Homework 6 \& Mixture models

Gabriela Malenová

May 27, 2020

Problem 2: Question 7

Let $D=\left\{\left(\mathbf{x}^{(1)}, y^{(1)}\right), \ldots,\left(\mathbf{x}^{(n)}, y^{(n)}\right)\right\}$, where $\mathbf{x}^{(i)} \in \mathbb{N}_{0}^{d}$ and $y^{(i)} \in\{0,1\}$. Here, $\mathbf{x}=\left[x_{1}, \ldots, x_{d}\right]$ and the class conditional distributions, $P\left(x_{i} \mid y\right)$, are given by independent Poisson distributions. What is the joint distribution $P(\mathbf{x}, y)$?

Solution:

- Definition of joint distribution: $P(A, B):=P(B) P(A \mid B)$.
- In our case:

$$
\begin{aligned}
P(\mathbf{x}, y) & =P\left(x_{1}, \ldots, x_{d}, y\right) \\
& =P\left(x_{2}, \ldots, x_{d}, y\right) P\left(x_{1} \mid x_{2}, \ldots, x_{d}, y\right) .
\end{aligned}
$$

- Since x_{i} :s are independent, $P\left(x_{1} \mid x_{2}, \ldots, x_{d}, y\right)=P\left(x_{1} \mid y\right)$.

Problem 2: Question 7

- Hence,

$$
\begin{aligned}
P(\mathbf{x}, y) & =P\left(x_{2}, \ldots, x_{d}, y\right) P\left(x_{1} \mid y\right) \\
& =P\left(x_{3}, \ldots, x_{d}, y\right) P\left(x_{1} \mid y\right) P\left(x_{2} \mid y\right) \\
& =\ldots=P(y) P\left(x_{1} \mid y\right) \ldots P\left(x_{d} \mid y\right) \\
& =P(y) \prod_{j=1}^{d} P\left(x_{j} \mid y\right) .
\end{aligned}
$$

- Let $\lambda_{0}, \lambda_{1} \in \mathbb{R}^{d}$ be the parameters of the Poisson distributions for $y=0$ and $y=1$ respectively. Then

$$
\begin{aligned}
P(\mathbf{x}, y) & =P(y) \prod_{j=1}^{d} \operatorname{Poisson}\left(\lambda_{y, j}\right) \\
& =P(y) \prod_{j=1}^{d} \frac{e^{-\lambda_{y, j} \lambda_{y, j}^{x_{j}}}}{x_{j}!} .
\end{aligned}
$$

Problem 2: Question 8

Use MLE to optimize the parameters $p_{y}:=P(Y=y)$ and $\lambda_{y, j}$.

Solution:

- Define, $n_{1}=\sum_{i=1}^{n} y_{i}$ and $n_{0}=n-n_{1}$. The probability of observing y is $p_{y}=P(Y=y)=\frac{n_{y}}{n}$.
- From Question 6, the MLE for $\lambda_{y, j}$ is the empirical mean of x_{j} (j denotes dimension, not sample) labeled as y. More precisely,

$$
\lambda_{y, j}=\frac{1}{n_{y}} \sum_{i=1}^{n} x_{j}^{(i)} l_{Y_{j}=y} .
$$

Problem 2: Question 9

New observation, $\mathbf{x} \in \mathcal{X}$, predict $y_{\text {pred }}=\arg \max _{y \in \mathcal{Y}} P(y \mid X=\mathbf{x})$.
Find the hyperplane that determines the label prediction.

Solution:

- Decision boundary: $P(y=0 \mid X=\mathbf{x})=P(y=1 \mid X=\mathbf{x})$.
- Joint distribution: $P(y, X=\mathbf{x})=P(\mathbf{x}) P(y \mid X=\mathbf{x})$.
- Hence

$$
\begin{align*}
P(y=0 \mid X=\mathbf{x}) & =P(y=1 \mid X=\mathbf{x}) \\
\Longleftrightarrow P(y=0, X=\mathbf{x}) & =P(y=1, X=\mathbf{x}) \tag{1}
\end{align*}
$$

- From Question 7: $P(y, X=\mathbf{x})=p_{y} \prod_{j=1}^{d} \frac{e^{-\lambda_{y, j} \lambda_{y, j}^{x_{j}}}}{x_{j}!}$
- Then

$$
(1) \Longleftrightarrow p_{0} \prod_{j=1}^{d} \frac{e^{-\lambda_{0, j} \lambda_{0, j}^{x_{j}}}}{x_{j}!}=p_{1} \prod_{j=1}^{d} \frac{e^{-\lambda_{1, j} \lambda_{1, j}^{x_{j}}}}{x_{j}!}
$$

Problem 2: Question 9

- We cancel out x_{j} ! and do log:

$$
\begin{gathered}
p_{0} \prod_{j=1}^{d} e^{-\lambda_{0, j}} \lambda_{0, j}^{x_{j}}=p_{1} \prod_{j=1}^{d} e^{-\lambda_{1, j}} \lambda_{1, j}^{x_{j}} \\
\Longleftrightarrow \log p_{0}+\sum_{j=1}^{d} \log \left(e^{-\lambda_{0, j}} \lambda_{0, j}^{x_{j}}\right)=\log p_{1} \sum_{j=1}^{d} \log \left(e^{-\lambda_{1, j}} \lambda_{1, j}^{x_{j}}\right) \\
\Longleftrightarrow \log p_{0}+\sum_{j=1}^{d}\left(x_{j} \log \lambda_{0, j}-\lambda_{0, j}\right)=\log p_{1}+\sum_{j=1}^{d}\left(x_{j} \log \lambda_{1, j}-\lambda_{1, j}\right) \\
\Longleftrightarrow \log \frac{p_{1}}{p_{0}}+\sum_{j=1}^{d}\left(x_{j} \log \frac{\lambda_{1, j}}{\lambda_{0, j}}+\lambda_{0, j}-\lambda_{1, j}\right)=0 .
\end{gathered}
$$

- Define $a_{j}:=\log \frac{\lambda_{1, j}}{\lambda_{0, j}}, b:=-\log \frac{p_{1}}{p_{0}}+\sum_{j=1}^{d}\left(\lambda_{1, j}-\lambda_{0, j}\right)$, then

$$
\Longleftrightarrow \mathbf{a}^{T} \mathbf{x}=b
$$

Problem 2: Question 9

Inequality (arbitrary assignment on the boundary):

$$
\begin{aligned}
y_{\text {pred }}=1 & \Longleftrightarrow P(y=0 \mid X=\mathbf{x}) \leq P(y=1 \mid X=\mathbf{x}) \\
& \Longleftrightarrow \mathbf{a}^{T} \mathbf{x} \geq b, \\
y_{\text {pred }}=0 & \Longleftrightarrow \mathbf{a}^{T} \mathbf{x}<b .
\end{aligned}
$$

To sumarize: $y_{\text {pred }}=\left[\mathbf{a}^{T} \mathbf{x} \geq b\right]$.

Problem 2: Question 10

One can define a cost function $c: \mathcal{Y} \times \mathcal{Y} \rightarrow \mathbb{R}$, such that $c\left(y_{\text {pred }}, y_{\text {true }}\right)$ is the cost of predicting $y_{\text {pred }}$ given the true label is $y_{\text {true }}$. What is the Bayes optimal decision rule for c wrt a distribution $P(X, Y)$.

Solution: According to Bayesian Decision Theory, the best action (from \mathcal{A}) to take is the one that minimizes the cost

$$
a^{*}=\arg \min _{a \in \mathcal{A}} \mathbb{E}_{Y}[c(a, Y) \mid X]
$$

In our case, $\mathcal{A}=\mathcal{Y}$ (the decision corresponds to picking a label), so we conclude that

$$
y^{*}=\arg \min _{y \in \mathcal{Y}} \mathbb{E}_{Y}[c(y, Y) \mid X] .
$$

Note: Answer (c) is correct, not (a) as previously stated.

Problem 3: Question 12

Posterior probablities for multiclass logistic regression
$P(y=k \mid X=\mathbf{x})=\frac{\exp \left(\mathbf{a}_{k}^{T} \mathbf{x}\right)}{\sum_{i} \exp \left(\mathbf{a}_{i}^{T} \mathbf{x}\right)}$. The cross entropy error reads

$$
E\left(\mathbf{a}_{1}, \ldots, \mathbf{a}_{K}\right)=-\sum_{n=1}^{N} \sum_{k=1}^{K} t_{n k} \log P\left(y=k \mid X=\mathbf{x}_{n}\right)
$$

where $t_{n k}:=\delta_{\text {label of } \mathrm{x}_{n}, k}$. Compute $\nabla_{\mathbf{a}_{j}} E$.
Solution: First, define $y_{k n}:=P\left(y=k \mid X=\mathbf{x}_{n}\right)$. Note that

$$
\nabla_{\mathbf{a}_{j}} E=-\sum_{n} \sum_{k} t_{n k} \frac{\nabla_{\mathbf{a}_{j}} y_{k n}}{y_{k n}} .
$$

So we need to expand $\nabla_{\mathbf{a}_{j}} y_{k n}$. Two cases: (a) $j=k$, (b) $j \neq k$.

Problem 3: Question 12

Recall: $y_{k n}=\frac{\exp \left(\mathbf{a}_{k}^{T} x_{n}\right)}{\sum_{i} \exp \left(a_{i}^{T} x_{n}\right)}, \mathbf{a}_{j}=\left[a_{j 1}, \ldots, a_{j d}\right], \mathbf{x}_{n}=\left[x_{n 1}, \ldots, x_{n d}\right]$.

- (a) $j=k$

$$
\begin{aligned}
\frac{\partial y_{k n}}{\partial a_{j \ell}} & =\frac{x_{n \ell} \exp \left(\mathbf{a}_{k}^{T} \mathbf{x}_{n}\right) \sum_{i} \exp \left(\mathbf{a}_{i}^{T} \mathbf{x}_{n}\right)-x_{n \ell} \exp \left(\mathbf{a}_{k}^{T} \mathbf{x}_{n}\right) \exp \left(\mathbf{a}_{j}^{T} \mathbf{x}_{n}\right)}{\left(\sum_{i} \exp \left(\mathbf{a}_{i}^{T} \mathbf{x}_{n}\right)\right)^{2}} \\
& =x_{n \ell} y_{k n}\left(1-y_{j n}\right) .
\end{aligned}
$$

- (b) $j \neq k$, the first term disappears,

$$
\frac{\partial y_{k n}}{\partial a_{j \ell}}=-\frac{x_{n \ell} \exp \left(\mathbf{a}_{k}^{T} \mathbf{x}_{n}\right) \exp \left(\mathbf{a}_{j}^{T} \mathbf{x}_{n}\right)}{\left(\sum_{i} \exp \left(\mathbf{a}_{i}^{T} \mathbf{x}_{n}\right)\right)^{2}}=-x_{n \ell} y_{k n} y_{j n} .
$$

Altogether (vector-wise):

$$
\nabla_{\mathbf{a}_{j}} y_{k n}=\mathbf{x}_{n} y_{k n}\left(\delta_{j k}-y_{j n}\right) .
$$

Problem 3: Question 12

Then

$$
\begin{aligned}
\nabla_{\mathbf{a}_{j}} E & =-\sum_{n} \sum_{k} t_{n k} \frac{\nabla_{\mathbf{a}_{j}} y_{k n}}{y_{k n}} \\
& =-\sum_{n} \sum_{k} t_{n k} \frac{\mathbf{x}_{n} y_{k n}\left(\delta_{j k}-y_{j n}\right)}{y_{k n}} \\
& =-\sum_{n} \mathbf{x}_{n}(\underbrace{\sum_{k} t_{n k} \delta_{j k}}_{t_{n j}}-y_{j n} \underbrace{\sum_{k}^{k} t_{n k}}_{=1}) \\
& =\sum_{n} \mathbf{x}_{n}\left(y_{j n}-t_{n j}\right) \\
& =\sum_{n} \mathbf{x}_{n}\left(P\left(y=j \mid X=\mathbf{x}_{n}\right)-t_{n j}\right)
\end{aligned}
$$

Gaussian mixture models

GMM: Tailored to fit multimodal distributions.

- d dimensions
- N observations
- K mixture components, each normal but with different parameters (mean, covariance matrix)

Figure: $d=2, K=3, N=100$.

Expectation-Maximization (EM)

We assume

$$
p(\mathbf{x} \mid \theta)=\sum_{k=1}^{K} \pi_{k} \mathcal{N}\left(\mathbf{x} \mid \boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k}\right), \quad \pi_{k} \geq 0, \quad \sum_{k} \pi_{k}=1
$$

where $\theta=(\boldsymbol{\pi}, \boldsymbol{\mu}, \boldsymbol{\Sigma})$. Let us introduce the latent variable $z \in\{1, \ldots, K\}$ to determine the component from which an observation originates. It's prior and conditional distributions are

$$
p(z=k)=\pi_{k}, \quad p(\mathbf{x} \mid z=k)=\mathcal{N}\left(\mathbf{x} \mid \boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k}\right)
$$

EM algorithm:

- E step: membership probabilities

$$
r_{n k}:=p\left(z_{n}=k \mid \mathbf{x}_{n}\right)=\frac{\pi_{k} \mathcal{N}\left(\mathbf{x} \mid \boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k}\right)}{\sum_{j=1}^{K} \pi_{j} \mathcal{N}\left(\mathbf{x} \mid \boldsymbol{\mu}_{j}, \boldsymbol{\Sigma}_{j}\right)}
$$

- M step: Maximize likelihood function over all sample points

$$
p\left(\mathbf{x}_{1: N} \mid \theta\right)=\prod_{n=1}^{N} p\left(\mathbf{x}_{n} \mid \theta\right)=\prod_{n=1}^{N} \sum_{k=1}^{K} \pi_{k} \mathcal{N}\left(\mathbf{x}_{n} \mid \boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k}\right)
$$

M step

More convenient: maximize the following related loss function instead

$$
L(\theta)=\mathbb{E}[p(\mathbf{x}, z \mid \theta)]=\sum_{n=1}^{N} \sum_{k=1}^{K} r_{n k} \log \left(\pi_{k} \mathcal{N}\left(\mathbf{x}_{n} \mid \boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k}\right)\right) .
$$

Differentiating wrt to θ and setting to 0 , the optimal solution reads

$$
\begin{aligned}
\boldsymbol{\mu}_{k} & =\frac{\sum_{n=1}^{N} r_{n k} \mathbf{x}_{n}}{\sum_{n=1}^{N} r_{n k}} \\
\boldsymbol{\Sigma}_{k} & =\frac{\sum_{n=1}^{N} r_{n k}\left(\mathbf{x}_{n}-\boldsymbol{\mu}_{k}\right)\left(\mathbf{x}_{n}-\boldsymbol{\mu}_{k}\right)^{T}}{\sum_{n=1}^{N} r_{n k}} \\
\pi_{k} & =\frac{\sum_{n=1}^{N} r_{n k}}{\sum_{k=1}^{K} \sum_{n=1}^{N} r_{n k}}
\end{aligned}
$$

Moreover $N_{k}=\sum_{n=1}^{N} r_{n k}$ and $\sum_{k=1}^{K} N_{k}=N$.

Exam question

You are given a data set $D=\left\{\left(\mathbf{x}_{1}, y_{1}\right), \ldots,\left(\mathbf{x}_{N}, y_{N}\right)\right\}, \mathbf{x}_{i} \in \mathbb{R}^{d}$, $y_{i} \in \mathbb{R}, i=1, \ldots, N$. The data points accumulate on m different lines, $\mathbf{a}_{j}^{T} \mathbf{x}_{i}=y_{i}$, for $\mathbf{a}_{j} \in \mathbb{R}^{d}, j=1, \ldots, m$.

Figure: $d=1, m=3$.
Then

$$
p(\mathbf{x}, y \mid \theta)=\sum_{j=1}^{m} \pi_{j} \frac{1}{\sqrt{2 \pi \sigma^{2}}} \exp \left(-\frac{\left(\mathbf{a}_{j}^{T} \mathbf{x}-y\right)^{2}}{2 \sigma^{2}}\right)
$$

where $\theta=\left(\pi_{1: m}, \mathbf{a}_{1: m}\right), \sum \pi_{j}=1, \pi_{j} \geq 0$ and $\sigma>0$ is given and fixed.

Exam question

- (a) Find the responsibilities in the E-step of Soft EM, $r_{n k}^{(t)}=p\left(z_{n}=k \mid \mathbf{x}_{n}, y_{n}, \theta^{(t-1)}\right)$.
- (b) Write down the class predictions $z_{n}^{(t)}$ for $\left(\mathrm{x}_{n}, z_{n}\right)$ in the E-step of Hard EM in terms of $r_{n k}^{(t)}$.
- (c) Assume that we observe the true labels z_{1}, \ldots, z_{ℓ} for the first ℓ datapoints, $\ell<N$. How can we modify the E-step of Soft EM to incorporate the additional information?
- (d) Write down the optimization objective for the M-step in Soft EM for $\pi_{j}^{(t)}$ and $\mathbf{a}_{j}^{(t)}$ in the terms of the responsibilities $r_{n k}^{(t)}$.

Exam question

(a) Find the responsibilities in the E-step of Soft EM, $r_{n k}^{(t)}=p\left(z_{n}=k \mid \mathbf{x}_{n}, y_{n}, \theta^{(t-1)}\right)$.

Solution: Using Bayes' theorem (omitting θ)

$$
p\left(z_{n}=k \mid \mathbf{x}_{n}, y_{n}\right)=\frac{p\left(\mathbf{x}_{n}, y_{n} \mid z_{n}=k\right) p\left(z_{n}=k\right)}{\sum_{j=1}^{m} p\left(\mathbf{x}_{n}, y_{n} \mid z_{n}=j\right) p\left(z_{n}=j\right)}
$$

We have $p(z=j)=\pi_{j}^{(t-1)}$, and
$p(\mathbf{x}, y \mid z=k)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} \exp \left(-\frac{\left(\mathbf{a}_{k}^{(t-1)^{T}} \mathbf{x}-y\right)^{2}}{2 \sigma^{2}}\right)$. Hence

$$
r_{n k}^{(t)}=\frac{\pi_{k}^{(t-1)} \frac{1}{\sqrt{2 \pi \sigma^{2}}} \exp \left(-\frac{\left(\mathbf{a}_{k}^{(t-1)^{T}} \mathbf{x}_{n}-y_{n}\right)^{2}}{2 \sigma^{2}}\right)}{\sum_{j=1}^{m} \pi_{j}^{(t-1)} \frac{1}{\sqrt{2 \pi \sigma^{2}}} \exp \left(-\frac{\left(\mathbf{a}_{j}^{(t-1)^{T}} \mathbf{x}_{n}-y_{n}\right)^{2}}{2 \sigma^{2}}\right)} .
$$

Exam question

(b) Write down the class predictions $z_{n}^{(t)}$ for $\left(\mathrm{x}_{n}, z_{n}\right)$ in the E-step of Hard EM in terms of $r_{n k}^{(t)}$.

Solution

$$
z_{n}^{(t)}=\arg \max _{k} r_{n k}
$$

(c) Assume that we observe the true labels z_{1}, \ldots, z_{ℓ} for the first ℓ datapoints, $\ell<N$. How can we modify the E-step of Soft EM to incorporate the additional information?

Solution: We change responsibilities of the corresponding point-cluster pairs to 1 , and set to 0 otherwise, i.e.

$$
r_{n k}^{(t)}=\delta_{z_{n} k}, \quad \text { for } n \leq \ell, \forall k
$$

Exam question

(d) Write down the optimization objective for the M-step in Soft EM for $\pi_{j}^{(t)}$ and $\mathbf{a}_{j}^{(t)}$ in the terms of the responsibilities $r_{n k}^{(t)}$.

Solution: Loss function:

$$
L(\theta)=\sum_{n=1}^{N} \sum_{k=1}^{m} r_{n k}^{(t)} \log \left(\pi_{k} \frac{1}{\sqrt{2 \pi \sigma^{2}}} \exp \left(-\frac{\left(\mathbf{a}_{k}{ }^{T} \mathbf{x}_{n}-y_{n}\right)^{2}}{2 \sigma^{2}}\right)\right)
$$

We select

$$
\pi_{1: m}^{(t)}, \mathbf{a}_{1: m}^{(t)}=\arg \max _{\pi_{1: m}, \mathbf{a}_{1: m}} L(\theta)
$$

such that $\pi_{j} \geq 0, \sum_{j} \pi_{j}=1$.

Exam question

(e) Derive the explicit update rules for $\pi_{j}^{(t)}$ and $\mathbf{a}_{j}^{(t)}$ used in the M-step of Soft EM. Hint: You can assume that the matrix $\sum_{n=1}^{N} r_{n k}^{(t)} \mathbf{x}_{n} \mathbf{x}_{n}^{T}$ is invertible for all $k=1, \ldots, m$.

Solution: First, denote $y_{k n}:=\pi_{k} \frac{1}{\sqrt{2 \pi \sigma^{2}}} \exp \left(-\frac{\left(\mathbf{a}_{k}{ }^{\top} \mathbf{x}_{n}-y_{n}\right)^{2}}{2 \sigma^{2}}\right)$. Then differentiate $L(\theta)=\sum_{n=1}^{N} \sum_{k=1}^{m} r_{n k}^{(t)} \log \left(y_{k n}\right)$ wrt \mathbf{a}_{j} :

$$
\frac{\partial L}{\partial a_{j \ell}}=\sum_{n} r_{n j}^{(t)} \frac{\partial_{a_{j \ell}} y_{j n}}{y_{j n}}=\sum_{n} r_{n j}^{(t)} \frac{-y_{j n}\left(\frac{1}{\sigma^{2}}\right)\left(\mathbf{a}_{j}^{T} \mathbf{x}_{n}-y_{n}\right) x_{n \ell}}{y_{j n}}
$$

We want $\frac{\partial L}{\partial a_{j \ell}}=0$ hence (vector-wise)

$$
\begin{aligned}
& \sum_{n} r_{n j}^{(t)}\left(\mathbf{a}_{j}^{T} \mathbf{x}_{n}-y_{n}\right) \mathbf{x}_{n}^{T}=0 \\
& \Longleftrightarrow \mathbf{a}_{j}^{T} \sum_{n} r_{n j}^{(t)} \mathbf{x}_{n} \mathbf{x}_{n}^{T}=\sum_{n} r_{n j}^{(t)} y_{n} \mathbf{x}_{n}^{T}
\end{aligned}
$$

Exam question

Since $\sum_{n=1}^{N} r_{n k}^{(t)} \mathbf{x}_{n} \mathbf{x}_{n}^{T}$ is invertible, we can write

$$
\mathbf{a}_{j}^{T}=\left(\sum_{n} r_{n j}^{(t)} y_{n} \mathbf{x}_{n}^{T}\right)\left(\sum_{n} r_{n j}^{(t)} \mathbf{x}_{n} \mathbf{x}_{n}^{T}\right)^{-1}
$$

Similarly, we want to differentiate L wrt to π_{j} to obtain the extrema, however, we must not forget the constraint $\sum_{k} \pi_{k}=1$! To incorporate it, we will use the Lagrange multipliers. More precisely, we want to maximize

$$
\widetilde{L}(\theta)=L(\theta)+\lambda\left(\sum_{k} \pi_{k}-1\right)
$$

Then differentiation wrt both λ and π_{j} gives

$$
\begin{aligned}
\frac{\partial \widetilde{L}}{\partial \lambda}=\sum_{k} \pi_{k}-1 & =!0 \\
\frac{\partial \widetilde{L}}{\partial \pi_{j}}=\sum_{n} r_{n j}^{(t)} \frac{1}{\pi_{j}}+\lambda &
\end{aligned}
$$

Exam question

Let us define $d_{j}:=\sum_{n} r_{n j}$. We obtained the following equations

$$
\lambda=-\frac{d_{j}}{\pi_{j}}, \quad \sum_{j} \pi_{j}=1
$$

Combining these, we conclude that

$$
\pi_{j}=-\frac{d_{j}}{\lambda} \Rightarrow 1=\sum_{j} \pi_{j}=-\sum_{j} \frac{d_{j}}{\lambda} \Rightarrow \lambda=-\sum_{j} d_{j}
$$

and finally

$$
\pi_{j}=\frac{d_{j}}{\sum_{j} d_{j}}
$$

Note that indeed $\pi_{j} \geq 0$ and $\sum_{j} \pi_{j}=1$.

Exercise 2

Suppose the lifetime of lightbulbs follows exponential distribution with unknown mean θ. In an experiment with N bulbs, the exact lifetimes Y_{1}, \ldots, Y_{N} are recorded. In another experiment with M bulbs, we enter the lab at time $t>0$, and register which of the lightbulbs are still burning (indicator $E_{i}=1$), and which have expired $\left(E_{i}=0\right)$. What is the MLE of θ ?

Solution: Let X_{1}, \ldots, X_{M} be the (unobserved) lifetimes associated with the second experiment, and $Z=\sum_{i=1}^{M} E_{i}$ the number of lightbulbs in the second experiment that are still alive at time t. Thus, the observed data from both the experiments combined is

$$
\mathcal{Y}=\left(Y_{1}, \ldots, Y_{N}, E_{1}, \ldots, E_{M}\right)
$$

and the unobserved data is

$$
\mathcal{X}=\left(X_{1}, \ldots, X_{M}\right)
$$

Exercise 2

Exponential distribution $p(Y \mid \theta)=\frac{1}{\theta} \exp (-Y / \theta)$. The log-likelihood is

$$
\begin{aligned}
L(\theta) & =\log \left(\prod_{j=1}^{N} p\left(Y_{j} \mid \theta\right) \prod_{j=1}^{M} p\left(X_{j} \mid \theta\right)\right) \\
& =-N \log (\theta)-\frac{1}{\theta} \sum_{j=1}^{N} Y_{j}-M \log (\theta)-\frac{1}{\theta} \sum_{j=1}^{M} X_{j}
\end{aligned}
$$

But X is not observed. We replace it with its expected value $\mathbb{E}\left[X_{i} \mid \mathcal{Y}\right]$,

$$
\mathbb{E}\left[X_{i} \mid \mathcal{Y}\right]=\mathbb{E}\left[X_{i} \mid E_{i}\right]= \begin{cases}t+\theta, & \text { for } E_{i}=1 \\ \theta-t p, & \text { for } E_{i}=0\end{cases}
$$

where $p:=\frac{\exp (-t / \theta)}{1-\exp (-t / \theta)}$.

Exercise 2

Then using the current numerical parameter $\theta^{(i-1)}$

$$
\begin{aligned}
\widetilde{L}^{(i)}(\theta) & =-\log (\theta)(N+M)-\frac{1}{\theta} \sum_{j=1}^{N} Y_{j}-\frac{1}{\theta} \sum_{j=1}^{M} \mathbb{E}\left[X_{j} \mid E_{j}\right] \\
& =-\log (\theta)(N+M)-\frac{1}{\theta} N \bar{Y} \\
& -\frac{1}{\theta}\left(Z\left(t+\theta^{(i-1)}\right)+(M-Z)\left(\theta^{(i-1)}-t p^{(i-1)}\right)\right)
\end{aligned}
$$

The solution to $\left(\widetilde{L}^{(i)}(\theta)\right)^{\prime}=0$ gives the M-step

$$
\theta^{(i)}=\frac{N \bar{Y}+Z\left(t+\theta^{(i-1)}\right)+(M-Z)\left(\theta^{(i-1)}-t p^{(i-1)}\right)}{M+N}
$$

References

- Lecture slides \& videos
- Bernard Flury and Alice Zoppe. Exercises in EM.
- Victor Lavrenko. EM algorithm: how it works.

