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(K-means convergence)

Problem 1 (K-means convergence):

In the K-means clustering algorithm, you are given a set of n points xi ∈ Rd, i ∈ 1, . . . , n and you want to
find the centers of k clusters µ = (µ1, . . . , µk) by minimizing the average distance from the points to the closest
cluster center.

Formally, you want to minimize the following loss function

L(µ) =
∑n
i=1 minj∈1,...,k ‖xi − µj‖22

To approximate the solution, we introduce new assignment variables zi ∈ arg minj∈{1,...,k} ‖xi − µj‖22 for each
data point xi.

The K-means algorithm iterates between updating the variables zi (assignment step) and updating the centers
µj = 1

|{i:zi=j}|
∑
i:zi=j

xi (refitting step). The algorithm stops when no change occurs during the assignment
step.

Through the following questions, we show that K-means is guaranteed to converge (to a local optimum). We
need to prove that the loss function is guaranteed to decrease monotonically in each iteration until convergence.
We prove this separately for the assignment step and the refitting step.

First, we show the decrease in loss function for the assignment step.

Assignment step:

1. Let us consider a data point xi, and let zi be the assignment and µj be the centers from the previous
iteration. Choose the expression for the new assignment z∗i .

(a) z∗i ∈ arg minj∈{1,...,k} ‖xi − µj‖22
(b) z∗i ∈ arg maxj∈{1,...,k} ‖xi − µj‖22
(c) z∗i ∈ arg minj∈{1,...,k} ‖xi − µ∗j‖22
(d) z∗i ∈ arg maxj∈{1,...,k} ‖xi − µ∗j‖22

Solution:
The correct answer is (a).
z∗i ∈ arg minj∈{1,...,k} ‖xi − µj‖22

2. Let z∗ denote the change in assignment for all datapoints. What is the change in the loss function after
the update in assignment? Select all the options that apply.

(a) L(µ, z∗)− L(µ, z) =
∑n
i=1 ‖xi − µz∗i ‖

2
2 − ‖xi − µzi‖22 ≤ 0

(b) L(µ, z)− L(µ, z∗) =
∑n
i=1 ‖xi − µzi‖22 − ‖xi − µz∗i ‖

2
2 ≥ 0

(c) L(µ, z∗)− L(µ, z) =
∑n
i=1 ‖xi − µz∗i ‖

2
2 − ‖xi − µzi‖22 ≥ 0

(d) L(µ, z)− L(µ, z∗) =
∑n
i=1 ‖xi − µzi‖22 − ‖xi − µz∗i ‖

2
2 ≤ 0



(e) L(µ, z∗) + L(µ, z) =
∑n
i=1 ‖xi − µz∗i ‖

2
2 + ‖xi − µzi‖22 ≥ 0

(f) L(µ, z∗) + L(µ, z) =
∑n
i=1 ‖xi − µz∗i ‖

2
2 + ‖xi − µzi‖22 ≥ 0

Solution:
The correct answers are (a) and (b).
L(µ, z∗)− L(µ, z) =

∑n
i=1 ‖xi − µz∗i ‖

2
2 − ‖xi − µzi‖22 ≤ 0

Refitting step:

3. Select the rewritten loss function needed to proceed with the proof.

(a) L(µ, z) =
∑k
j=1

∑
i:zi=j

‖xi − µj‖22
(b) L(µ, z) =

∑n
j=1

∑k
i=1 ‖xi − µj‖22

(c) L(µ, z) =
∑k
j=1

∑n
i=1 ‖xi − µj‖22

Solution:
The correct answer is (a).

L(µ, z) =
∑k
j=1

∑
i:zi=j

‖xi − µj‖22

4. Now, we show the decrease in loss function for the refitting step. Let us consider the jth cluster, and let
µj be the cluster center from the previous iteration. Select the expression for the new cluster center, µ∗j .

(a) µ∗j = 1
|{i:zi=j}|

∑
i:zi=j

xi

(b) µ∗j = 1
n

∑
i:zi=j

xi

(c) µ∗j = 1
k

∑
i:zi=j

xi

Solution:
The correct answer is (a).
µ∗j = 1

|{i:zi=j}|
∑
i:zi=j

xi

5. Let µ∗ denote the updated cluster centers after the refitting step. What is the change in loss function after
the update? Select all options that apply.

(a) L(µ∗, z)− L(µ, z) =
∑k
j=1(

∑
i:zi=j

‖xi − µ∗j‖22 −
∑
i:zi=j

‖xi − µj‖22) ≤ 0

(b) L(µ, z)− L(µ∗, z) =
∑k
j=1(

∑
i:zi=j

‖xi − µj‖22 −
∑
i:zi=j

‖xi − µ∗j‖22) ≥ 0

(c) L(µ∗, z)− L(µ, z) =
∑k
j=1(

∑
i:zi=j

‖xi − µ∗j‖22 −
∑
i:zi=j

‖xi − µj‖22) ≥ 0

(d) L(µ, z)− L(µ∗, z) =
∑k
j=1(

∑
i:zi=j

‖xi − µj‖22 −
∑
i:zi=j

‖xi − µ∗j‖22) ≤ 0

Solution:
The correct answers are (a) and (b).

L(µ∗, z)− L(µ, z) =
∑k
j=1(

∑
i:zi=j

‖xi − µ∗j‖22 −
∑
i:zi=j

‖xi − µj‖22) ≤ 0
The inequality holds because the update rule of µ∗j essentially minimizes this quantity.
Thus, we see that the loss function is guaranteed to decrease monotonically in each iteration, for both the
assignment step and the refitting step, until convergence. Thus, K-means is guaranteed to converge (to a
local optimum).

Problem 2 ( K-means initialization):
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6. You are given two example datasets consisting of 1000 two-dimensional points each. We want to find 4
clusters in each of them.

We know that K-means is not robust to initialization. Below, you are given two different initializations for
each of the datasets. Which initialization schemes would result in qualitatively different clusters?

(a) Initialization Scheme 1:

Initialization Scheme 2:

(b) Initialization Scheme 1:

Initialization Scheme 2:

(c) Initialization Scheme 1:
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Initialization Scheme 2:

(d) Initialization Scheme 1:

Initialization Scheme 2:

Solution:
The correct answers are (a), (c) and (d).
The following are the estimated of final centroid positions:

(a) Initialization Scheme 1:

Initialization Scheme 2:
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(b) Initialization Scheme 1:

Initialization Scheme 2:

(c) Initialization Scheme 1:

Initialization Scheme 2:

(d) Initialization Scheme 1:
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Initialization Scheme 2:

Problem 3 (PCA):

Suppose we have a dataset with 4 points: D = {(1, 5), (0, 6), (−7, 0), (−6,−1)}. Following is a plot of the
dataset with an estimate of two principal components.

Compute the empirical covariance matrix, its eigenvalues and eigenvectors. Do the eigenvectors correspond to
your guess of principal components? Please do not forget the assumptions of PCA. (The dataset should be
centered and we want unit eigenvectors.)

7. Enter your computation of the covariance matrix rounded off to the second decimal point.

(a)

(
12.5 10.25
10.25 9.25

)
(b)

(
10.15 9.25
12.5 10.25

)
(c)

(
12.5 10.15
10.25 9.25

)
(d)

(
10.25 12.5
9.25 10.15

)
Solution:
The correct answer is (a).
We first need to center the data by subtracting from it its mean (−3, 2.5)T , obtaining
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x1 = (4, 2.5)T

x2 = (3, 3.5)T

x3 = (−4, −2.5)T

x4 = (−3, −3.5)T .

Plot of the centered dataset:

For
the empirical covariance matrix, we obtain

Σ =
1

n

n∑
i=1

xixi
T =

1

4
·
(

50 41
41 37

)
=

(
12.5 10.25
10.25 9.25

)
.

8. Enter your computation of the eigenvectors rounded off to the second decimal point.

(a) v1 =
(
0.76 0.65

)T
v2 =

(
−0.65 0.76

)T
(b) v1 =

(
0.76 −0.65

)T
v2 =

(
−0.65 0.76

)T
(c) v1 =

(
0.76 0.65

)T
v2 =

(
0.65 0.76

)T
(d) v1 =

(
−0.76 0.65

)T
v2 =

(
0.65 0.76

)T
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Solution:
The correct answer is (a).

The unit-length eigenvectors of Σ are v1 = (0.76045416, 0.64939162)T and v2 = (−0.64939162, 0.76045416)T .

9. Enter your computation of the corresponding eigenvalues rounded off to the second decimal point.

(a) w1 = 21.25, w2 = 0.50

(b) w1 = 0.50, w2 = 21.25

(c) w1 = 0.50, w2 = 10.25

(d) w1 = 10.25, w2 = 0.50

Solution:
The correct answer is (a).
The corresponding eigenvalues are w1 = 21.25301161 and w2 = 0.49698839, respectively.

Plot of the centered dataset with principal components 1 (red) and 2 (blue):

For a nice visualization of PCA, also see http://setosa.io/ev/principal-component-analysis.

Problem 4 (Another clustering approach):

In this exercise, you are asked to derive a new clustering algorithm that would use a different loss function given
by

L(µ) =
∑n
i=1minj∈1,...,k‖xi − µj‖1. Through the next few questions, we find the update steps for both zi and

for µj in this case. In questions (10), (11), (12) and (13), fill in the blanks in the update step of zi.

zi = (10)
(11)
‖xi − µj‖

(13)

(12)
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10. Select one:

(a) argmin

(b) argmax

(c) min

(d) max

(e) medoid

(f) mean

Solution:
The correct answer is (a).

11. Select one:

(a) j ∈ {1, . . . , k}
(b) j ∈ {1, . . . , n}
(c) i ∈ {1, . . . , k}
(d) i ∈ {1, . . . , n}
(e) µj ∈ Rd

Solution:
The correct answer is (a).

12. The answer is 1.

13. The answer is 1.

14. Fill in the blanks in update step of µj .

µj = (14) ( (15) )∀j = 1, . . . , k;∀q = 1, . . . , d. Select one:

(a) arg minj

(b) arg maxj

(c) minj

(d) maxj

(e) medoid

(f) mean

(g) median

Solution:
The correct answer is (g).

15. Select one:

(a)
∑
i:zi=j

|xi,q − µi,q|

(b)
∑n
i=1 |xi,q − µi,q|

(c) xi,q, i : zi = j

(d) µj,q, j ∈ {1, . . . , k}
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Solution:
The correct answer is (c).
As in the K-means algorithm, let’s again introduce hidden variables zi = arg minj∈1,...,k ||xi − µj ||1 for
each data point xi. Then the initial problem

µ = arg min
µ

n∑
i=1

min
j∈1,...,k

||xi − µj ||1

can be rewritten in a different form (because we know where exactly the minimum is achieved):

µ = arg min
µ

n∑
i=1

||xi − µzi ||1

In order to find the solution with respect to µj with fixed zi, let’s leave only the data points that correspond
to the jth component:

µj = arg min
µj

∑
i:zi=j

||xi − µj ||1

µj = arg min
µj

∑
i:zi=j

d∑
q=1

|xi,q − µj,q|

This can again be separated component-wise:

µj,q = arg min
µj,q

∑
i:zi=j

|xi,q − µj,q|

Again, as in the K-means algorithm, we proceed by finding the derivative of the functional and setting it to
zero. In order to get rid of the L1 norm, we also separate the functional into the sum over those xi,q that
are smaller than µj,q and those that are larger:∑
i:zi=j,xi,q≤µj,q

|xi,q−µj,q|+
∑

i:zi=j,xi,q>µj,q

|xi,q−µj,q| =
∑

i:zi=j,xi,q≤µj,q

(µj,q−xi,q)+
∑

i:zi=j,xi,q>µj,q

(xi,q−µj,q)

The derivative of every bracket in the sum is either +1 or −1, and the number of +1’s is exactly |{i : zi =
j, xi,q ≤ µj,q}|. Therefore, we need to set

|{i : zi = j, xi,q ≤ µj,q}| − |{i : zi = j, xi,q > µj,q}| = 0

This means that µj,q is nothing but the median of all the numbers xi,q, i : zi = j.

The resulting algorithm then iterates between two steps:

• zi = arg minj∈1,...,k ||xi − µj ||1
• µj,q = median(xi,q, i : zi = j),∀j = 1, . . . , k;∀q = 1, . . . , d.

16. What can you say about the convergence of the algorithm? Select the true statements.

(a) The same convergence properties as for k-means can be proved.

(b) The algorithm does not converge.

(c) The same convergence properties as for k-means CANNOT be proved.

(d) The algorithm is guaranteed to converge to local minimum.

(e) The algorithm is guaranteed to converge to global minimum.
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Solution:
(a) and (d) are True.

17. In which situation would you prefer to use this clustering method instead of K-means clustering? Select the
true statements.

(a) If the data contains many outliers.

(b) If the data does not contain clearly separable clusters.

(c) If we have more data points than features.

(d) If the Euclidean metric is not the proper distance measure.

(e) If we are dealing with large datasets.

(f) If we are dealing with high-dimensional data.

Solution:
Only (a) is True.
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