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Motivation

• Discriminative models
• estimate directly P (y|x) and do not consider P (x)
• predict new x′ based on seen/learned xi

• predict an outlier xo overconfidently

• Generative models
• compute P (y|x) after estimating P (y,x) by considering P (x)
• predict new x′ based on P (x) by seeing xi

• are able to detect outliers
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Motivation

Dicriminative models learn decision boundaries (red) and generative models learn class-

conditional distributions (blue and orange blobs). There is also an outlier xo (gray).
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Generative Modeling

Estimating the joint distribution P (y,x) directly is often
not tractable (not enough data points).

Alternative approach
• Estimate prior on labels P (y)

• Based on data derive conditional distribution P (x|y)
• Obtain posterior

P (y|x) = P (x|y)P (y)

P (x) =
P (x|y)P (y)∑
y′ P (x|y′)P (y′)

=
1

Z
P (x|y)P (y)

• Note: Computing Z is not necessary for predicting y from P (y|x).
• If closed-form of P (y|x) is not available choose a conjugate prior:

P (y|x) and P (y) have the same algebraic form, e.g. N (µ, σ).
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When to use which approach?

• If the model is well-specified (you managed to build P (x)
correctly), generative modeling yields better results

• Else (much more often the case), it depends on how much
data is available

• small amount of data =⇒ generative

• more data =⇒ discriminative

• More info 1

1Ng, A.Y. and Jordan, M.I., 2002. On discriminative vs. generative classifiers: A

comparison of logistic regression and naive bayes. In Advances in neural information

processing systems (pp. 841-848).
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Exercise (former exam question)

You trained a generative model and want to predict a label
y ∈ {0, 1} for a new data point x. Your model tells you:

• P (Y = 1) = P (Y = 0) = 0.5

• P (X|Y = 0) = 0.02

• P (X|Y = 1) = 0.03

To predict a label, you should compute P (Y = 0|X). What
is the result?
1. 0.01

2. 0.2

3. 0.4

4. Undetermined as we need to know P (X)
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Exercise (former exam question)

Solution: P (Y = 0|X) = 0.4

P (Y = 0|X) =
P (X|Y = 0)P (Y = 0)

P (X)

P (Y = 0|X) =
P (X|Y = 0)P (Y = 0)

P (X|Y = 0)P (Y = 0) + P (X|Y = 1)P (Y = 1)

P (Y = 0|X) =
0.02 · 0.5

0.02 · 0.5 + 0.03 · 0.5
=

0.02

0.02 + 0.03
= 0.4
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Naive Bayes —AGenerative Model
Model class labels as generated from categorical variable

P (Y = y) = py y ∈ {1, . . . ,m}
Simplification (naive assumption): conditional independence

P (X|Y ) =
d∏

i=1

P (Xi|Y )

P (X1 = x1, ..., Xd = xd|Y = y) =
d∏

i=1

P (Xi = xi|Y = y)

Given Y each Xi is independent and P (Xi|Y ) = ?, py = ?
chosen by inspecting the data.
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Naive Bayes — py

• Categorical distribution (class labels):
• P (Y = y) = py ⇐⇒ P (y|p) =

∏m
j=1 p

[y=j]
j ,

∑m
j=1 pj = 1

• over n samples D = {(x1, y1), . . . , (xn, yn)}:

P (y|p) = P (y1, . . . , yn|p1, . . . , pm) =
n∏

i=1

m∏
j=1

p
[yi=j]
j

• MLE2 over n samples (y = (y1, . . . , yn)) to estimate pj

∂P (y)
∂pj

= 0 ⇐⇒ ∂(logP (y))
∂pj

= 0 =⇒ p̂y =
Count(Y = y)

n

2Maximum Likelihood Estimation
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Naive Bayes — py - Example from lecture
• Binary case y = {0, 1} - Bernoulli distribution:

• ∑m−1
j=0 pj = 1 =⇒ P (y = 1) = p, P (y = 0) = 1− p

P (y) =
m−1∏
j=0

p
[y=j]
j =⇒ P (y) = py(1− p)1−y

• over n samples D = {(x1, y1), . . . , (xn, yn)}:

P (y|p) =
n∏

i=1

pyi(1− p)1−yi

• MLE over n samples to estimate p

∂ logP (y)
∂p

= 0 =⇒ p̂ =
1

n

n∑
i=1

yi
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Naive Bayes — P (Xi|Y )
• Continuous Xi ∈ R

• Gaussian Naive Bayes (GNB) with parameters µy,i, σ
2
y,i (lecture):

P (xi|y) = N (xi|µy,i, σ
2
y,i)

• Poisson Naive Bayes with parameters λy,i (HW6):

P (xi|y) = eλy,i
λxi
y,i

xi!

• Discrete Xi ∈ N
• Categorical Naive Bayes with parameters θ

(i)
xi|y (lecture):

P (xi|y) = θ
(i)
xi|y

Estimate the parameters of the distribution by MLE!
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Gaussian Naive Bayes — P (Xi|Y ) - Example

MLE of µy,i:

P (x|y) =
d∏

i=1

1

σy,i
√
2π

e
− 1

2

(
xi−µy,i

σy,i

)2

P (x1, . . . ,xn|y) =
∏

j:yj=y

d∏
i=1

1

σy,i
√
2π

e
− 1

2

(
xj,i−µy,i

σy,i

)2

∂ log(P (x1, . . . ,xn|y))
∂µy,i

=
∑
j:yj=y

(xi − µy,i) = 0

µ̂y,i =
1

|j : yj = y|
∑
j:yj=y

xi
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Gaussian Naive Bayes - Prediction

Now, we have

• MLE for class prior: P̂ (Y = y) = p̂y =
Count(Y=y)

n = |Y=y|
n

• MLE for feature distr.: P̂ (xi|y) = N (xi; µ̂y,i, σ̂
2
y,i)

µ̂y,i =
1

|Y = y|
∑
j:yj=y

xj,i σ̂2
y,i =

1

|Y = y|
∑
j:yj=y

(xj,i − µ̂y,i)
2

Prediction: y = arg maxy′ P̂ (y′|x) = arg maxy′ P̂ (y′)
∏d

i=1 P̂ (xi|y′)
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Gaussian Naive Bayes — Cond. Indep. on MNIST
The MNIST data set has n, 28× 28 (= 784) dimensional images

and 10 labels 0 to 9.
Formally, let Y = {0, ..., 9} be the set of labels and X = R784 a

784-dim. feature space, resulting in

D = {(xk, yk) ∈ X × Y | k = 1, . . . , n} = {(x1, y1), . . . , (xn, yn)}

MNIST sample with label 7
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Gaussian Naive Bayes — Cond. Indep. on MNIST
In image xk each pixel i corresponds to Xi = xi.
Exercise: Having multiple samples with label 7 for a GNB
model, what is the difference between P (Xb|Y ) and P (Xr|Y )?
Further, what does the model not capture? Why?

Xr

Xb
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Gaussian Naive Bayes — Cond. Indep. on MNIST

Recall for GNB: P (Xi = xi|Y ) = N (xi|µy,i, σ
2
y,i)

σ2
y,b ∼ 0 and σ2

y,r > 0. GNB misses neighborhood information,

because of cond. independence!

Xr

Xb
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Gaussian Bayes Classifier (GBC)
GBC takes correlation of features into account (not cond.

indep.)!

P (x|y) = N (x;µy,Σy)

where Σy is a non-diagonal matrix and MLE yields µ̂y, Σ̂y!

For binary classification (y ∈ {+1,−1}): y = sign(f(x))

f(x) = log
(

P (Y = 1|x)
P (Y = −1|x)

)
= log

(
p

1− p

)
+

1

2
log

(
|Σ̂−|
|Σ̂+|

)
+

1

2
(x − µ̂−)

>Σ̂−1
− (x − µ̂−)−

1

2
(x − µ̂+)

>Σ̂−1
+ (x − µ̂+)
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Linear discriminant analysis (LDA)

• Special case of Gaussian Bayes Classifiers
• Same co-variance matrix across classes (for binary: Σ̂− = Σ̂+ = Σ̂)

• it’s called linear because f(x) = w>x +w0 is linear in x, where for
the binary case and p = 0.5 (Fisher’s LDA):

w = Σ̂−1(µ̂+ − µ̂−) w0 =
1

2
(µ̂>

−Σ̂
−1µ̂− − µ̂>

+Σ̂
−1µ̂+)
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Quadratic discriminant analysis (QDA)

• Special case of Gaussian Bayes Classifiers
• Co-variance matrix across classes not necessarily equal Σ̂− 6= Σ̂+

• f(x) = x>Ax + w>x + w0 is quadratic in x, where for the binary
case and p = 0.5:

A =
1

2
(Σ̂−1

− − Σ̂−1
+ )

w = (Σ̂−1
+ µ̂+ − Σ̂−1

− µ̂−)

w0 =
1

2
log

(
|Σ̂−|
|Σ̂+|

)
+

1

2
(µ̂>

−Σ̂
−1µ̂− − µ̂>

+Σ̂
−1µ̂+)
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Regularization

• MLE of distribution parameters is prone to overfitting.
Options to prevent that

• Restrict model class (e.g GNB)
• Priors

• P (Y = 1) = θ

• Compute posterior on previous data P (θ|y1, . . . , yn)
• Conjugate priors - prior and posterior are in the same family

• Prior: Beta(θ, α+, α−)

• Observe additional data (n+, n−)

• Posterior: Beta(θ, α+ + n+, α− + n−)
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END OF PRESENTATION
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