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(Mixture Models, EM Algorithm)

Problem 1 (Mixture Models and Expectation-Maximization Algorithm):

Consider a one-dimensional Gaussian Mixture Model with 2 clusters and parameters (µ1, σ
2
1 , µ2, σ

2
2 , w1, w2). Here

(w1, w2) are the mixing weights, and (µ1, σ
2
1), (µ2, σ

2
2) are the centers and variances of the clusters. We are given

a dataset D = {x1, x2, x3} ⊂ R, and apply the EM-algorithm to find the parameters of the Gaussian mixture
model.

1. What is the complete log-likelihood that is being optimized, for this problem?

(a) ln f(D|(µ1, σ
2
1 , µ2, σ

2
2 , w1, w2)) = ln{w1N (x1;µ1, σ1) + w2N (x1;µ2, σ2)} +ln{w1N (x2;µ1, σ1) +

w2N (x2;µ2, σ2)} +ln{w1N (x3;µ1, σ1) + w2N (x3;µ2, σ2)}
(b) ln f(D|(µ1, σ

2
1 , µ2, σ

2
2 , w1, w2)) = ln{w1N (x1;µ1, σ1) − w2N (x1;µ2, σ2)} +ln{w1N (x2;µ1, σ1) −

w2N (x2;µ2, σ2)} +ln{w1N (x3;µ1, σ1)− w2N (x3;µ2, σ2)}
(c) ln f(D|(µ1, σ

2
1 , µ2, σ

2
2 , w1, w2)) = ln{ w1

w1+w2
N (x1;µ1, σ1)+ w2

w1+w2
N (x1;µ2, σ2)}+ln{ w1

w1+w2
N (x2;µ1, σ1)+

w2

w1+w2
N (x2;µ2, σ2)} +ln{ w1

w1+w2
N (x3;µ1, σ1) + w2

w1+w2
N (x3;µ2, σ2)}

(d) ln f(D|(µ1, σ
2
1 , µ2, σ

2
2 , w1, w2)) =ln{ w1

w1+w2
N (x1;µ1, σ1)− w2

w1+w2
N (x1;µ2, σ2)}+ln{ w1

w1+w2
N (x2;µ1, σ1)−

w2

w1+w2
N (x2;µ2, σ2)} +ln{ w1

w1+w2
N (x3;µ1, σ1)− w2

w1+w2
N (x3;µ2, σ2)}

Solution:
The correct answers are (a) and (c).
ln f(D|(µ1, σ

2
1 , µ2, σ

2
2 , w1, w2)) = ln{w1N (x1;µ1, σ1)+w2N (x1;µ2, σ2)}+ln{w1N (x2;µ1, σ1)+w2N (x2;µ2, σ2)}

+ln{w1N (x3;µ1, σ1) + w2N (x3;µ2, σ2)}
Since w1 + w2 = 1, even (c) is a correct solution.

Assume that the dataset D consists of the following three points, x1 = 1, x2 = 10, x3 = 20. At some step in

the EM-algorithm, we compute the expectation step which results in the following matrix: R =

 1 0
0.4 0.6
0 1

.

where ric denotes the probability of xi belonging to cluster c.

Given the above R for the expectation step, write the result of the maximization step for the mixing weights
w1, w2. Round your answer to two decimal points.

2. w1 = Solution:
w1 = 0.47

3. w2 = Solution:
w2 = 0.53

w1 =
1

3
(1 + 0.4 + 0) =

1.4

3

w2 =
1

3
(0 + 0.6 + 1) =

1.6

3

Given the above R for the expectation step, write the result of the maximization step for the centers µ1, µ2.
Round your answer to two decimal points.



4. µ1 = Solution:
µ1 = 3.57

5. µ2 = Solution:
µ2 = 16.25

µk =
1

Nk
ΣNn=1γk(xn)xn

where Nk = ΣNn=1γk(xn).
For this example,

µ1 =
1

1.4
(1 · 1 + 0.4 · 10 + 0 · 20) =

5

1.4

µ2 =
1

1.6
(0 · 1 + 0.6 · 10 + 1 · 20) =

26

1.6

Given the above R for the expectation step, write the result of the maximization step for the variance values
σ2

1 , σ
2
2 . Round your answer to two decimal points.

6. σ2
1 = Solution:
σ2

1 = 16.53

7. σ2
2 = Solution:
σ2

2 = 23.44

σ2
k =

1

Nk
ΣNn=1γk(xn)(xn − µk)2

where Nk = ΣNn=1γk(xn).
For this example,

µ1 =
1

1.4
(1 · (1− 5

1.4
)2 + 0.4 · (10− 5

1.4
)2 + 0 · (20− 5

1.4
)2)

µ2 =
1

1.6
(0 · (1− 26

1.6
)2 + 0.6 · (10− 26

1.6
)2 + 1 · (20− 26

1.6
)2)

The previous two questions are doing soft-EM. Calculate the maximization step of µ̂1, µ̂2 for hard-EM.

8. µ̂1 = Solution:
µ̂1 = 1

9. µ̂2 = Solution:
µ̂2 = 15

µ̂1 =
1

1
(1) = 1

µ̂2 =
1

2
(10 + 20) = 15

Problem 2 (Mixture Models and Maximum a Posteriori estimation):

We are given a dataset D = {x1, ...,xn} ⊂ Rd. Consider a mixture of K multivariate Bernoulli distributions with
parameters µ = (µ1, µ2, ..., µK), where µk = {µk1, ...µkd}. You will use EM algorithm to compute MLE and
MAP estimates.

10. What is the M step for µki using MLE? Select the correct answer. Here, rnk is the responsibility of the
data point xn belonging cluster center µk, as computed in the E step.
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(a) µki =
ΣN

n=1rnkxni

ΣN
n=1rnk

(b) E[log(p(x, z|π, µ))] = ΣNn=1ΣKk=1rnk(logπk + Σdi=1(xnilogµki

(c) µki =
ΣN

n=1xni

N

(d) E[log(p(x, z|π, µ))] = ΣNn=1ΣKk=1rnk(Σdi=1(xnilogµki +(1− xni)log(1− µki)))

Solution:
The correct answer is (a).
We have K mixture components where each component is a vector of d independent Bernoullis. In other
words,

p(x|π, µ) = ΣKk=1πkp(x|µ) = ΣKk=1πkΠd
i=1µ

xi

ki(1− µki)
1−xi

Expected value of the complete data log-likelihood can be written as:

E[log(p(x, z|π, µ))] = ΣNn=1ΣKk=1rnk
(
logπk + Σdi=1(xnilogµki + (1− xni)log(1− µki))

)
where rnk denotes the posterior probability from the E step. Note that the derivative of Bernoulli distribution

is xni

µki
− (1−xni)

(1−µki)
. Taking the derivative with respect to µki and setting it to zero gives you

µki =
ΣNn=1rnkxni

ΣNn=1rnk

11. Now, suppose you want to do MAP estimation. What is the E step? Select the correct answer.

(a) rnk =
πkΠd

i=1µ
xni
ki (1−µki)

1−xni

ΣK
k=1πkΠd

i=1µki
xni (1−µki)

1−xni

(b) rnk =
Πd

i=1µ
xni
ki (1−µki)

1−xni

ΣK
k=1Πd

i=1µki
xni (1−µki)

1−xni

(c) rnk =
πnΠd

i=1µ
xni
ki (1−µki)

1−xni

ΣN
n=1πnΠd

i=1µki
xni (1−µki)

1−xni

(d) rnk =
Πd

i=1µ
xni
ki (1−µki)

1−xni

ΣN
n=1Πd

i=1µki
xni (1−µki)

1−xni

Solution:
The correct answer is (a).
The E Step is the same for the MLE case, namely

rnk =
πkΠd

i=1µ
xni

ki (1− µki)1−xni

ΣKk=1πkΠd
i=1µ

xni

ki (1− µki)1−xni

12. What is the M step for µki using MAP? You can assume a Beta(α, β) prior. Select the correct answer.

(a) µki =
ΣN

n=1(rnkxni)+α−1)

ΣN
n=1(rnk)+α+β−2

(b) µki =
ΣN

n=1(rnkxni)+α)

ΣN
n=1(rnk)+α+β−1

(c) µki =
ΣN

n=1(rnkxni)+α)

ΣN
n=1(rnk)+α+β

(d) µki =
ΣN

n=1(rnkxni)+β)

ΣN
n=1(rnk)+α+β

Solution:
The correct answer is (a).

3



According to Bayes’ theorem:
p(θ|X) ∝ p(X|θ)p(θ)

logp(θ|X) = logp(X|θ) + logp(θ) + c

where c is an arbitrary constant.

Therefore, we need to add a log prior to the expected value of the complete data log-likelihood. The
function we need to maximize is E[log(p(x, z|π, µ))] + logp(µ), where p(µ) = ΠK

k=1Πd
i=1p(µki) and

p(µki) =
µα−1
ki (1− µki)β−1

B(α, β)

We can write

logp(µ) = ΣKk=1Σdi=1(α− 1)logµki + (β − 1)(1− logµki)− logB(α, β)

We take derivative of the following expression with respect to µki and set it to zero:

ΣNn=1ΣKk=1rnk
(
logπk + Σdi=1(xnilogµki + (1− xni)log(1− µki))

)
+

ΣKk=1Σdi=1(α− 1)logµki + (β − 1)log(1−muki)

which gives

µki =
ΣNn=1(rnkxni) + α− 1)

ΣNn=1(rnk) + α+ β − 2

Problem 3 (A Different Perspective on EM):

In this question you will show that EM can be seen as an iterative algorithm which maximizes a lower bound on
the log-likelihood. We will treat any general model P (X,Z) with observed variables X and latent variable Z.
For the sake of simplicity, we will assume that Z is discrete and takes values in 1, 2, ...,m. If we observe X, the
goal is to maximize the log-likelihood

l(θ) = logP (x; θ) = logΣmz=1P (x, z; θ)

with respect to the parameter vector θ. Q(Z) denotes any distribution over the latent variables.

13. For Q(z) > 0 when P (x, z) > 0, find a lower bound for the likelihood, l(θ). Hint: Consider using the
Jensen’s inequality.

(a) EQ[logP (X,Z)]− Σmz=1Q(z)logQ(z)

(b) EQ[logP (X,Z)] + Σmz=1Q(z)logQ(z)

(c) EQ[logP (X,Z)]

(d) EQ[logP (X,Z)] + Σmz=1Q(x)logQ(x)

Solution:
The correct answer is (a).
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l(θ) = logP (x; θ)

= logΣmz=1P (x, z; θ)

= logΣmz=1

P (x, z; θ)

Q(z)
Q(z)

= logEZ∼Q[
P (x, z; θ)

Q(z)
]

≥ EZ∼Q[log
P (x, z; θ)

Q(z)
]

= EZ∼Q[logP (x, z; θ)]− Σmz=1Q(z)logQ(z),

where for the inequality we have used Jensen’s inequality.

14. For a fixed θ, pick the distribution Q∗(Z) which maximizes the lower bound derived in the previous question.
Show by yourself that bound is exact for this specific distribution. Hint: Do not forget to add Lagrange
multipliers to make sure that Q∗ is a valid distribution.

(a) P (Z|x; θ)

(b) P (Z; θ)

(c) P (X|z; θ)
(d) P (X, Z; θ)

Solution:
The correct answer is (a).
Now, assume that we want to maximize the abovewith respect to Q, and let us add a multiplier λ to make
sure that Q sums up to 1. Then, we have the following Lagrangian

L(Q,λ) = Σmz=1Q(z)logP (x, z; θ)− Σmz=1Q(z)logQ(z) + λ(Σmz=1Q(z)− 1)

By setting the derivative of the Lagrangian with respect to Q(z) to zero, we have

∂

∂Q(z)
L(Q,λ) = logP (x, z; θ)− 1− logQ(z) + λ = 0 =⇒ Q(z) = eλ−1P (x, z; θ)

. Hence, we have that Q(z) ∝ P (x, z; θ) and this is exactly the posterior P (Z|x; θ), which we had to show.
It is also easy to see that the bound is tight, as

EZ∼Q[log
P (x, z; θ)

Q(z)
] = Σmz=1Q(z)log

P (x, z; θ)

Q(z)
= Σmz=1P (Z|x; θ)log

P (Z|x; θ)P (x; θ)

P (Z|x; θ)
= logP (x; θ)

15. Mark the following statements True or False.

(a) Optimizing the lower bound on likelihood with respect to Q(.) is exactly the E-step.

(b) Optimizing the lower bound on likelihood with respect to Q(.) is exactly the M-step.

(c) Optimizing the lower bound on likelihood with respect to θ for fixed Q(.) is exactly the E-step.

(d) Optimizing the lower bound on likelihood with respect to θ for fixed Q(.) is exactly the M-step.

(e) The lower bound on likelihood monotonically increases after each step of optimisation.

(f) The lower bound on likelihood monotonically decreases after each step of optimisation.
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Solution:
(a), (d) and (e) are True statements.
We can easily see the EM algorithm as optimizing the lower bound with respect to Q and θ in an alternating
manner. Specifically, if we optimize with respect to Q we have shown that the optimal Q is the posterior,
and this is exactly the E-step. Optimizing with respect to θ for fixed Q is clearly equivalent to the M-step.
As the lower bound is monotonically increased at every step the EM algorithm has to converge.
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