IML Tutorial Generative Models

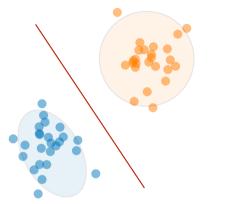
Jakob Jakob 1

¹ETH Zurich

Motivation

- Discriminative models
 - estimate directly $P(y|\mathbf{x})$ and do not consider $P(\mathbf{x})$
 - predict new \mathbf{x}' based on seen/learned \mathbf{x}_i
 - predict an outlier **x**_o overconfidently
- Generative models
 - compute $P(y|\mathbf{x})$ after estimating $P(y, \mathbf{x})$ by considering $P(\mathbf{x})$
 - predict new \mathbf{x}' based on $P(\mathbf{x})$ by seeing \mathbf{x}_i
 - are able to detect outliers

Motivation



Dicriminative models learn decision boundaries (red) and generative models learn classconditional distributions (blue and orange blobs). There is also an outlier x_o (gray).

Generative Modeling

Estimating the joint distribution $P(y, \mathbf{x})$ directly is often not tractable (not enough data points).

Alternative approach

- Estimate prior on labels P(y)
- Based on data derive conditional distribution $P(\mathbf{x}|y)$
- Obtain posterior

$$P(y|\mathbf{x}) = \frac{P(\mathbf{x}|y)P(y)}{P(\mathbf{x})} = \frac{P(\mathbf{x}|y)P(y)}{\sum_{y'} P(\mathbf{x}|y')P(y')} = \frac{1}{Z}P(\mathbf{x}|y)P(y)$$

- Note: Computing Z is not necessary for predicting y from $P(y|\mathbf{x})$.
- If closed-form of $P(y|\mathbf{x})$ is not available choose a **conjugate prior**: $P(y|\mathbf{x})$ and P(y) have the same algebraic form, e.g. $\mathcal{N}(\mu, \sigma)$.

When to use which approach?

- If the model is well-specified (you managed to build $P(\mathbf{x})$ correctly), generative modeling yields better results
- Else (much more often the case), it depends on how much data is available
 - small amount of data \implies generative
 - more data \implies discriminative

• More info¹

¹Ng, A.Y. and Jordan, M.I., 2002. On discriminative vs. generative classifiers: A comparison of logistic regression and naive bayes. In Advances in neural information processing systems (pp. 841-848).

Exercise (former exam question)

You trained a generative model and want to predict a label $y \in \{0, 1\}$ for a new data point x. Your model tells you:

- P(Y=1) = P(Y=0) = 0.5
- $P(\mathbf{X}|Y=0) = 0.02$
- $P(\mathbf{X}|Y=1) = 0.03$

To predict a label, you should compute $P(Y = 0 | \mathbf{X})$. What is the result?

- 1. 0.01
- 2. 0.2
- 3. 0.4
- 4. Undetermined as we need to know $P(\mathbf{X})$

Exercise (former exam question)

Solution:
$$P(Y = 0 | \mathbf{X}) = 0.4$$

 $P(Y = 0 | \mathbf{X}) = \frac{P(\mathbf{X} | Y = 0) P(Y = 0)}{P(\mathbf{X})}$
 $P(Y = 0 | \mathbf{X}) = \frac{P(\mathbf{X} | Y = 0) P(Y = 0)}{P(\mathbf{X} | Y = 0) P(Y = 0) + P(\mathbf{X} | Y = 1) P(Y = 1)}$
 $P(Y = 0 | \mathbf{X}) = \frac{0.02 \cdot 0.5}{0.02 \cdot 0.5 + 0.03 \cdot 0.5} = \frac{0.02}{0.02 + 0.03} = 0.4$

Naive Bayes — A Generative Model

Model class labels as generated from categorical variable

$$P(Y = y) = p_y \qquad y \in \{1, \dots, m\}$$

Simplification (naive assumption): conditional independence

$$P(\mathbf{X}|Y) = \prod_{i=1}^{d} P(X_i|Y)$$
$$P(X_1 = x_1, ..., X_d = x_d|Y = y) = \prod_{i=1}^{d} P(X_i = x_i|Y = y)$$

Given Y each X_i is independent and $P(X_i|Y) = ?$, $p_y = ?$ chosen by inspecting the data.

Naive Bayes — p_y

• Categorical distribution (class labels):

•
$$P(Y = y) = p_y \iff P(y|\mathbf{p}) = \prod_{j=1}^m p_j^{[y=j]}, \quad \sum_{j=1}^m p_j = 1$$

• over *n* samples $D = \{(\mathbf{x_1}, y_1), \dots, (\mathbf{x_n}, y_n)\}$:

$$P(\mathbf{y}|\mathbf{p}) = P(y_1, \dots, y_n|p_1, \dots, p_m) = \prod_{i=1}^n \prod_{j=1}^m p_j^{[y_i=j]}$$

• MLE² over n samples ($\mathbf{y} = (y_1, \dots, y_n)$) to estimate p_j

$$\frac{\partial P(\mathbf{y})}{\partial p_j} = 0 \iff \frac{\partial (\log P(\mathbf{y}))}{\partial p_j} = 0 \implies \hat{p}_y = \frac{\mathsf{Count}(Y=y)}{n}$$

²Maximum Likelihood Estimation

Naive Bayes — p_y - Example from lecture

• Binary case $y = \{0, 1\}$ - Bernoulli distribution:

•
$$\sum_{j=0}^{m-1} p_j = 1 \implies P(y=1) = p, P(y=0) = 1 - p$$

$$P(y) = \prod_{j=0}^{m-1} p_j^{[y=j]} \implies P(y) = p^y (1-p)^{1-y}$$

• over *n* samples $D = \{(\mathbf{x_1}, y_1), \dots, (\mathbf{x_n}, y_n)\}$:

$$P(\mathbf{y}|p) = \prod_{i=1}^{n} p^{y_i} (1-p)^{1-y_i}$$

• MLE over *n* samples to estimate *p*

$$\frac{\partial \log P(\mathbf{y})}{\partial p} = 0 \implies \hat{p} = \frac{1}{n} \sum_{i=1}^{n} y_i$$

Naive Bayes — $P(X_i|Y)$

- Continuous $X_i \in \mathbb{R}$
 - Gaussian Naive Bayes (GNB) with parameters $\mu_{y,i}, \sigma_{y,i}^2$ (lecture):

$$P(x_i|y) = \mathcal{N}(x_i|\mu_{y,i}, \sigma_{y,i}^2)$$

• Poisson Naive Bayes with parameters $\lambda_{y,i}$ (HW6):

$$P(x_i|y) = e^{\lambda_{y,i}} \frac{\lambda_{y,i}^{x_i}}{x_i!}$$

- Discrete $X_i \in \mathbb{N}$
 - Categorical Naive Bayes with parameters $\theta_{x_i|y}^{(i)}$ (lecture):

$$P(x_i|y) = \theta_{x_i|y}^{(i)}$$

Estimate the parameters of the distribution by MLE!

Gaussian Naive Bayes — $P(X_i|Y)$ - Example

MLE of $\mu_{y,i}$:

 $P(\mathbf{x}|y) = \prod_{i=1}^{a} \frac{1}{\sigma_{y,i}\sqrt{2\pi}} e^{-\frac{1}{2}\left(\frac{x_i - \mu_{y,i}}{\sigma_{y,i}}\right)^2}$ $P(\mathbf{x}_1,\ldots,\mathbf{x}_n|y) = \prod_{j:y_i=y} \prod_{i=1}^d \frac{1}{\sigma_{y,i}\sqrt{2\pi}} e^{-\frac{1}{2}\left(\frac{x_j,i-\mu_{y,i}}{\sigma_{y,i}}\right)^2}$ $\frac{\partial \log(P(\mathbf{x}_1, \dots, \mathbf{x}_n | y))}{\partial \mu_{y,i}} = \sum_{i=1}^{n} (x_i - \mu_{y,i}) = 0$ $j:y_i=y$ $\hat{\mu}_{y,i} = \frac{1}{|j:y_j = y|} \sum_{i:y_i = y} x_i$

Gaussian Naive Bayes - Prediction

Now, we have

- MLE for class prior: $\hat{P}(Y = y) = \hat{p}_y = \frac{\text{Count}(Y=y)}{n} = \frac{|Y=y|}{n}$
- MLE for feature distr.: $\hat{P}(x_i|y) = \mathcal{N}(x_i; \hat{\mu}_{y,i}, \hat{\sigma}_{y,i}^2)$

$$\hat{\mu}_{y,i} = \frac{1}{|Y=y|} \sum_{j:y_j=y} x_{j,i} \quad \hat{\sigma}_{y,i}^2 = \frac{1}{|Y=y|} \sum_{j:y_j=y} (x_{j,i} - \hat{\mu}_{y,i})^2$$

Prediction: $y = \arg \max_{y'} \hat{P}(y'|\mathbf{x}) = \arg \max_{y'} \hat{P}(y') \prod_{i=1}^{d} \hat{P}(x_i|y')$

Gaussian Naive Bayes - Cond. Indep. on MNIST

The MNIST data set has n, 28×28 (= 784) dimensional images and 10 labels 0 to 9.

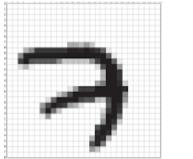
Formally, let $\mathcal{Y} = \{0, ..., 9\}$ be the set of labels and $\mathcal{X} = \mathbb{R}^{784}$ a 784-dim. feature space, resulting in

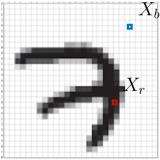
$$D = \{ (\mathbf{x}_k, y_k) \in \mathcal{X} \times \mathcal{Y} \, | \, k = 1, \dots, n \} = \{ (\mathbf{x}_1, y_1), \dots, (\mathbf{x}_n, y_n) \}$$

MNIST sample with label 7

Gaussian Naive Bayes - Cond. Indep. on MNIST

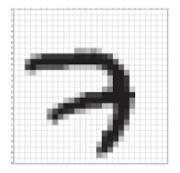
In image \mathbf{x}_k each pixel *i* corresponds to $X_i = x_i$. Exercise: Having multiple samples with label 7 for a GNB model, what is the difference between $P(X_b|Y)$ and $P(X_r|Y)$? Further, what does the model not capture? Why?

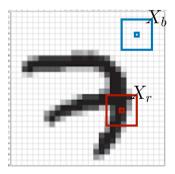




Gaussian Naive Bayes - Cond. Indep. on MNIST

Recall for GNB: $P(X_i = x_i | Y) = \mathcal{N}(x_i | \mu_{y,i}, \sigma_{y,i}^2)$ $\sigma_{y,b}^2 \sim 0$ and $\sigma_{y,r}^2 > 0$. GNB misses neighborhood information, because of cond. independence!





Gaussian Bayes Classifier (GBC)

GBC takes correlation of features into account (**not** cond. indep.)!

$$P(\mathbf{x}|y) = \mathcal{N}(\mathbf{x}; \mu_y, \Sigma_y)$$

where Σ_y is a **non-diagonal** matrix and MLE yields $\hat{\mu}_y$, $\hat{\Sigma}_y$! For binary classification ($y \in \{+1, -1\}$): $y = \text{sign}(f(\mathbf{x}))$

$$f(\mathbf{x}) = \log\left(\frac{P(Y=1|\mathbf{x})}{P(Y=-1|\mathbf{x})}\right) = \log\left(\frac{p}{1-p}\right) + \frac{1}{2}\log\left(\frac{|\hat{\Sigma}_{-}|}{|\hat{\Sigma}_{+}|}\right) + \frac{1}{2}(\mathbf{x}-\hat{\mu}_{-})^{\top}\hat{\Sigma}_{-}^{-1}(\mathbf{x}-\hat{\mu}_{-}) - \frac{1}{2}(\mathbf{x}-\hat{\mu}_{+})^{\top}\hat{\Sigma}_{+}^{-1}(\mathbf{x}-\hat{\mu}_{+})$$

Linear discriminant analysis (LDA)

- Special case of Gaussian Bayes Classifiers
 - Same co-variance matrix across classes (for binary: $\hat{\Sigma}_{-} = \hat{\Sigma}_{+} = \hat{\Sigma}$)
 - it's called linear because $f(\mathbf{x}) = \mathbf{w}^{\top}\mathbf{x} + w_0$ is linear in \mathbf{x} , where for the binary case and p = 0.5 (Fisher's LDA):

$$\mathbf{w} = \hat{\Sigma}^{-1}(\hat{\mu}_{+} - \hat{\mu}_{-}) \qquad w_{0} = \frac{1}{2}(\hat{\mu}_{-}^{\top}\hat{\Sigma}^{-1}\hat{\mu}_{-} - \hat{\mu}_{+}^{\top}\hat{\Sigma}^{-1}\hat{\mu}_{+})$$

Quadratic discriminant analysis (QDA)

- Special case of Gaussian Bayes Classifiers
 - Co-variance matrix across classes not *necessarily* equal $\hat{\Sigma}_{-} \neq \hat{\Sigma}_{+}$
 - $f(\mathbf{x}) = \mathbf{x}^{\top} A \mathbf{x} + \mathbf{w}^{\top} \mathbf{x} + w_0$ is quadratic in \mathbf{x} , where for the binary case and p = 0.5:

$$A = \frac{1}{2} (\hat{\Sigma}_{-}^{-1} - \hat{\Sigma}_{+}^{-1})$$

$$\mathbf{w} = (\hat{\Sigma}_{+}^{-1} \hat{\mu}_{+} - \hat{\Sigma}_{-}^{-1} \hat{\mu}_{-})$$

$$w_{0} = \frac{1}{2} \log \left(\frac{|\hat{\Sigma}_{-}|}{|\hat{\Sigma}_{+}|} \right) + \frac{1}{2} (\hat{\mu}_{-}^{\top} \hat{\Sigma}^{-1} \hat{\mu}_{-} - \hat{\mu}_{+}^{\top} \hat{\Sigma}^{-1} \hat{\mu}_{+})$$

Regularization

- MLE of distribution parameters is prone to overfitting. Options to prevent that
 - Restrict model class (e.g GNB)
 - Priors
 - $P(Y=1) = \theta$
 - Compute posterior on previous data $P(\theta|y_1, \dots, y_n)$
 - Conjugate priors prior and posterior are in the same family
 - Prior: Beta $(\theta, \alpha_+, \alpha_-)$
 - Observe additional data (n_+, n_-)
 - Posterior: Beta $(\theta, \alpha_+ + n_+, \alpha_- + n_-)$

END OF PRESENTATION