Exercises

Introduction to Machine Learning FS 2020

Series 2, Mar 27th, 2020 (Kernel)

Institute for Machine Learning

Dept. of Computer Science, ETH Zürich
Prof. Dr. Andreas Krause
Web: https://las.inf.ethz.ch/teaching/introml-s20
For questions, please refer to Piazza.

Problem 1 (SVM):

This exercise is based on an exercise designed by Stephanie Hyland. In its original formulation, the perceptron aims to minimise a $0 / 1$-loss function (shown below, solid). Because this objective is neither convex nor differentiable, a surrogate loss function is optimised (typically, $l_{p}(\mathbf{w} ; \mathbf{x}, y)=\max \left(0,-y \mathbf{w}^{T} \mathbf{x}\right)$, dashed). In this exercise, we consider a different surrogate loss function l_{s}, which approximates the $0 / 1$-loss function more closely.

$$
l_{s}(\mathbf{w} ; \mathbf{x}, y)= \begin{cases}0, & \text { for } \operatorname{sign}\left(\mathbf{w}^{T} \mathbf{x}\right)=y \\ \sqrt{-y \mathbf{w}^{T} \mathbf{x}}, & \text { for } \operatorname{sign}\left(\mathbf{w}^{T} \mathbf{x}\right) \neq y\end{cases}
$$

1. Mark the following statements as True or False. Try to justify the answer for yourself.
(a) l_{p} is convex.
(b) l_{p} is differentiable.
(c) l_{s} is convex.
(d) l_{s} is differentiable.

Solution:

Only (a) is True.
(a) l_{p}, known as the hinge loss, is convex because it is the maximum of two linear functions, and:
i. Any linear function is convex.
ii. The maximum of two convex functions is convex.
(b) Let's differentiate with respect to $y \mathbf{w}^{\mathbf{T}} \mathbf{x}$. If $\operatorname{sign}\left(\mathbf{w}^{\mathbf{T}} \mathbf{x}\right)=y, l_{p}^{\prime}(\mathbf{w} ; \mathbf{x}, y)=0$. If $\operatorname{sign}\left(\mathbf{w}^{\mathbf{T}} \mathbf{x}\right) \neq y$, $l_{p}^{\prime}(\mathbf{w} ; \mathbf{x}, y)=-1$.
To check differentiability, we need to check the limit at point $0 . \lim _{x \rightarrow 0} l_{p}^{\prime}=-1 . l_{p}$ is not differentiable at $y \mathbf{w}^{T} \mathbf{x}=0$, since the left and right derivatives are not equal.
(c) l_{s} is not convex.

To check whether Is is convex, we can look at $f(x)=\sqrt{x}$.
A way to show that $f(x)=\sqrt{(x)}$ is not convex is to show that $-f(x)$ is convex.

$$
\begin{gathered}
\sqrt{t x_{1}+(1-t) x_{2}}>t \sqrt{x_{1}}+(1-t) \sqrt{x_{2}} \\
t x_{1}+(1-t) x_{2}>t^{2} x_{1}+(1-t)^{2} x_{2}+t 1(1-t) \sqrt{x_{1} x_{2}} \\
x_{1}+x_{2}>2 \sqrt{x_{1} x_{2}} \\
\left(\sqrt{x_{1}}-\sqrt{x_{2}}\right)^{2}>0
\end{gathered}
$$

Hence, $f(x)=\sqrt{x}$ is concave and so is l_{s}.
(d) Let's differentiate with respect to $y \mathbf{w}^{\mathbf{T}} \mathbf{x}$. If $\operatorname{sign}\left(\mathbf{w}^{\mathbf{T}} \mathbf{x}\right)=y, l_{s}^{\prime}(\mathbf{w} ; \mathbf{x}, y)=0$. If $\operatorname{sign}\left(\mathbf{w}^{\mathbf{T}} \mathbf{x}\right) \neq y$, $l_{s}^{\prime}(\mathbf{w} ; \mathbf{x}, y)=\frac{1}{2}\left(-y \mathbf{w}^{T} \mathbf{x}\right)^{\frac{1}{2}}(-1)=\frac{1}{2 \sqrt{-y y \mathbf{w}^{T} \mathbf{x}}}$.
To check differentiability, we need to check the limit at point 0 . Let $z=y \mathbf{w}^{T} \mathbf{x}$. Then, $\lim _{x \rightarrow 0-}-\frac{1}{\sqrt{z}}=$ $-\infty$. Hence, l_{s} is not differentiable at $y \mathbf{w}^{T} \mathbf{x}=0$.
2. Derive $\nabla l_{s}(w, x, y)$.
(a) $\begin{cases}0, & \text { if } y=\operatorname{sign}\left(w^{T} x\right) \\ -\frac{y x}{2 \sqrt{-y \mathbf{w}^{T} \mathbf{x}}}, & \text { if } y \neq \operatorname{sign}\left(w^{T} x\right)\end{cases}$
(b) $\begin{cases}0, & \text { if } y=\operatorname{sign}\left(w^{T} x\right) \\ -\frac{y x}{2 \sqrt{y \mathbf{w}^{T} \mathbf{x}}}, & \text { if } y \neq \operatorname{sign}\left(w^{T} x\right)\end{cases}$
(c) $\begin{cases}0, & \text { if } y=\operatorname{sign}\left(w^{T} x\right) \\ \frac{y x}{2 \sqrt{-y \mathbf{w}^{T} \mathbf{x}}}, & \text { if } y \neq \operatorname{sign}\left(w^{T} x\right)\end{cases}$
(d) $\begin{cases}0, & \text { if } y=\operatorname{sign}\left(w^{T} x\right) \\ \frac{y x}{2 \sqrt{y_{\mathbf{w}^{T} \mathbf{x}}}}, & \text { if } y \neq \operatorname{sign}\left(w^{T} x\right)\end{cases}$

Solution:

The correct answer is (a).
Although l_{s} not differentiable at $y \mathbf{w}^{T} \mathbf{x}=0$, the subgradient exists and hence (stochastic) gradient descent converges. To derive the subgradient let's rewrite the function l_{s} as $l_{s}(\mathbf{w} ; \mathbf{x}, y)=\max \left(0, \sqrt{-y \mathbf{w}^{T} \mathbf{x}}\right)$. Now let $f(z)=\max (0,-\sqrt{y z}) \operatorname{andg}(\mathbf{w})=\mathbf{w}^{T} \mathbf{x}$. We use the chain rule

$$
\frac{\partial}{\partial w_{i}} f(g(\mathbf{w}))=\frac{\partial f}{\partial z} \frac{\partial g}{\partial w_{i}}
$$

We get

$$
\frac{\partial f}{\partial z}= \begin{cases}0, & \text { for } \operatorname{sign}(z)=y \\ -\frac{y}{2 \sqrt{-y z}}, & \text { for } \operatorname{sign}(z) \neq y\end{cases}
$$

and $\frac{\partial g}{\partial w_{i}}=x_{i}$. Hence,

$$
\frac{\partial f(g(\mathbf{w}))}{\partial w_{i}}= \begin{cases}0, & \text { for } \operatorname{sign}(z)=y \\ -\frac{y \mathbf{x}}{2 \sqrt{-y \mathbf{w}^{T} \mathbf{x}}}, & \text { for } \operatorname{sign}(z) \neq y\end{cases}
$$

3. The exercise suggests to train an SVM, where we penalise the margin violation given by $\left(1-y \mathbf{w}^{T} \mathbf{x}\right)_{+}=$ $\max \left(1-y \mathbf{w}^{T} \mathbf{x}, 0\right)$, not linearly but with the square root instead. Correspondingly, our modified SVM seeks to optimise the following objective

$$
L(\mathbf{w})=\frac{1}{n} \Sigma_{i=1}^{n} \sqrt{\left(1-y \mathbf{w}^{T} \mathbf{x}\right)_{+}}+\lambda\|w\|^{2}
$$

Pick the correct update step for stochastic gradient descent.
(a) Pick $i_{t} \sim \operatorname{Unif}(1,2, \ldots n)$.

If $y_{i t} \mathbf{w}_{\mathbf{t}}^{\mathbf{T}} \mathbf{x}_{\mathbf{i t}}<1$
$w_{t+1}=w_{t}\left(1-\eta_{t} 2 \lambda\right)+\eta_{t} \frac{y_{i} \mathbf{x}_{\mathbf{i}}}{2 \sqrt{\left(1-y_{i} \mathbf{w}^{T} \mathbf{x}_{\mathbf{i}}\right)}}$
Else
$w_{t+1}=w_{t}\left(1-\eta_{t} 2 \lambda\right)$
(b) Pick $i_{t} \sim \operatorname{Unif}(1,2, \ldots n)$.

If $y_{i t} \mathbf{w}_{\mathbf{t}}^{\mathbf{T}} \mathbf{x}_{\mathbf{i t}}<1$
$w_{t+1}=w_{t}\left(1-\eta_{t} 2 \lambda\right)$
Else
$w_{t+1}=w_{t}\left(1-\eta_{t} 2 \lambda\right)+\eta_{t} \frac{y_{i} \mathbf{x}_{\mathbf{i}}}{2 \sqrt{\left(1-y_{i} \mathbf{w}^{T} \mathbf{x}_{\mathbf{i}}\right)}}$
(c) Pick $i_{t} \sim \operatorname{Unif}(1,2, \ldots n)$.

If $y_{i t} \mathbf{w}_{\mathbf{t}}^{\mathbf{T}} \mathbf{x}_{\mathbf{i t}}<1$
$w_{t+1}=w_{t}\left(1+\eta_{t} 2 \lambda\right)+\eta_{t} \frac{y_{i} \mathbf{x}_{\mathbf{i}}}{2 \sqrt{\left(1-y_{i} \mathbf{w}^{T} \mathbf{x}_{\mathbf{i}}\right)}}$
Else
$w_{t+1}=w_{t}\left(1+\eta_{t} 2 \lambda\right)$
(d) Pick $i_{t} \sim \operatorname{Unif}(1,2, \ldots n)$.

If $y_{i t} \mathbf{w}_{\mathbf{t}}^{\mathbf{T}} \mathbf{x}_{\mathbf{i t}}<1$
$w_{t+1}=w_{t}\left(1+\eta_{t} 2 \lambda\right)$
Else

$$
w_{t+1}=w_{t}\left(1+\eta_{t} 2 \lambda\right)+\eta_{t} \frac{y_{i} \mathbf{x}_{\mathbf{i}}}{2 \sqrt{\left(1-y_{i} \mathbf{w}^{T} \mathbf{x}_{\mathbf{i}}\right)}}
$$

Solution:

The correct answer is (a).
For $y_{i t} \mathbf{w}_{\mathbf{t}}^{\mathbf{T}} \mathbf{x}_{\mathbf{i t}}<1$,

$$
\nabla_{w} L=-\frac{y_{i} \mathbf{x}_{\mathbf{i}}}{2 \sqrt{\left(1-y_{i} \mathbf{w}^{T} \mathbf{x}_{\mathbf{i}}\right)}}+2 \lambda \mathbf{w}_{\mathbf{t}}
$$

Else,

$$
\nabla_{w} L=2 \lambda \mathbf{w}_{\mathbf{t}}
$$

Why may this modification not be a good idea? You can see that the weight update due to margin violations getsrescaled as a result of the modification by the factor $\frac{1}{2 \sqrt{1-y_{i} \mathbf{w}^{T} \mathbf{x}_{\mathbf{i}}}}$. This factor is small when the margin violation is large and large when the margin violation is small, which may make training this modified SVM troublesome.

Problem 2 (Kernels):

Use the basic rules for kernel decomposition discussed in class or otherwise and assuming that $k(x, y)$ is a valid kernel, letting $f: \mathbb{R} \rightarrow \mathbb{R}$ in a) and b), $g: \mathcal{X} \rightarrow \mathbb{R}_{+}$for d), $f: \mathcal{X} \rightarrow \mathbb{R}$ for e) and f), and $\phi: \mathcal{X} \rightarrow \mathcal{X}^{\prime}$.
4. Mark the following statements as True or False. Try to justify your answers to yourself.
(a) $k_{a}(x, y)=f(k(x, y))$ is a valid kernel, if f is a polynomial with non-negative coefficients.
(b) $k_{b}(x, y)=f(k(x, y))$ is a valid kernel, if f is any polynomial.
(c) $k_{c}(x, y)=\exp (k(x, y))$ is a valid kernel.
(d) $k_{d}(x, y)=g(x) k(x, y) g(y)$ is a valid kernel.
(e) $k_{e}(x, y)=f(x) k(x, y) f(y)$ is a valid kernel.
(f) $k_{f}(x, y)=k(\phi(x), \phi(y))$ is a valid kernel.

Solution:

(a), (c), (d), (e) and (f) are True.
(a) Since each polynomial term is a product of kernels with non-negative coefficients, the proof follows from the rules of addition and multiplication yielding valid kernels.
(b) Product of kernels with negative coefficients is not necessarily a valid kernel.
(c) We can use the Taylor expansion around 0:

$$
\begin{aligned}
\exp (k(x, y)) & =\exp (0)+\exp (0) k(x, y)+\frac{\exp (0)}{2!}(k(x, y))^{2}+\ldots \\
& =1+k(x, y)+\frac{1}{2}(k(x, y))^{2}+\frac{1}{6}(k(x, y))^{3} \ldots
\end{aligned}
$$

(d) and (e) Since $\mathrm{k}(\mathrm{x}, \mathrm{y})$ is a valid kernel, we can define a feature map $\phi($.$) , such that k(x, y)=$ $\langle\phi(x), \phi(y)\rangle$.
Now,

$$
k_{e}(x, y)=f(x) k(x, y) f(y)=f(y) f(x)\langle\phi(x), \phi(y)\rangle=f(y)\langle f(x) \phi(x), \phi(y)\rangle=\langle f(x) \phi(x), f(y) \phi(y)\rangle
$$

Hence, with the new feature map $\phi_{e}()=.f(.) \phi(),. k_{e}(x, y)$ is a valid kernel (symmetry and positive definiteness properties don't change). This is a solution for (e). (d) follows from this, as it a specific case of the same.
(f) We know that $k(x, y)$ is a valid kernel and hence, on any set of vectors (also transformed ones) it yields a valid kernel.
5. For $\mathbf{x}, \mathbf{x}^{\prime} \in \mathbb{R}^{d}$, and $K\left(\mathbf{x}, \mathbf{x}^{\prime}\right)=\left(\mathbf{x}^{T} \mathbf{x}^{\prime}+1\right)^{2}$, identify possible feature maps $\phi(\mathbf{x})$, such that $k\left(\mathbf{x}, \mathbf{x}^{\prime}\right)=$ $\phi(\mathbf{x})^{\top} \phi\left(\mathbf{x}^{\prime}\right)$. Let $\mathbf{x}^{T}=\left(x_{i}, \ldots, x_{d}\right)$.
(a) $\left(1, \sqrt{2} x_{1}, \ldots, \sqrt{2} x_{d}, x_{1} x_{1}, x_{1} x_{2}, \ldots x_{i} x_{j} \ldots\right)$
(b) $\left(1+x_{1}, \ldots 1+x_{i}, \ldots 1+x_{d}\right)$
(c) $\left(1,-\sqrt{2} x_{1}, \ldots,-\sqrt{2} x_{d},-x_{1} x_{1},-x_{1} x_{2}, \ldots-x_{i} x_{j} \ldots\right)$
(d) $\left(1, \frac{1}{\sqrt{2}} x_{1}, \ldots, \frac{1}{\sqrt{2}} x_{d}, x_{1} x_{1}, x_{1} x_{2}, \ldots x_{i} x_{j} \ldots, \frac{1}{\sqrt{2}} x_{1}, \ldots, \frac{1}{\sqrt{2}} x_{d}\right)$

Solution:

(a) and (c) are correct answers.

$$
\left(\mathbf{x}^{T} \mathbf{x}^{\prime}+1\right)^{2}=\left(\Sigma_{i} x_{i} x_{i}^{\prime}+1\right)^{2}=1+2 \Sigma_{i} x_{i} x_{i}^{\prime}+\Sigma_{i} \Sigma_{j}\left(x_{i} x_{j}\right)\left(x_{i}^{\prime} x_{j}^{\prime}\right)
$$

(a) $\left(1, \sqrt{2} x_{1}, \ldots, \sqrt{2} x_{d}, x_{1} x_{1}, x_{1} x_{2}, \ldots x_{i} x_{j} \ldots\right)^{T}\left(1, \sqrt{2} x_{1}, \ldots, \sqrt{2} x_{d}, x_{1} x_{1}, x_{1} x_{2}, \ldots x_{i} x_{j} \ldots\right)$ $=1+2 \Sigma_{i} x_{i} x_{i}^{\prime}+\Sigma_{i} \Sigma_{j}\left(x_{i} x_{j}\right)\left(x_{i}^{\prime} x_{j}^{\prime}\right)$.
(b) $\left(1+x_{1}, \ldots 1+x_{i}, \ldots 1+x_{d}\right)^{T}\left(1+x_{1}, \ldots 1+x_{i}, \ldots 1+x_{d}\right)$ $=\Sigma_{i}\left(1+x_{i}\right)^{2}=\Sigma_{i}\left(1+2 x_{i}+x_{i}^{2}\right) \neq 1+2 \Sigma_{i} x_{i} x_{i}^{\prime}+\Sigma_{i} \Sigma_{j}\left(x_{i} x_{j}\right)\left(x_{i}^{\prime} x_{j}^{\prime}\right)$.
(c) $\left(1,-\sqrt{2} x_{1}, \ldots,-\sqrt{2} x_{d},-x_{1} x_{1},-x_{1} x_{2}, \ldots-x_{i} x_{j} \ldots\right)^{T}\left(1,-\sqrt{2} x_{1}, \ldots,-\sqrt{2} x_{d},-x_{1} x_{1},-x_{1} x_{2}, \ldots-x_{i} x_{j} \ldots\right)=$ $1+2 \Sigma_{i} x_{i} x_{i}^{\prime}+\Sigma_{i} \Sigma_{j}\left(x_{i} x_{j}\right)\left(x_{i}^{\prime} x_{j}^{\prime}\right)$.
(d) $\left(1, \frac{1}{\sqrt{2}} x_{1}, \ldots, \frac{1}{\sqrt{2}} x_{d}, x_{1} x_{1}, \ldots x_{i} x_{j} \ldots, \frac{1}{\sqrt{2}} x_{1}, \ldots, \frac{1}{\sqrt{2}} x_{d}\right)^{T}\left(1, \frac{1}{\sqrt{2}} x_{1}, \ldots, \frac{1}{\sqrt{2}} x_{d}, x_{1} x_{1}, \ldots x_{i} x_{j} \ldots, \frac{1}{\sqrt{2}} x_{1}, \ldots, \frac{1}{\sqrt{2}} x_{d}\right)=$ $1+2 \Sigma_{i} \frac{1}{2} x_{i} x_{i}^{\prime}+\Sigma_{i} \Sigma_{j}\left(x_{i} x_{j}\right)\left(x_{i}^{\prime} x_{j}^{\prime}\right)=1+\Sigma_{i} x_{i} x_{i}^{\prime}+\Sigma_{i} \Sigma_{j}\left(x_{i} x_{j}\right)\left(x_{i}^{\prime} x_{j}^{\prime}\right) \neq 1+2 \Sigma_{i} x_{i} x_{i}^{\prime}+\Sigma_{i} \Sigma_{j}\left(x_{i} x_{j}\right)\left(x_{i}^{\prime} x_{j}^{\prime}\right)$
6. For the dataset $X=\left\{\mathbf{x}_{i}\right\}_{i=1,2}=\{(-3,4),(1,0)\}$ and the feature map $\phi(\mathbf{x})=\left[x^{(1)}, x^{(2)},\|\mathbf{x}\|\right]$, calculate the Gram matrix (for a vector $\mathbf{x} \in \mathbb{R}^{2}$ we denote by $x^{(1)}, x^{(2)}$ its components).
(a) $\left(\begin{array}{cc}50 & 2 \\ 2 & 2\end{array}\right)$
(b) $\left(\begin{array}{cc}50 & 4 \\ 4 & 4\end{array}\right)$
(c) $\left(\begin{array}{cc}-50 & 2 \\ 2 & 2\end{array}\right)$
(d) $\left(\begin{array}{cc}50 & 2 \\ 4 & 4\end{array}\right)$

Solution:

The correct answer is (a).
First, we get $\phi(x)$ for each x .
(a) $\phi([-3,4])=(-3,4,5)$
(b) $\phi([1,0])=(1,0,1)$

Now we get the inner products:
(a) $\phi([-3,4])^{T} \phi([-3,4])=50$
(b) $\phi([-3,4])^{T} \phi([1,0])=2$
(c) $\phi([1,0])^{T} \phi([1,0])=2$

And now the Gram matrix ϕ is simply given by $\phi_{i, j}=\phi\left(x_{i}\right)^{T} \phi\left(x_{j}\right)$; using the above:

$$
\left(\begin{array}{cc}
50 & 2 \\
2 & 2
\end{array}\right)
$$

