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Problem 1 (Decision Theory):

In this task, you would like to classify whether an X-ray result is cancerous or normal, using a logistic model. The
cost for a correct classification is 0 and the cost for predicting that the X-ray is normal when the true label is
cancer is 1000, and the cost for predicting the X-ray is cancerous when the true label is normal is 1. Answer the
questions based on this task. The notation used in the questions is as follows: x : X-ray features of a specific
data point y : The label of a specific data point

y =

{
0 if the sample is benign

1 if the sample is cancerous

X,Y : random variables denoting the X-ray features and the label, respectively a: Predicted label/action given X-
ray features, x σ(x) = 1

1+e−x w : weight vector parameterising the logistic regression model p = P (Y = 1|X = x)

1. Pick the action set for the task.

(a) A = Cancerous = 1, Benign = -1, Unknown = 0

(b) A = Cancerous = 1, Benign = 0

(c) A = Cancerous, given that the true label is cancerous = 0; Cancerous, given that the true label is
benign = 1; Benign, given that the true label is cancerous = 1000; Benign, given that the true label
is benign = 0

(d) A = Cancerous = -2, Benign = 2, Not cancerous = 1, Not benign = -1

Solution:
The correct answer is (b).
The action set for the prediction task is A = Cancerous = 1, Benign = 0.

2. Estimate the conditiional distribution of y, which determines the action.

(a) Bernoulli(y : σ(wTx))

(b) Bernoulli(a : σ(wT y))

(c) Bernoulli(a : σ(wTw))

(d) Bernoulli(y : σ(xTx))

Solution:
The correct answer is (a).
The conditional distribution, P (y|x;w) = Bernoulli(y : σ(wTx)).

3. Pick the correct cost function.



(a)

f(x) =


0 If the label is correct

1 If classified benign sample as cancerous

1000 If classified cancerous sample as benign

(b)

f(x) =


0 If the label is correct

1 If classified cancerous sample as benign

1000 If classified benign sample as cancerous

(c)

f(x) =


0 If the label is correct

1 If classified benign sample as cancerous

1 If classified cancerous sample as benign

(d)

f(x) =


0 If the label is correct

1000 If classified benign sample as cancerous

1000 If classified cancerous sample as benign

Solution:
The correct answer is (a).
This follows from the question description.

4. Pick the action that will minimize the expected cost. Try to prove the same.

(a) Label the sample cancerous when P (Y = 1|x) > 1/1001

(b) Label the sample cancerous when P (Y = 1|x) > 1/1000

(c) Label the sample cancerous when P (Y = 0|x) > 1/1001

(d) Label the sample cancerous when P (Y = 0|x) > 1/1000

Solution:
The correct answer is (a).
Let C(Y, a) be the cost when the true label is Y and the action is a.

C(Y, a) =


0 If Y=a

1 If Y=0, a=+1

1000 If Y=+1, a=0

Let P (Y = 1|x) = p EY [C(Y, a = 1)] = P (Y = 1|x) ∗ C(Y = 1, a = 1)) + P (Y = 0|x) ∗ C(Y = 0, a =
1)) = 1− p
EY [C(Y, a = 0)] = P (Y = 1|x) ∗ C(Y = 1, a = 0)) + P (Y = 0|x) ∗ C(Y = 0, a = 0)) = 1000p
We want to label the sample cancerous when EY [C(Y, a = 0)] > EY [C(Y, a = 1)], i.e. 1000p > 1−p =⇒
p > 1/1001.

Problem 2 ( Poisson Naive Bayes):

5. Pick the nature of the Naive Bayes model.

(a) Generative model
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(b) Discriminative model

(c) Supervised model

(d) Unsupervised model

Solution:
The correct answers are (a) and (c).
Naive Bayes is a generative supervised model.

6. Let λ be a positive scalar, and assume that z(1), z(2), ...z(m) ∈ N are m i.i.d observations of a λ-Poisson
distributed random variable. Choose the maximum likelihood estimator for λ in this model. (Hint: A

λ-Poisson distributed random variable Z takes values k ∈ N with probability P (Z = k) = e−λλk

k! .)

(a)
Σmi=1z

(i)

m

(b)
Σmi=1(z(i))2

m

(c)
Σmi=1

√
z(i)

m

(d)
Σmi=1e

z(i)

m

Solution:
The correct answers is (a).

The MLE for a Poisson(λ) distribution is the emperical mean.

P (Z = k) = Poisson(λ) = e−λλk

k!

logP (Z) = −mλ + Σmi=1z
(i)log(λ) + C, where C is a constant w.r.t λ. Maximising the log likelihood we

get,

−m+
Σmi=1z

(i)

λ = 0

=⇒ λMLE =
Σmi=1z

(i)

m

7. Let D = {(x(1), y(1)), (x(2), y(2)), ..., (x(n), y(n))}, where x(i) ∈ Nd and y(i) ∈ 0, 1 be the training data
that you are given. Here, we assume xi to be the ith dimension of a data point x.

We would like to train a Poisson Naive Bayes classifier, meaning that our model assumes that all the d
dimensions of the class conditional distributions, p(xi|y), are given by independent Poisson distributions.
Let λ0, λ1 ∈ Rd be the parameters of these Poisson distributions for y = 0 and y = 1 respectively. Call
p1 = P (Y = 1), and p0 = P (Y = 0) = 1− p1. n1 = Σni=1yi and n0 = n− n1.

What is the joint distribution P (x, y)?

(a) pyΠd
j=1Poisson(λy,j)

(b) pyΣdj=1Poisson(λy,j)

(c) pyΠn
j=1Poisson(λy,j)

(d) pyΣnj=1Poisson(λy,j)

Solution:
The correct answers is (a).

8. We would now like to use MLE to optimise the parameters pys and λy,j . Pick the true statement regarding
this.
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(a) py and parameters of each component p(xi|y) CAN be maximised separately. py =
ny
n , λy,j =

Σni=1x
(i)
j 1yi=y

ny
.

(b) py and parameters of each component p(xi|y) CANNOT be maximised separately. py =
ny
n , λy,j =

Σni=1x
(i)
j 1yi=y

ny
.

(c) py and parameters of each component p(xi|y) CAN be maximised separately. py =
1−ny
n , λy,j =

Σni=1x
(i)
j

ny
.

(d) py and parameters of each component p(xi|y) CANNOT be maximised separately. py =
ny
n , λy,j =

Σni=1x
(i)
j

ny
.

Solution:
The correct answers is (a).
p(y) and p(xi|y) have separate parameters. Hence, they can be maximised separately with respect to their
parameters.
n is the total number of datapoints, n1 = Σni=1yi, is the number of times 1 was observed as the label,
n0 = n− n1 is the number of times 0 was observed as the label.
The MLE for p(y) = Bernoulli(θ) is simply the empirical frequency py =

ny
n .

Similarly the MLE for a Poisson(λ) distribution is just the empirical mean (has been proved in the previous

question). Hence we estimate λy,j =
Σni=1x

(i)
j 1yi=y

ny
.

9. Now, we want to use our trained model from Question 8 to minimize the misclassification probability of a
new observation, x ∈ X ,i.e. we predict ypred = arg maxy∈YP (y|X = x). Show that the predicted label
ypred for x is determined by a hyperplane. Choose the correct answer among the following.

(a) a = [log(
λ1,1

λ0,1
), ...log(

λ1,j

λ0,j
)...log(

λ1,

λ0,d
)]; b = log p1p0 + Σdj=1λ0,j − λ1,j ; ypred = [aTx ≥ b].

(b) a = [log(
λ1,1

λ0,1
), ...log(

λ1,j

λ0,j
), ...log(

λ1,d

λ0,d
)]; b = log p0p1 + Σdj=1λ1,j − λ0,j ; ypred = [aTx ≥ b].

(c) a = [log(
λ1,1

λ0,1
), ..., log(

λ1,j

λ0,j
), ..., log(

λ1,d

λ0,d
)]; b = log p1p0 + Σdj=1λ0,j − λ1,j ; ypred = [aTx ≤ b].

(d) a = [
λ1,j

λ0,j
, ...,

λ1,j

λ0,j
, ...,

λ1,j

λ0,j
]; b = p1

p0
+ Σdj=1λ0,j − λ1,j ; ypred = [aTx ≥ b].

Solution:
The correct answers is (b).
The joined distribution from the Naive Bayes model is:

p(x, y) = pyΠd
j=1e

−λy,j
λ
xj
y,j

xj !

We are interested in the decision boundary p(y = 0|x) = p(y = 1|x). We rewrite this as

p(y = 0|x) = p(y = 1|x)

⇐⇒ p(x, 0) = p(x, 1)

⇐⇒ p0Πd
j=1e

−λ0,j
λ
xj
0,j

xj !
= p1Πd

j=1e
−λ1,j

λ
xj
1,j

xj !

⇐⇒ log(
p0

p1
) + Σdj=1 − λ0,j + log(λ0,j)xj = Σdj=1 − λ1,j + log(λ1,j)xj

From the last equation we see that the decision is determined by the hyperpane:

0 = log(
p0

p1
) + Σdj=1λ1,j − λ0,j + Σdj=1log

λ0,j

λ1,j
xj

4



ypred = [p(y = 1|x) ≥ p(y = 0|x)] = [aTx ≥ b]

where a = a = [log(
λ1,1

λ0,1
), ...log(

λ1,j

λ0,j
), ...log(

λ1,d

λ0,d
)]; b = log p0p1 + Σdj=1λ1,j − λ0,j

10. Instead of simply predicting the most likely label, one can define a cost function c : YxY → R, such that
c(ypred, ytrue) is the cost of predicting ypred given that the true label is ytrue. Pick the Bayes optimal
decision rule for a cost function c(., .), with respect to a distribution P(X, Y).

(a) yBayes = argminy∈Y EY [c(Y, y)|X = x]

(b) yBayes = argminy∈Y EY [c(Y, y)]

(c) yBayes = argminy∈Y EY [c(y, Y )|X = x]

(d) yBayes = argminy∈Y EY [c(y, Y )]

Solution:
The correct answers is (c).
yBayes = argminy∈Y EY [c(y, Y )|X = x]

11. Pick a cost function such that the corresponding decision rule that you have defined in Question 10
for this cost coincides with a decision rule that minimizes the misclassification probability, i.e. ypred =
argmaxy∈Y P (y|X = x).

(a) c(ypred, ytrue) = 1{ypred 6= ytrue}
(b) c(ypred, ytrue) = (ypred − ytrue)2

(c) c(ypred, ytrue) = |ypred − ytrue|
(d) c(ypred, ytrue) =

ypred
ytrue

Solution:
The correct answers are (a), (b), and (c).
The indicted options have a cost of 1 when the label is incorrect, and 0 otherwise. Subsituting the given
cost functions in the result from Question 10 gives the misclassification probability.

Problem 3 (Multiclass logistic regression):

The posterior probabilities for mulitclass logistic regression can be given as a softmax transformation of hyper-
planes, such that:

P (y = k|X = x) =
exp(ak

Tx)

Σjexp(ajTx)

If we consider the use of maximum likelihood to determine the parameters ak, we can take the negative logarithm
of the likelihood function to obtain the cross-entropy error function for multiclass logistic regression:

E(a1,a2, ...,aK) = −ln(ΠN
n=1ΠK

k=1P (y = k|X = xn)tnk) = −ΣNn=1ΣKk=1tnklnP (y = k|X = xn)

where tnk = 1[labelOf(xn)=k].

12. Pick the gradient of the error function with respect to a parameter aj.

(a) ∇aj
E(a1,a2, ...,aK) = ΣNn=1[P (Y = j|X = xn)− tnj ]xn

(b) ∇aj
E(a1,a2, ...,aK) = ΣNn=1[P (Y = j|X = xn) + tnj ]xn

(c) ∇aj
E(a1,a2, ...,aK) = ΠN

n=1[P (Y = j|X = xn)− tnj ]xn
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(d) ∇aj
E(a1,a2, ...,aK) = ΠN

n=1[P (Y = j|X = xn) + tnj ]xn

Solution:
The correct answer is (a).

We define dk = ak
Tx. The posterior probabilities are given as:

P (y = k|X = x) =
exp(dk)

Σjexp(dj)
= yk(x)

First, we compute the derivatives of yk with respect to all djs:

∂yk
∂dj

= yk(1{k=j} − yj)

This holds because if j 6= k, we have:

∂yk
∂dj

=
−exp(dk).exp(dj)

[Σjexp(dj)]2
= −yk.yj

and if j = k
∂yk
∂dj

=
exp(dk).Σjexp(dj)− exp(dk).exp(dk)

[Σjexp(dj)]2
= yk.(1− yk)

Next, we compute the partial derivatives of the summands of E(...)

∂tnklnyk(xn)

∂aj
=
∂tnklnyk(xn)

∂[yk(xn)]

∂yk(xn)

∂dj

∂dj
∂aj

where we set ynk = yk(xn). We simplify to (using the result ∂yk
∂dj

from above):

∂tnklnyk(xn)

∂aj
= tnk

1

ynk
ynk.(1k=j − ynj)xn = tnk.(1k=j − ynj)xn

Then,

∇aj
E(...) = −ΣNn=1ΣKk=1tnk.(1k=j − ynj)xn

= ΣNn=1ΣKk=1tnkynjxn − ΣNn=1ΣKk=1tnk1k=jxn

= ΣNn=1

[
ΣKk=1tnkynj

]
xn − ΣNn=1tnkxn

= ΣNn=1(ynj − tnj)xn

= ΣNn=1[P (y = j|X = xn)− tnj ]xn

(Where we have used the fact that ΣKk=1tnk sums to 1 and ynk = yk(xn) = P (y = k|X = xn).)
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