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Problem 2: Question 7

Let D = {(x(1), y (1)), . . . , (x(n), y (n))}, where x(i) ∈ Nd
0 and

y (i) ∈ {0, 1}. Here, x = [x1, . . . , xd ] and the class conditional
distributions, P(xi |y), are given by independent Poisson
distributions. What is the joint distribution P(x, y)?

Solution:

I Definition of joint distribution: P(A,B) := P(B)P(A|B).

I In our case:

P(x, y) = P(x1, . . . , xd , y)

= P(x2, . . . , xd , y)P(x1|x2, . . . , xd , y).

I Since xi :s are independent, P(x1|x2, . . . , xd , y) = P(x1|y).



Problem 2: Question 7

I Hence,
P(x, y) = P(x2, . . . , xd , y)P(x1|y)

= P(x3, . . . , xd , y)P(x1|y)P(x2|y)

= . . . = P(y)P(x1|y) . . .P(xd |y)

= P(y)
d∏

j=1

P(xj |y).

I Let λ0, λ1 ∈ Rd be the parameters of the Poisson
distributions for y = 0 and y = 1 respectively. Then

P(x, y) = P(y)
d∏

j=1

Poisson(λy ,j)

= P(y)
d∏

j=1

e−λy,jλ
xj
y ,j

xj !
.



Problem 2: Question 8

Use MLE to optimize the parameters py := P(Y = y) and λy ,j .

Solution:

I Define, n1 =
∑n

i=1 yi and n0 = n − n1. The probability of
observing y is py = P(Y = y) =

ny
n .

I From Question 6, the MLE for λy ,j is the empirical mean of xj
(j denotes dimension, not sample) labeled as y . More
precisely,

λy ,j =
1

ny

n∑
i=1

x
(i)
j IYj=y .



Problem 2: Question 9
New observation, x ∈ X , predict ypred = arg maxy∈Y P(y |X = x).
Find the hyperplane that determines the label prediction.

Solution:

I Decision boundary: P(y = 0|X = x) = P(y = 1|X = x).

I Joint distribution: P(y ,X = x) = P(x)P(y |X = x).

I Hence
P(y = 0|X = x) = P(y = 1|X = x)

⇐⇒ P(y = 0,X = x) = P(y = 1,X = x). (1)

I From Question 7: P(y ,X = x) = py
∏d

j=1

e
−λy,j λ

xj
y,j

xj !

I Then

(1)⇐⇒ p0

d∏
j=1

e−λ0,jλ
xj
0,j

xj !
= p1

d∏
j=1

e−λ1,jλ
xj
1,j

xj !



Problem 2: Question 9

I We cancel out xj ! and do log:

p0

d∏
j=1

e−λ0,jλ
xj
0,j = p1

d∏
j=1

e−λ1,jλ
xj
1,j

⇐⇒ log p0 +
d∑

j=1

log
(
e−λ0,jλ

xj
0,j

)
= log p1

d∑
j=1

log
(
e−λ1,jλ

xj
1,j

)

⇐⇒ log p0 +
d∑

j=1

(xj log λ0,j − λ0,j) = log p1 +
d∑

j=1

(xj log λ1,j − λ1,j)

⇐⇒ log
p1
p0

+
d∑

j=1

(xj log
λ1,j
λ0,j

+λ0,j − λ1,j) = 0.

I Define aj := log
λ1,j
λ0,j

, b := − log p1
p0

+
∑d

j=1(λ1,j − λ0,j), then

⇐⇒ aTx = b.



Problem 2: Question 9

Inequality (arbitrary assignment on the boundary):

ypred = 1⇐⇒ P(y = 0|X = x) ≤ P(y = 1|X = x)

⇐⇒ aTx ≥ b,

ypred = 0⇐⇒ aTx < b.

To sumarize: ypred = [aTx ≥ b].



Problem 2: Question 10

One can define a cost function c : Y × Y → R, such that
c(ypred, ytrue) is the cost of predicting ypred given the true label is
ytrue. What is the Bayes optimal decision rule for c wrt a
distribution P(X ,Y ).

Solution: According to Bayesian Decision Theory, the best action
(from A) to take is the one that minimizes the cost

a∗ = arg min
a∈A

EY [c(a,Y )|X ].

In our case, A = Y (the decision corresponds to picking a label),
so we conclude that

y∗ = arg min
y∈Y

EY [c(y ,Y )|X ].

Note: Answer (c) is correct, not (a) as previously stated.



Problem 3: Question 12

Posterior probablities for multiclass logistic regression

P(y = k |X = x) =
exp(aTk x)∑
i exp(a

T
i x)

. The cross entropy error reads

E (a1, . . . , aK ) = −
N∑

n=1

K∑
k=1

tnk logP(y = k |X = xn),

where tnk := δlabel of xn,k . Compute ∇ajE .

Solution: First, define ykn := P(y = k |X = xn). Note that

∇ajE = −
∑
n

∑
k

tnk
∇aj ykn

ykn
.

So we need to expand ∇aj ykn. Two cases: (a) j = k, (b) j 6= k.



Problem 3: Question 12
Recall: ykn =

exp(aTk xn)∑
i exp(a

T
i xn)

, aj = [aj1, . . . , ajd ], xn = [xn1, . . . , xnd ].

I (a) j = k

∂ykn
∂aj`

=
xn` exp(aT

k xn)
∑

i exp(aT
i xn)− xn` exp(aT

k xn) exp(aT
j xn)(∑

i exp(aT
i xn)

)2
= xn`ykn(1− yjn).

I (b) j 6= k , the first term disappears,

∂ykn
∂aj`

= −
xn` exp(aT

k xn) exp(aT
j xn)(∑

i exp(aT
i xn)

)2 = −xn`yknyjn.

Altogether (vector-wise):

∇aj ykn = xnykn(δjk − yjn).



Problem 3: Question 12

Then

∇ajE = −
∑
n

∑
k

tnk
∇aj ykn

ykn

= −
∑
n

∑
k

tnk
xnykn(δjk − yjn)

ykn

= −
∑
n

xn

(∑
k

tnkδjk︸ ︷︷ ︸
tnj

−yjn
∑
k

tnk︸ ︷︷ ︸
=1

)

=
∑
n

xn(yjn − tnj)

=
∑
n

xn(P(y = j |X = xn)− tnj).



Gaussian mixture models

GMM: Tailored to fit multimodal distributions.

I d dimensions

I N observations

I K mixture components, each normal but with different
parameters (mean, covariance matrix)
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Figure: d = 2, K = 3, N = 100.



Expectation-Maximization (EM)
We assume

p(x|θ) =
K∑

k=1

πkN (x|µk ,Σk), πk ≥ 0,
∑
k

πk = 1,

where θ = (π,µ,Σ). Let us introduce the latent variable
z ∈ {1, . . . ,K} to determine the component from which an
observation originates. It’s prior and conditional distributions are

p(z = k) = πk , p(x|z = k) = N (x|µk ,Σk).

EM algorithm:
I E step: membership probabilities

rnk := p(zn = k |xn) =
πkN (x|µk ,Σk)∑K
j=1 πjN (x|µj ,Σj)

.

I M step: Maximize likelihood function over all sample points

p(x1:N |θ) =
N∏

n=1

p(xn|θ) =
N∏

n=1

K∑
k=1

πkN (xn|µk ,Σk).



M step

More convenient: maximize the following related loss function
instead

L(θ) = E[p(x, z |θ)] =
N∑

n=1

K∑
k=1

rnk log(πkN (xn|µk ,Σk)).

Differentiating wrt to θ and setting to 0, the optimal solution reads

µk =

∑N
n=1 rnkxn∑N
n=1 rnk

,

Σk =

∑N
n=1 rnk(xn − µk)(xn − µk)T∑N

n=1 rnk
,

πk =

∑N
n=1 rnk∑K

k=1

∑N
n=1 rnk

.

Moreover Nk =
∑N

n=1 rnk and
∑K

k=1Nk = N.



Exam question

You are given a data set D = {(x1, y1), . . . , (xN , yN)}, xi ∈ Rd ,
yi ∈ R, i = 1, . . . ,N. The data points accumulate on m different
lines, aT

j xi = yi , for aj ∈ Rd , j = 1, . . . ,m.
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Figure: d = 1, m = 3.

Then

p(x, y |θ) =
m∑
j=1

πj
1√

2πσ2
exp

(
−

(aT
j x− y)2

2σ2

)
,

where θ = (π1:m, a1:m),
∑
πj = 1, πj ≥ 0 and σ > 0 is given and

fixed.



Exam question

I (a) Find the responsibilities in the E-step of Soft EM,

r
(t)
nk = p(zn = k |xn, yn, θ(t−1)).

I (b) Write down the class predictions z
(t)
n for (xn, zn) in the

E-step of Hard EM in terms of r
(t)
nk .

I (c) Assume that we observe the true labels z1, . . . , z` for the
first ` datapoints, ` < N. How can we modify the E-step of
Soft EM to incorporate the additional information?

I (d) Write down the optimization objective for the M-step in

Soft EM for π
(t)
j and a

(t)
j in the terms of the responsibilities

r
(t)
nk .



Exam question
(a) Find the responsibilities in the E-step of Soft EM,

r
(t)
nk = p(zn = k |xn, yn, θ(t−1)).

Solution: Using Bayes’ theorem (omitting θ)

p(zn = k|xn, yn) =
p(xn, yn|zn = k)p(zn = k)∑m
j=1 p(xn, yn|zn = j)p(zn = j)

.

We have p(z = j) = π
(t−1)
j , and

p(x, y |z = k) = 1√
2πσ2

exp

(
− (a

(t−1)
k

T
x−y)2

2σ2

)
. Hence

r
(t)
nk =

π
(t−1)
k

1√
2πσ2

exp

(
− (a

(t−1)
k

T
xn−yn)2

2σ2

)
∑m

j=1 π
(t−1)
j

1√
2πσ2

exp

(
− (a

(t−1)
j

T
xn−yn)2

2σ2

) .



Exam question

(b) Write down the class predictions z
(t)
n for (xn, zn) in the E-step

of Hard EM in terms of r
(t)
nk .

Solution
z
(t)
n = arg max

k
rnk .

(c) Assume that we observe the true labels z1, . . . , z` for the first `
datapoints, ` < N. How can we modify the E-step of Soft EM to
incorporate the additional information?

Solution: We change responsibilities of the corresponding
point-cluster pairs to 1, and set to 0 otherwise, i.e.

r
(t)
nk = δznk , for n ≤ `, ∀k.



Exam question

(d) Write down the optimization objective for the M-step in Soft

EM for π
(t)
j and a

(t)
j in the terms of the responsibilities r

(t)
nk .

Solution: Loss function:

L(θ) =
N∑

n=1

m∑
k=1

r
(t)
nk log

(
πk

1√
2πσ2

exp

(
−(ak

Txn − yn)2

2σ2

))
.

We select
π
(t)
1:m, a

(t)
1:m = arg max

π1:m,a1:m
L(θ),

such that πj ≥ 0,
∑

j πj = 1.



Exam question
(e) Derive the explicit update rules for π

(t)
j and a

(t)
j used in the

M-step of Soft EM. Hint: You can assume that the matrix∑N
n=1 r

(t)
nk xnxTn is invertible for all k = 1, . . . ,m.

Solution: First, denote ykn := πk
1√
2πσ2

exp
(
− (ak

T xn−yn)2
2σ2

)
. Then

differentiate L(θ) =
∑N

n=1

∑m
k=1 r

(t)
nk log (ykn) wrt aj :

∂L

∂aj`
=
∑
n

r
(t)
nj

∂aj`yjn

yjn
=
∑
n

r
(t)
nj

−yjn
(

1
σ2

)
(aT

j xn − yn)xn`

yjn
.

We want ∂L
∂aj`

= 0 hence (vector-wise)∑
n

r
(t)
nj (aT

j xn − yn)xTn = 0

⇐⇒ aT
j

∑
n

r
(t)
nj xnxTn =

∑
n

r
(t)
nj ynxTn .



Exam question
Since

∑N
n=1 r

(t)
nk xnxTn is invertible, we can write

aT
j =

(∑
n

r
(t)
nj ynxTn

)(∑
n

r
(t)
nj xnxTn

)−1
.

Similarly, we want to differentiate L wrt to πj to obtain the
extrema, however, we must not forget the constraint

∑
k πk = 1!

To incorporate it, we will use the Lagrange multipliers. More
precisely, we want to maximize

L̃(θ) = L(θ) + λ

(∑
k

πk − 1

)
.

Then differentiation wrt both λ and πj gives

∂L̃

∂λ
=
∑
k

πk − 1 =! 0,

∂L̃

∂πj
=
∑
n

r
(t)
nj

1

πj
+ λ =! 0.



Exam question

Let us define dj :=
∑

n rnj . We obtained the following equations

λ = −
dj
πj
,

∑
j

πj = 1.

Combining these, we conclude that

πj = −
dj
λ
⇒ 1 =

∑
j

πj = −
∑
j

dj
λ
⇒ λ = −

∑
j

dj ,

and finally

πj =
dj∑
j dj

.

Note that indeed πj ≥ 0 and
∑

j πj = 1.



Exercise 2

Suppose the lifetime of lightbulbs follows exponential distribution
with unknown mean θ. In an experiment with N bulbs, the exact
lifetimes Y1, . . . ,YN are recorded. In another experiment with M
bulbs, we enter the lab at time t > 0, and register which of the
lightbulbs are still burning (indicator Ei = 1), and which have
expired (Ei = 0). What is the MLE of θ?

Solution: Let X1, . . . ,XM be the (unobserved) lifetimes associated
with the second experiment, and Z =

∑M
i=1 Ei the number of

lightbulbs in the second experiment that are still alive at time t.
Thus, the observed data from both the experiments combined is

Y = (Y1, . . . ,YN ,E1, . . . ,EM),

and the unobserved data is

X = (X1, . . . ,XM).



Exercise 2

Exponential distribution p(Y |θ) = 1
θ exp(−Y /θ). The

log-likelihood is

L(θ) = log

 N∏
j=1

p(Yj |θ)
M∏
j=1

p(Xj |θ)


= −N log(θ)− 1

θ

N∑
j=1

Yj −M log(θ)− 1

θ

M∑
j=1

Xj .

But X is not observed. We replace it with its expected value
E[Xi |Y],

E[Xi |Y] = E[Xi |Ei ] =

{
t + θ, for Ei = 1,
θ − tp, for Ei = 0,

where p := exp(−t/θ)
1−exp(−t/θ) .



Exercise 2

Then using the current numerical parameter θ(i−1)

L̃(i)(θ) = − log(θ)(N + M)− 1

θ

N∑
j=1

Yj −
1

θ

M∑
j=1

E[Xj |Ej ]

= − log(θ)(N + M)− 1

θ
NY

− 1

θ

(
Z (t + θ(i−1)) + (M − Z )(θ(i−1) − tp(i−1))

)
The solution to (L̃(i)(θ))′ = 0 gives the M-step

θ(i) =
NY + Z (t + θ(i−1)) + (M − Z )(θ(i−1) − tp(i−1))

M + N
.
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