
Neural Networks Tutorial

Stefan G. Stark

ETH Intro to Machine Learning Spring 2020

1 April 2020

1 / 27



Outline

Neural Network Recap
Forward Pass
Backward Pass
Exam question

Building large networks
Vanishing Gradients
Residual Neural Networks (ResNets)
Demo: Loading ResNet50 on your laptop

HW2: Review Selected Problems
Problem 1
Problem 3
Problem 10

2 / 27



Neural Network recap

I Composed of modules called hidden layers
I Able to approximate non-linear functions

3 / 27



A single Hidden Layer

Linear transformation followed by a non-linear "activation"

Matrix Form
y = φ(Wx + b)

Scalar form
yk = φ(

∑
i xiwki + bk)

Haykin, Simon S., et al. Neural networks and learning machines. Vol. 3. Upper Saddle River: Pearson,
2009.

4 / 27



Forward Pass

Consider a deep neural net with L layers

f (x,W) = φ(L)(W (L)φ(L−1)(W (L−1) . . . φ(1)(W (1)x) . . .)

Why do we need non-linearities φ?

flinear (x,W) = W (L)W (L−1) . . .W (1)x = W ∗x

5 / 27



Forward Pass

Consider a deep neural net with L layers

f (x,W) = φ(L)(W (L)φ(L−1)(W (L−1) . . . φ(1)(W (1)x) . . .)

Why do we need non-linearities φ?

flinear (x,W) = W (L)W (L−1) . . .W (1)x = W ∗x

5 / 27



Forward Pass

Consider a deep neural net with L layers

f (x,W) = φ(L)(W (L)φ(L−1)(W (L−1) . . . φ(1)(W (1)x) . . .)

Why do we need non-linearities φ?

flinear (x,W) = W (L)W (L−1) . . .W (1)x = W ∗x

5 / 27



Training Neural nets

Given
I labels y∗, outputs y = f (x)

I loss function `(y∗, y) on a single datapoint

Goal Minimize

L(W) =
1
N

N∑
i=1

`(y∗, y ; W)

I Approximate L(W) by subsampling dataset (batches)
I Use gradient based optimization methods, e.g. SGD, ADAM
I Wnew = Wold − ηt ∂

∂W L(Wold)

6 / 27



Loss Functions: Regression

Labels: y∗ ∈ R or y∗ ∈ Rd

Output: Real-valued output (no activation)
Loss: e.g. L2 loss

`(y∗, y) = ||y∗ − y||22

7 / 27



Loss Functions: Binary Classification

Labels: y∗ ∈ {0, 1}
Output: single output neuron y ∈ R. Probability of class 1:

σ =
1

1 + e−y
∈ (0, 1)

Loss: Binary Cross Entropy Loss

`(y∗, y) = −y∗ log(σ)− (1− y∗)log(1− σ)

8 / 27



Loss Functions: Multi-class Classification

Labels: y∗ "one-hot" in RC

Output: y ∈ RC . Softmax: probability of class i :

σi =
eyi∑
j e

yj

Loss: Cross Entropy Loss

`(y∗, y) = −
∑
i

y∗i log(σi )

See MNIST, CIFAR, ImageNet

9 / 27



Training Neural Nets: Backpropagation

Use chain rule to compute gradients of L(W)

Define network recursively:

v (`) = φ(z(`))

z(`) = W (`)v (`−1)

Where v (0) = x and v (L) = f (x)

The gradient of the loss wrt an element of the kth hidden layer is

∂L(W)

∂w
(k)
ij

=
∂L

∂v (L)
∂v (L)

∂z(L)
∂z(L)

∂v (L−1) . . .
∂v (k)

∂z(k)
∂z(k)

∂w
(k)
ij

w
(k)
ij ← w

(k)
ij − ηt

∂L(W)

∂w
(k)
ij

10 / 27



Training Neural Nets: Backpropagation

Use chain rule to compute gradients of L(W)
Define network recursively:

v (`) = φ(z(`))

z(`) = W (`)v (`−1)

Where v (0) = x and v (L) = f (x)

The gradient of the loss wrt an element of the kth hidden layer is

∂L(W)

∂w
(k)
ij

=
∂L

∂v (L)
∂v (L)

∂z(L)
∂z(L)

∂v (L−1) . . .
∂v (k)

∂z(k)
∂z(k)

∂w
(k)
ij

w
(k)
ij ← w

(k)
ij − ηt

∂L(W)

∂w
(k)
ij

10 / 27



Training Neural Nets: Backpropagation

Use chain rule to compute gradients of L(W)
Define network recursively:

v (`) = φ(z(`))

z(`) = W (`)v (`−1)

Where v (0) = x and v (L) = f (x)

The gradient of the loss wrt an element of the kth hidden layer is

∂L(W)

∂w
(k)
ij

=
∂L

∂v (L)
∂v (L)

∂z(L)
∂z(L)

∂v (L−1) . . .
∂v (k)

∂z(k)
∂z(k)

∂w
(k)
ij

w
(k)
ij ← w

(k)
ij − ηt

∂L(W)

∂w
(k)
ij

10 / 27



Training Neural Nets: Backpropagation

Use chain rule to compute gradients of L(W)
Define network recursively:

v (`) = φ(z(`))

z(`) = W (`)v (`−1)

Where v (0) = x and v (L) = f (x)

The gradient of the loss wrt an element of the kth hidden layer is

∂L(W)

∂w
(k)
ij

=
∂L

∂v (L)
∂v (L)

∂z(L)
∂z(L)

∂v (L−1) . . .
∂v (k)

∂z(k)
∂z(k)

∂w
(k)
ij

w
(k)
ij ← w

(k)
ij − ηt

∂L(W)

∂w
(k)
ij

10 / 27



Exam question

11 / 27



Exam question I: Forward Pass

Write down the sequence of calculations required to compute the
squared error cost (called forward propagation).

E = (y − f )2

f = u1h1 + u2h2

h1 = ρ(w1x1 + w3x2 + w5x3)

h2 = ρ(w2x1 + w4x2 + w6x3)

12 / 27



Exam question

13 / 27



Exam question II: Backward Pass

First, let’s define the linear part of the first hidden layer:

v1 = wtiedx1 + w3x2 + w5x3

v2 = w2x1 + wtiedx2 + w6x3

From I: E = (y − f )2, f = u1h1 + u2h2 and h1 = ρ(v1), h2 = ρ(v2)

∂E

∂wtied
=
∂E

∂f

(
∂f

∂h1

∂h1

∂v1

∂v1

∂wtied
+

∂f

∂h2

∂h2

∂v2

∂v2

∂wtied

)
∂E
∂f = 2(f − y), ∂f

∂h1
= u1 and ∂v1

∂wtied
= x1. ∂h1

∂v1
is harder ..

14 / 27



Exam question II: Backward Pass

First, let’s define the linear part of the first hidden layer:

v1 = wtiedx1 + w3x2 + w5x3

v2 = w2x1 + wtiedx2 + w6x3

From I: E = (y − f )2, f = u1h1 + u2h2 and h1 = ρ(v1), h2 = ρ(v2)

∂E

∂wtied
=
∂E

∂f

(
∂f

∂h1

∂h1

∂v1

∂v1

∂wtied
+

∂f

∂h2

∂h2

∂v2

∂v2

∂wtied

)

∂E
∂f = 2(f − y), ∂f

∂h1
= u1 and ∂v1

∂wtied
= x1. ∂h1

∂v1
is harder ..

14 / 27



Exam question II: Backward Pass

First, let’s define the linear part of the first hidden layer:

v1 = wtiedx1 + w3x2 + w5x3

v2 = w2x1 + wtiedx2 + w6x3

From I: E = (y − f )2, f = u1h1 + u2h2 and h1 = ρ(v1), h2 = ρ(v2)

∂E

∂wtied
=
∂E

∂f

(
∂f

∂h1

∂h1

∂v1

∂v1

∂wtied
+

∂f

∂h2

∂h2

∂v2

∂v2

∂wtied

)
∂E
∂f = 2(f − y), ∂f

∂h1
= u1 and ∂v1

∂wtied
= x1. ∂h1

∂v1
is harder ..

14 / 27



Exam question II: Backward Pass cont.

∂h

∂v
=
∂ρ(v)

∂v
=

∂

∂v

1
1 + e−v

= −(1 + e−v )−2 ∂

∂v
(1 + e−v )

= −(1 + e−v )−2(−e−v )

=
1

(1 + e−v )

e−v

1 + e−v

= ρ(v)(1− ρ(v))

= h(1− h)

∂E

∂wtied
=
∂E

∂f

(
∂f

∂h1

∂h1

∂v1

∂v1

∂wtied
+

∂f

∂h2

∂h2

∂v2

∂v2

∂wtied

)
= 2(f − y) (u1h1(1− h1)x1 + u2h2(1− h2)x2)

15 / 27



CNNs & Representation Learning

I More layers → better representation
I Better representation → better accuracy

(Assuming you can optimize)

16 / 27



ResNets: Problem setting

Is learning better networks as easy as stacking more layers?

No! Adding more layers decreases accuracy for both test & train.
Why?

17 / 27



ResNets: Problem setting

Is learning better networks as easy as stacking more layers?

No! Adding more layers decreases accuracy for both test & train.
Why?

17 / 27



ResNets: Problem setting

Is learning better networks as easy as stacking more layers?

No! Adding more layers decreases accuracy for both test & train.
Why?

17 / 27



Vanishing Gradients

What happens to the gradients if you build a very deep network?

∂L(W)

∂w
(k)
ij

=
∂L

∂v (L)
∂v (L)

∂z(L)
∂z(L)

∂v (L−1) . . .
∂v (k)

∂z(k)
∂z(k)

∂w
(k)
ij

Causes of vanishing gradients
I Deep nets e.g. k << L

I "Saturated" activations
I poor initialization, etc

18 / 27



Vanishing Gradients

What happens to the gradients if you build a very deep network?

∂L(W)

∂w
(k)
ij

=
∂L

∂v (L)
∂v (L)

∂z(L)
∂z(L)

∂v (L−1) . . .
∂v (k)

∂z(k)
∂z(k)

∂w
(k)
ij

Causes of vanishing gradients
I Deep nets e.g. k << L

I "Saturated" activations
I poor initialization, etc

18 / 27



ResNets: Framework to train super deep networks

I Add skip connections
I More stable gradients through

connections
I Only changes the forward pass

Let H(x) = F (x) + x

∂

∂x
H(x) =

∂

∂x
F (x) + 1

A ResNet module F (x) need only model the residual H(x)− x

19 / 27



ResNets: Architecture

20 / 27



ResNets: Performance

21 / 27



Demo

I Training a ResNet requires a lot of resources
I But the model itself is small and can be loaded onto a laptops

22 / 27



HW2: Problem 1

Solving for wols :

R̂(w) =
n∑

i=1

(
yi −wTxi

)2
(1)

= (y − Xw)T (y − Xw) (2)

= wTXTXw − 2yTXw + yTy (3)

Compute gradient:

∂

∂w
R̂(w) = 2XTXw − 2XTy

Set to 0:
wols =

(
XTX

)−1
XTy

23 / 27



HW2: Problem 1 cont.

Let UΣV T be the SVD of X . We need:
I U, V orthonormal: UT = U−1, UTU = I
I (AB)−1 = B−1A−1

What is wols?

wols =
(
XTX

)−1
XTy (1)

=
(
VΣUTUΣVT

)−1
VΣUTy (2)

=
(
VΣ2VT

)−1
VΣUTy (3)

= VΣ−2VTVΣUTy (4)

= VΣ−2ΣUTy (5)

= VΣ−1UTy (6)

24 / 27



HW2: Problem 3
The ridge penalty term, λwTw
(a) shrinks the low variance components.

Σ is a diagonal matrix that contains the singular values of X
I dj = Σjj correspond to the stddev of feature j

wridge = V
(
Σ2 + λI

)−1
ΣUTy

wols = VΣ−1UTy

Since Σ is diagonal we can write:

Xwols = UΣVTVΣ−1UTy = UUTy =
∑
j

ujuT
j y

Xwridge = UΣ
(
Σ2 + λI

)−1
ΣUTy =

∑
j

uj

d2
j

d2
j + λ

uT
j y

See Elements of statistical learning p. 66 for more details.

25 / 27



HW2: Problem 10 Is the variance of w less than wridge?

Define Σλ =
(
XTX + λI

)
. Σλ is symmetric:

[
Σ−1
λ

]T
= Σ−1

λ

From 8: Var [w] = σ2 (XTX
)−1

From 9: Var [wridge ] = σ2Σ−1
λ

(
XTX

)
Σ−1
λ

∆Var = Var [w]− Var [wridge ]

Var [w] � Var [wridge ] =⇒ ∆Var � 0
A � 0 iff A is non-negative definite.

26 / 27



HW2: Problem 10 cont.

Σλ =
(
XTX + λI

)
∆Var = Var [w]− Var [wridge ] (1)

= σ2
[(

XTX
)−1
− Σ−1

λ

(
XTX

)
Σ−1
λ

]
(2)

= σ2
[

Σ−1
λ Σλ

(
XTX

)−1
ΣλΣ−1

λ − Σ−1
λ

(
XTX

)
Σ−1
λ

]
(3)

= σ2Σ−1
λ

[
Σλ

(
XTX

)−1
Σλ − XTX

]
Σ−1
λ (4)

= σ2Σ−1
λ

[
XTX + 2λI + λ2

(
XTX

)−1
− XTX

]
Σ−1
λ (5)

= σ2Σ−1
λ

[
2λI + λ2

(
XTX

)−1
]

Σ−1
λ (6)

� 0 (7)

27 / 27


	Neural Network Recap
	Forward Pass
	Backward Pass
	Exam question

	Building large networks
	Vanishing Gradients
	Residual Neural Networks (ResNets)
	Demo: Loading ResNet50 on your laptop

	HW2: Review Selected Problems
	Problem 1
	Problem 3
	Problem 10


