For questions, please refer to Piazza.

Problem 1 (Regression):

Let $D=\left\{\left(\mathbf{x}_{1}, y_{1}\right),\left(\mathbf{x}_{2}, y_{2}\right), \ldots\left(\mathbf{x}_{n}, y_{n}\right)\right\}$ where $\mathbf{x}_{i} \in \mathbb{R}^{d}$ and $y_{i} \in \mathbb{R}$ be the training data that you are given. To predict y as $\mathbf{w}^{T} \mathbf{x}$ for some parameter vector $\mathbf{w} \in \mathbb{R}^{d}$ we can use

The ordinary least square optimization (OLS) problem :

$$
\begin{equation*}
\underset{\mathbf{w}}{\operatorname{argmin}} \hat{R}(\mathbf{w})=\underset{\mathbf{w}}{\operatorname{argmin}} \sum_{i=1}^{n}\left(y_{i}-\mathbf{w}^{T} \mathbf{x}_{i}\right)^{2} . \tag{1}
\end{equation*}
$$

The ridge regression optimization problem with parameter $\lambda>0$:

$$
\begin{equation*}
\underset{\mathbf{w}}{\operatorname{argmin}} \hat{R}_{\text {ridge }}(\mathbf{w})=\underset{\mathbf{w}}{\operatorname{argmin}}\left[\sum_{i=1}^{n}\left(y_{i}-\mathbf{w}^{T} \mathbf{x}_{i}\right)^{2}+\lambda \mathbf{w}^{T} \mathbf{w}\right] . \tag{2}
\end{equation*}
$$

We define the OLS and ridge estimator as, $\hat{w}=\left(X^{T} X\right)^{-1} X^{T} y$ and $\hat{w}_{\text {ridge }}(\lambda)=\left(X^{T} X+\lambda I_{d}\right)^{-1} X^{T} y$, respectively.

Regression and Shrinkage

1. Let $U \Sigma V^{T}$ be the Singular Value Decomposition (SVD) of X. What is \hat{w} ? Here we use the compact SVD. $X_{n \times d}=U_{n \times r} \Sigma_{r \times r} V_{d \times r}^{T}$, where $r \leq \min \{m, n\}$. Assume $X^{T} X$ is invertible.
(a) $V \Sigma U^{T} y$
(b) $V \Sigma^{-1} U^{T} y$
(c) $V \Sigma^{-1} \Sigma U^{T} Y$
(d) $V \Sigma^{-2} \Sigma U^{T} y$

Solution:

(b) and (d) are both correct solutions.

Both the OLS and the ridge estimators can be rewritten in term of the SVD matrices.

$$
\begin{aligned}
\hat{\mathbf{w}} & =\left(\mathbf{X}^{T} \mathbf{X}\right)^{-1} \mathbf{X}^{T} \mathbf{y} \\
& =\left(\mathbf{V} \boldsymbol{\Sigma} \mathbf{U}^{T} \mathbf{U} \boldsymbol{\Sigma} \mathbf{V}^{T}\right)^{-1} \mathbf{V} \boldsymbol{\Sigma} \mathbf{U}^{T} \mathbf{y} \\
& =\left(\mathbf{V} \boldsymbol{\Sigma}^{2} \mathbf{V}^{T}\right)^{-1} \mathbf{V} \boldsymbol{\Sigma} \mathbf{U}^{T} \mathbf{y} \\
& =\mathbf{V} \boldsymbol{\Sigma}^{-2} \mathbf{V}^{T} \mathbf{V} \boldsymbol{\Sigma} \mathbf{U}^{T} \mathbf{y} \\
& =\mathbf{V} \boldsymbol{\Sigma}^{-2} \boldsymbol{\Sigma} \mathbf{U}^{T} \mathbf{y}
\end{aligned}
$$

2. What is $\hat{w}_{\text {ridge }}$?
(a) $V(\Sigma+\lambda I)^{-1} \Sigma U^{T} y$
(b) $V\left(\Sigma^{2}+\lambda I\right)^{-1} \Sigma U^{T} y$
(c) $V(\lambda I)^{-1} \Sigma U^{T} y$
(d) $V\left(\Sigma^{2}+\lambda I\right) \Sigma U^{T} y$

Solution:

The correct answer is (b).

$$
\begin{aligned}
\hat{\mathbf{w}}_{\text {ridge }}(\lambda) & =\left(\mathbf{X}^{T} \mathbf{X}+\lambda \mathbf{I}\right)^{-1} \mathbf{X}^{T} \mathbf{y} \\
& =\left(\mathbf{V} \boldsymbol{\Sigma}^{2} \mathbf{V}^{T}+\lambda \mathbf{I}\right)^{-1} \mathbf{V} \Sigma \mathbf{U}^{T} \mathbf{y} \\
& =\mathbf{V}\left(\boldsymbol{\Sigma}^{2}+\lambda \mathbf{I}\right)^{-1} \mathbf{V}^{T} \mathbf{V} \boldsymbol{\Sigma} \mathbf{U}^{T} \mathbf{y} \\
& =\mathbf{V}\left(\boldsymbol{\Sigma}^{2}+\lambda \mathbf{I}\right)^{-1} \boldsymbol{\Sigma} \mathbf{U}^{T} \mathbf{y}
\end{aligned}
$$

3. The ridge penalty term, $\lambda w^{T} w$, :
(a) shrinks the low variance components
(b) shrinks the high variance components
(c) amplifies the low variance components
(d) does not change the components

Solution:

The correct answer is (a).
Writing $\boldsymbol{\Sigma}_{j j}=d_{j j}$ we have: $d_{j j}^{-1} \geq \frac{d_{j j}}{d_{j j}^{2}+\lambda}$ for all $\lambda>0$
Thus, the ridge penalty will shrink the singular values and the low variance components will be shrunk to a greater extent.

Regression and Bias

4. Compute $\mathbb{E}_{\varepsilon \mid X}[\hat{w}]$.
(a) w
(b) $\left(X^{T} X\right) w$
(c) $\left(X^{T} X\right)^{-1} w$
(d) $2 w$

Solution:

The correct answer is (a).
$\left.\mathbb{E}_{\varepsilon \mid X}[\hat{w}]=\mathbb{E}_{\varepsilon \mid X}\left[\left(X^{T} X\right)^{-1}\left(X^{T} y\right)\right]=\mathbb{E}_{\varepsilon \mid X}\left[\left(X^{T} X\right)^{-1}\left(X^{T}(X w+\varepsilon)\right)\right]=\mathbb{E}_{\varepsilon \mid X}\left[w+\left(X^{T} X\right)^{-1}\left(X^{T} \varepsilon\right)\right)\right]=w$
5. Compute $\mathbb{E}_{\varepsilon \mid X}\left[\hat{w}_{\text {ridge }}\right]$.
(a) $\left(X^{T} X+\lambda I\right)^{-1}\left(X^{T} X\right) w$
(b) w
(c) $\left(X^{T} X\right) w$
(d) $\left(X^{T} X-\lambda I\right)^{-1}\left(X^{T} X\right) w$

Solution:

The correct answer is (a).

$$
\begin{aligned}
\mathbb{E}\left[\hat{\mathbf{w}}_{\text {ridge }}(\lambda)\right] & =\mathbb{E}\left[\left(\mathbf{X}^{T} \mathbf{X}+\lambda \mathbf{I}\right)^{-1} \mathbf{X}^{T} \mathbf{y}\right] \\
& =\mathbb{E}\left[\left(\mathbf{X}^{T} \mathbf{X}+\lambda \mathbf{I}\right)^{-1}\left(\mathbf{X}^{T} \mathbf{X}\right)\left(\mathbf{X}^{T} \mathbf{X}\right)^{-1} \mathbf{X}^{T} \mathbf{y}\right] \\
& =\mathbb{E}\left[\left(\mathbf{X}^{T} \mathbf{X}+\lambda \mathbf{I}\right)^{-1}\left(\mathbf{X}^{T} \mathbf{X}\right) \hat{\mathbf{w}}\right] \\
& =\left(\mathbf{X}^{T} \mathbf{X}+\lambda \mathbf{I}\right)^{-1}\left(\mathbf{X}^{T} \mathbf{X}\right) \mathbb{E}(\hat{\mathbf{w}}) \\
& =\left(\mathbf{X}^{T} \mathbf{X}+\lambda \mathbf{I}\right)^{-1}\left(\mathbf{X}^{T} \mathbf{X}\right) \mathbf{w}
\end{aligned}
$$

We can see that $\mathbb{E}\left[\hat{\mathbf{w}}_{\text {ridge }}(\lambda)\right] \neq \mathbf{w}$ for any $\lambda>0$. Hence, the ridge estimator is biased.
6. Pick the true statements.
(a) The Ordinary Least Squares estimator is biased.
(b) The ridge regression estimator is biased.

Solution:

Only (b) is True.
We can see that $\mathbb{E}\left[\hat{\mathbf{w}}_{\text {ridge }}(\lambda)\right] \neq \mathbf{w}$ for any $\lambda>0$. Hence, the ridge estimator is biased.
7. When $\lambda \rightarrow \infty$, all the regression weights converge to:
(a) 1
(b) 0
(c) ∞
(d) π

Solution:

The correct answer is (b).
When $\lambda \rightarrow \infty$:

$$
\lim _{\lambda \rightarrow \infty} \mathbb{E}\left[\hat{\mathbf{w}}_{\text {ridge }}(\lambda)\right]=\lim _{\lambda \rightarrow \infty}\left(\mathbf{X}^{T} \mathbf{X}+\lambda \mathbf{I}\right)^{-1}\left(\mathbf{X}^{T} \mathbf{X}\right) \mathbf{w}=0_{d}
$$

All the regression coefficients are shrunken towards zero as the penalty parameter increases.
Variance of Regression Estimates
8. Compute the variance of \hat{w}.
$\operatorname{Var}(A Y)=A \operatorname{Var}(Y) A^{T}$
(a) $\left(X^{T} X\right) \sigma^{2}$
(b) $\left(X^{T} X\right)^{-1} \sigma^{2}$
(c) $\sigma^{2} / 2$
(d) $2 \sigma^{2}$

Solution:

The correct answer is (b).

$$
\begin{aligned}
\operatorname{Var}(\hat{w}) & =\operatorname{Var}\left(\left(X^{T} X\right)^{-1} X^{T} y\right) \\
& =\operatorname{Var}\left(\left(X^{T} X\right)^{-1} X^{T}(X w+\varepsilon)\right) \\
& =\operatorname{Var}\left(\left(X^{T} X\right)^{-1} X^{T}(\varepsilon)\right) \\
& =\left(X^{T} X\right)^{-1} X^{T} \operatorname{Var}(\varepsilon) X\left(X^{T} X\right)^{-1} \\
& =\sigma^{2}\left(X^{T} X\right)^{-1}
\end{aligned}
$$

9. Compute the variance of $\hat{w}_{\text {ridge }}$.
(a) $\sigma^{2}\left(X^{T} X+\lambda \mathbf{I}\right)^{-1}\left(X^{T} X\right)\left[\left(X^{T} X+\lambda \mathbf{I}\right)^{-1}\right]^{T}$
(b) $\sigma^{2}\left(X^{T} X-\lambda \mathbf{I}\right)^{-1}\left(X^{T} X\right)\left[\left(X^{T} X-\lambda \mathbf{I}\right)^{-1}\right]^{T}$
(c) $\sigma^{2}\left(X^{T} X+2 \lambda \mathbf{I}\right)^{-1}\left(X^{T} X\right)\left[\left(X^{T} X+2 \lambda \mathbf{I}\right)^{-1}\right]^{T}$
(d) $\sigma^{2}\left(X^{T} X+\frac{\lambda}{2} \mathbf{I}\right)^{-1}\left(X^{T} X\right)\left[\left(X^{T} X+\frac{\lambda}{2} \mathbf{I}\right)^{-1}\right]^{T}$

Solution:

The correct answer is (a).
We have: $\hat{\mathbf{w}}_{\text {ridge }}(\lambda)=\left(\mathbf{X}^{T} \mathbf{X}+\lambda \mathbf{I}\right)^{-1}\left(\mathbf{X}^{T} \mathbf{X}\right) \hat{\mathbf{w}}$
We define: $\Omega_{\lambda}=\left(\mathbf{X}^{T} \mathbf{X}+\lambda \mathbf{I}\right)^{-1}\left(\mathbf{X}^{T} \mathbf{X}\right)$
It can be seen that,

$$
\begin{aligned}
\operatorname{Var}\left[\hat{\mathbf{w}}_{\text {ridge }}(\lambda)\right] & =\operatorname{Var}\left[\Omega_{\lambda} \hat{\mathbf{w}}\right] \\
& =\Omega_{\lambda} \operatorname{Var}[\hat{\mathbf{w}}] \Omega_{\lambda}^{T} \\
& =\sigma^{2} \Omega_{\lambda}\left(\mathbf{X}^{T} \mathbf{X}\right)^{-1} \Omega_{\lambda}^{T} \\
& =\sigma^{2}\left(\mathbf{X}^{T} \mathbf{X}+\lambda \mathbf{I}\right)^{-1}\left(\mathbf{X}^{T} \mathbf{X}\right)\left[\left(\mathbf{X}^{T} \mathbf{X}+\lambda \mathbf{I}\right)^{-1}\right]^{T}
\end{aligned}
$$

Note that we have used the fact that $\operatorname{Var}(\mathbf{A Y})=\mathbf{A} \operatorname{Var}(\mathbf{Y}) \mathbf{A}^{T}$ for a non random matrix \mathbf{A}, and the fact that $\operatorname{Var}(\hat{\mathbf{w}})=\sigma^{2}\left(\mathbf{X}^{T} \mathbf{X}\right)^{-1}$
10. $\operatorname{Var}(\hat{w}) \preceq \operatorname{Var} \hat{w}_{\text {ridge }}$. This statement is:
(Try to prove your statement)
(a) True
(b) False

Solution:

The given statement is False.
Comparing it to the variance of the OLS estimator,

$$
\begin{aligned}
\operatorname{Var}[\hat{\mathbf{w}}]-\operatorname{Var}\left[\hat{\mathbf{w}}_{\text {ridge }}(\lambda)\right] & =\sigma^{2}\left[\left(\mathbf{X}^{T} \mathbf{X}\right)^{-1}-\Omega_{\lambda}\left(\mathbf{X}^{T} \mathbf{X}\right)^{-1} \Omega_{\lambda}^{T}\right] \\
& =\sigma^{2} \Omega_{\lambda}\left[\left(\mathbf{I}+\lambda\left(\mathbf{X}^{T} \mathbf{X}\right)^{-1}\right)\left(\mathbf{X}^{T} \mathbf{X}\right)^{-1}\left(\mathbf{I}+\lambda\left(\mathbf{X}^{T} \mathbf{X}\right)^{-1}\right)^{T}-\left(\mathbf{X}^{T} \mathbf{X}\right)^{-1}\right] \Omega_{\lambda}^{T} \\
& =\sigma^{2} \Omega_{\lambda}\left[2 \lambda\left(\mathbf{X}^{T} \mathbf{X}\right)^{-2}+\lambda^{2}\left(\mathbf{X}^{T} \mathbf{X}\right)^{-3}\right] \Omega_{\lambda}^{T} \\
& =\sigma^{2}\left(\mathbf{X}^{T} \mathbf{X}+\lambda \mathbf{I}\right)^{-1}\left[2 \lambda \mathbf{I}+\lambda^{2}\left(\mathbf{X}^{T} \mathbf{X}\right)^{-1}\right]\left[\left(\mathbf{X}^{T} \mathbf{X}+\lambda \mathbf{I}\right)^{-1}\right]^{T}
\end{aligned}
$$

The difference is non-negative definite. Hence, the variance of the OLS estimator exceeds that of the ridge estimator.

$$
\operatorname{Var}[\hat{\mathbf{w}}] \succeq \operatorname{Var}\left[\hat{\mathbf{w}}_{\text {ridge }}(\lambda)\right]
$$

11. When $\lambda \rightarrow \infty$, the variance of the ridge estimator,
(a) reduces to zero
(b) converges to 1
(c) increases to ∞

Solution:

The correct answer is (a).
Now, let us look at the case where $\lambda \rightarrow \infty$:

$$
\lim _{\lambda \rightarrow \infty} \operatorname{Var}\left[\hat{\mathbf{w}}_{\text {ridge }}(\lambda)\right]=\lim _{\lambda \rightarrow \infty} \sigma^{2} \Omega_{\lambda}\left(\mathbf{X}^{T} \mathbf{X}\right)^{-1} \Omega_{\lambda}^{T}=0_{d}
$$

The variance of the ridge estimator vanishes. Hence, the variance of the ridge regression coefficient estimates decreases towards zero as the penalty parameter becomes large.

Regularized loss for regression

In this problem you will help Ada solve a linear regression problem. From the domain experts she has learned that it makes sense to use the following regularizer ${ }^{1}$,

$$
R(\mathbf{w})=\sum_{i=1}^{d-1}\left|w_{i}-w_{i+1}\right|
$$

for the weight vector $\mathbf{w} \in \mathbb{R}^{d}$. She is given n data points $\left(\mathbf{x}_{1}, y_{1}\right),\left(\mathbf{x}_{2}, y_{2}\right), \ldots,\left(\mathbf{x}_{n}, y_{n}\right)$, where each $\mathbf{x}_{i} \in \mathbb{R}^{d}$ and each $y_{i} \in \mathbb{R}$. Hence, she has to minimize the following objective

$$
f(\mathbf{w})=\underbrace{\frac{1}{n} \sum_{i=1}^{n} \underbrace{\left(\mathbf{w}_{i}^{T} \mathbf{x}_{i}-y_{i}\right)^{2}}_{\operatorname{loss}\left(\mathbf{w} \mid y_{i}, \mathbf{x}_{i}\right)}}_{L(\mathbf{w})}+\lambda R(\mathbf{w})
$$

12. Ada wrote a program and then solved the above problem for the same data points and four different positive penalizers $\lambda_{1}<\lambda_{2}<\lambda_{3}<\lambda_{4}$. Unfortunately, she has misnamed the files holding the results and does not know which file corresponds to which λ_{i}. Your task is to help Ada by assigning to each file the corresponding λ_{i} that was used. Try to justify your answer.
Match the following computed weight vectors, \mathbf{w}^{*}, to the corresponding $\lambda \mathrm{s}$ used.
[^0]| File name | Computed weight vector \mathbf{w}^{*} | Penalizer |
| :--- | :---: | :---: |
| solution_a.pkl | $(1,1,2,2,1,1)$ | |
| solution_b.pkl | $(9,10,10,8,2,2)$ | |
| solution_c.pkl | $(2,2,4,5,5,5)$ | |
| solution_d.pkl | $(1,2,2,2,3,1)$ | |

Solution:

File name	Computed weight vector \mathbf{w}^{*}	Penalizer
solution_a.pkl	$(1,1,2,2,1,1)$	λ_{4}
solution_b.pkl	$(9,10,10,8,2,2)$	λ_{1}
solution_c.pkl	$(2,2,4,5,5,5)$	λ_{3}
solution_d.pkl	$(1,2,2,2,3,1) \lambda_{2}$	

Take any \mathbf{w} and \mathbf{w}^{\prime} satisfying $R(\mathbf{w})<R\left(\mathbf{w}^{\prime}\right)$ that are optimal for some $\lambda \neq \lambda^{\prime}$. Then, because they are optimal for the corresponding losses

$$
\begin{aligned}
L(\mathbf{w})+\lambda R(\mathbf{w}) & \leq L\left(\mathbf{w}^{\prime}\right)+\lambda R\left(\mathbf{w}^{\prime}\right), \text { and } \\
-L(\mathbf{w})-\lambda^{\prime} R(\mathbf{w}) & \leq-L\left(\mathbf{w}^{\prime}\right)-\lambda^{\prime} R\left(\mathbf{w}^{\prime}\right)
\end{aligned}
$$

Adding both equations we have $\left(\lambda-\lambda^{\prime}\right) R(\mathbf{w}) \leq\left(\lambda-\lambda^{\prime}\right) R\left(\mathbf{w}^{\prime}\right)$. Because $R(\mathbf{w}) \leq R\left(\mathbf{w}^{\prime}\right)$, the above is satisfied if $\lambda \geq \lambda^{\prime}$, and this inequality has to be strict as $\lambda \neq \lambda^{\prime}$ by assumption.
Because the regularizer for the four parameter vectors evaluates to $2,9,3$ and 4 respectively, this means that the order is $\lambda_{4}, \lambda_{1}, \lambda_{3}, \lambda_{2}$.
13. Ada's colleague Alan wrote another program to solve the same optimization problem, but arrived at a different optimum for the same penalizer $\lambda>0$.
Does this mean that one of them has an implementation bug? Justify your answer (for yourself).
(a) Yes
(b) No

Solution:

The correct answer is (b). No it does not, consider the case where all \mathbf{x}_{i} and all y_{i} are equal to zero. Then any constant vector is a solution.
14. To ensure that her algorithm is correctly implemented, Ada wants to implement the following test procedure. First, come up with some synthetic distribution $P(\mathbf{x}, y)$ where the data comes from. Then, compute the optimal vector \mathbf{w}^{*} on a finite sample from $P(\mathbf{x}, y)$, and finally compute the generalization error of \mathbf{w}^{*}. If she defined the distribution generating the data as

$$
P(\mathbf{x}, y)= \begin{cases}\frac{1}{8} & \text { if } \mathbf{x} \in\{0,1\}^{3} \text { and } y=x_{1}+2 x_{2}+2 x_{3}, \text { or } \\ 0 & \text { otherwise }\end{cases}
$$

and she computed the vector $\mathbf{w}_{*}=(2,2,2)$ on the finite sample, what is the generalization error?
(a) $\frac{1}{2}$
(b) $\frac{1}{4}$
(c) $\frac{1}{8}$
(d) $\frac{1}{16}$

Solution:

The correct answer is (a).

Note that there will be no loss if $x_{1}=0$, since in this case $\mathbf{w}_{*}^{\top} x=y$. On the other hand if $x_{1}=1$ then the loss is always 1 irrespective of the values of x_{2} and x_{3}, since in this case $\mathbf{w}_{*}^{\top} x=2 x_{1}+2 x_{2}+2 x_{3}=$ $x_{1}+y=1+y$. Hence, the expected loss is equal to $1 \cdot P\left(x_{1}=1\right)=\frac{1}{2}$.

Problem 2 (Perceptron):

15. Construct a perceptron which correctly classifies the following data. Choose appropriate values for the weights $\mathrm{w} 0, \mathrm{w} 1$ and w 2

Training Example	x1	x2	class
a	0	1	-1
b	2	0	-1
c	1	1	+1

(a) $\mathbf{w}_{\mathbf{0}}=-5, \mathbf{w}_{\mathbf{1}}=2, \mathbf{w}_{\mathbf{2}}=4$
(b) $\mathbf{w}_{\mathbf{0}}=5, \mathbf{w}_{\mathbf{1}}=2, \mathbf{w}_{\mathbf{2}}=-4$
(c) $\mathbf{w}_{\mathbf{0}}=-5, \mathbf{w}_{\mathbf{1}}=0, \mathbf{w}_{\mathbf{2}}=-4$
(d) $\mathbf{w}_{\mathbf{0}}=5, \mathbf{w}_{\mathbf{1}}=2, \mathbf{w}_{\mathbf{2}}=4$

Solution:

The correct answer is (a).
Solution: We can plot the data and trace a separation line. This line has slope $-1 / 2$ and $\times 2$-intersect $5 / 4$. $x 2=5 / 4-x 1 / 2$ i.e. $2 x 1+4 x 2-5=0$ Thus we can choose , $w 0=-5, w 1=2, w 2=4$
16. Use the perceptron learning algorithm on the data above, using a learning rate ν of 1.0 and initial weight values of $\mathrm{w} \mathbf{0}=-0.5, \mathrm{w} \mathbf{1}=0$ and $\mathrm{w} \mathbf{2}=1$.
Choose the correctly filled table from the options below. In practice, we would apply stochastic gradient descent. But to facilitate this exercise, we do not pick the data-points at random. Instead, we take a, b and c sequentially.

Iteration i	w 0	w 1	w 2	Training Example (a, b or c)	Class	$\mathrm{s}=\mathrm{w} 0+\mathrm{w} 1 \times 1+\mathrm{w} 2 \times 2$	Action
1	-0.5	0	1	a.	-	0.5	Update
2	-1.5	0	0	b.	-	-1.5	None
3	-1.5	0	0	c.	+	-1.5	Update
4	-0.5	1	1	a.	-	0.5	Update
5	-1.5	1	0	b.	-	0.5	Update

(a)

Iteration i	w 0	w 1	w 2	Training Example (a, b or c$)$	Class	$\mathrm{s}=\mathrm{w} 0+\mathrm{w} 1 \times 1+\mathrm{w} 2 \times 2$	Action
1	-0.5	0	1	a.	+	0.5	None
2	-0.5	0	1	b.	+	-1.5	Update
3	1.5	0	0	c.	-	-1.5	None
4	1.5	0	0	a.	+	0.5	None
5	1.5	0	0	b.	+	0.5	None

(b)

Iteration i	w 0	w 1	w 2	Training Example (a, b or c$)$	Class	$\mathrm{s}=\mathrm{w} 0+\mathrm{w} 1 \times 1+\mathrm{w} 2 \times 2$	Action
1	-0.5	0	1	a.	-	0.5	Update
2	-1.5	1	1	b.	-	1.5	Update
3	-1.5	0	0	c.	+	-1.5	None
4	-0.5	1	1	a.	-	0.5	Update
5	-1.5	1	0	b.	-	0.5	Update

(c)

Solution:

The correct answer is (a).

[^0]: ${ }^{1}$ This regularizer makes sense if we would like to prefer solutions whose entries do not change much between adjacent coordinates.

