Neural Networks Tutorial

Stefan G. Stark

ETH Intro to Machine Learning Spring 2020
1 April 2020

Outline

Neural Network Recap
Forward Pass
Backward Pass
Exam question
Building large networks
Vanishing Gradients
Residual Neural Networks (ResNets)
Demo: Loading ResNet50 on your laptop
HW2: Review Selected Problems
Problem 1
Problem 3
Problem 10

Neural Network recap

hidden layer 1 hidden layer 2

- Composed of modules called hidden layers
- Able to approximate non-linear functions

A single Hidden Layer

Linear transformation followed by a non-linear "activation"

$$
\begin{aligned}
& \text { Matrix Form } \\
& \mathbf{y}=\phi(\mathbf{W} \mathbf{x}+\mathbf{b}) \\
& \text { Scalar form } \\
& y_{k}=\phi\left(\sum_{i} x_{i} w_{k i}+b_{k}\right)
\end{aligned}
$$

Haykin, Simon S., et al. Neural networks and learning machines. Vol. 3. Upper Saddle River: Pearson, 2009.

Forward Pass

Consider a deep neural net with L layers

$$
f(\mathbf{x}, \mathbf{W})=\phi^{(L)}\left(W^{(L)} \phi^{(L-1)}\left(W^{(L-1)} \ldots \phi^{(1)}\left(W^{(1)} \mathbf{x}\right) \ldots\right)\right.
$$

hidden layer 1 hidden layer 2

Forward Pass

Consider a deep neural net with L layers

$$
f(\mathbf{x}, \mathbf{W})=\phi^{(L)}\left(W^{(L)} \phi^{(L-1)}\left(W^{(L-1)} \ldots \phi^{(1)}\left(W^{(1)} \mathbf{x}\right) \ldots\right)\right.
$$

hidden layer 1 hidden layer 2
Why do we need non-linearities ϕ ?

Forward Pass

Consider a deep neural net with L layers

$$
f(\mathbf{x}, \mathbf{W})=\phi^{(L)}\left(W^{(L)} \phi^{(L-1)}\left(W^{(L-1)} \ldots \phi^{(1)}\left(W^{(1)} \mathbf{x}\right) \ldots\right)\right.
$$

hidden layer 1 hidden layer 2
Why do we need non-linearities ϕ ?

$$
f_{\text {linear }}(x, W)=W^{(L)} W^{(L-1)} \ldots W^{(1)} x=W^{*} x
$$

Training Neural nets

Given

- labels y^{*}, outputs $y=f(x)$
- loss function $\ell\left(y^{*}, y\right)$ on a single datapoint

Goal Minimize

$$
L(\mathbf{W})=\frac{1}{N} \sum_{i=1}^{N} \ell\left(y^{*}, y ; \mathbf{W}\right)
$$

- Approximate $L(\mathrm{~W})$ by subsampling dataset (batches)
- Use gradient based optimization methods, e.g. SGD, ADAM
- $W_{\text {new }}=W_{\text {old }}-\eta_{t} \frac{\partial}{\partial W} L\left(W_{\text {old }}\right)$

Loss Functions: Regression

Labels: $y^{*} \in \mathbb{R}$ or $\mathbf{y}^{*} \in \mathbb{R}^{d}$
Output: Real-valued output (no activation)
Loss: e.g. L_{2} loss

$$
\ell\left(\mathbf{y}^{*}, \mathbf{y}\right)=\left\|\mathbf{y}^{*}-\mathbf{y}\right\|_{2}^{2}
$$

Loss Functions: Binary Classification

Labels: $y^{*} \in\{0,1\}$
Output: single output neuron $y \in \mathbb{R}$. Probability of class 1 :

$$
\sigma=\frac{1}{1+e^{-y}} \in(0,1)
$$

Loss: Binary Cross Entropy Loss

$$
\ell\left(y^{*}, y\right)=-y^{*} \log (\sigma)-\left(1-y^{*}\right) \log (1-\sigma)
$$

Loss Functions: Multi-class Classification

Labels: \mathbf{y}^{*} "one-hot" in \mathbb{R}^{C}
Output: $y \in \mathbb{R}^{C}$. Softmax: probability of class i :

$$
\sigma_{i}=\frac{e^{y_{i}}}{\sum_{j} e^{y_{j}}}
$$

Loss: Cross Entropy Loss

$$
\ell\left(\mathbf{y}^{*}, \mathbf{y}\right)=-\sum_{i} y_{i}^{*} \log \left(\sigma_{i}\right)
$$

See MNIST, CIFAR, ImageNet

Training Neural Nets: Backpropagation

Use chain rule to compute gradients of $L(\mathrm{~W})$

Training Neural Nets: Backpropagation

Use chain rule to compute gradients of $L(\mathrm{~W})$ Define network recursively:

$$
\begin{aligned}
& v^{(\ell)}=\phi\left(z^{(\ell)}\right) \\
& z^{(\ell)}=W^{(\ell)} v^{(\ell-1)}
\end{aligned}
$$

Where $v^{(0)}=x$ and $v^{(L)}=f(x)$

Training Neural Nets: Backpropagation

Use chain rule to compute gradients of $L(\mathrm{~W})$
Define network recursively:

$$
\begin{aligned}
& v^{(\ell)}=\phi\left(z^{(\ell)}\right) \\
& z^{(\ell)}=W^{(\ell)} v^{(\ell-1)}
\end{aligned}
$$

Where $v^{(0)}=x$ and $v^{(L)}=f(x)$
The gradient of the loss wrt an element of the $k^{\text {th }}$ hidden layer is

$$
\frac{\partial L(\mathbf{W})}{\partial w_{i j}^{(k)}}=\frac{\partial L}{\partial v^{(L)}} \frac{\partial v^{(L)}}{\partial z^{(L)}} \frac{\partial z^{(L)}}{\partial v^{(L-1)}} \cdots \frac{\partial v^{(k)}}{\partial z^{(k)}} \frac{\partial z^{(k)}}{\partial w_{i j}^{(k)}}
$$

Training Neural Nets: Backpropagation

Use chain rule to compute gradients of $L(\mathbf{W})$
Define network recursively:

$$
\begin{aligned}
& v^{(\ell)}=\phi\left(z^{(\ell)}\right) \\
& z^{(\ell)}=W^{(\ell)} v^{(\ell-1)}
\end{aligned}
$$

Where $v^{(0)}=x$ and $v^{(L)}=f(x)$
The gradient of the loss wrt an element of the $k^{\text {th }}$ hidden layer is

$$
\begin{aligned}
\frac{\partial L(\mathbf{W})}{\partial w_{i j}^{(k)}}= & \frac{\partial L}{\partial v^{(L)}} \frac{\partial v^{(L)}}{\partial z^{(L)}} \frac{\partial z^{(L)}}{\partial v^{(L-1)}} \cdots \frac{\partial v^{(k)}}{\partial z^{(k)}} \frac{\partial z^{(k)}}{\partial w_{i j}^{(k)}} \\
& w_{i j}^{(k)} \leftarrow w_{i j}^{(k)}-\eta_{t} \frac{\partial L(\mathbf{W})}{\partial w_{i j}^{(k)}}
\end{aligned}
$$

Exam question

Exam 2016 Question 5

Consider the following neural network with two logistic hidden units h_{1}, h_{2}, and three inputs x_{1}, x_{2}, x_{3}. The output neuron f is a linear unit, and we are using the squared error cost function $E=(y-f)^{2}$. The logistic function is defined as $\rho(x)=1 /\left(1+e^{-x}\right)$.

(i) Consider a single training example $\boldsymbol{x}=\left[x_{1}, x_{2}, x_{3}\right]$ with target output (label) y. Write down the sequence of calculations required to compute the squared error cost (called forward propagation).
(ii) A way to reduce the number of parameters to avoid overfitting is to tie certain weights together, so that they share a parameter. Suppose we decide to tie the weights w_{1} and w_{4}, so that $w_{1}=$ $w_{4}=w_{\text {tied }}$. What is the derivative of the error E with respect to $w_{\text {tied }}$, i.e. $\nabla_{w_{\text {tied }}} E$?

Exam question I: Forward Pass

Write down the sequence of calculations required to compute the squared error cost (called forward propagation).

$$
\begin{aligned}
E & =(y-f)^{2} \\
f & =u_{1} h_{1}+u_{2} h_{2} \\
h_{1} & =\rho\left(w_{1} x_{1}+w_{3} x_{2}+w_{5} x_{3}\right) \\
h_{2} & =\rho\left(w_{2} x_{1}+w_{4} x_{2}+w_{6} x_{3}\right)
\end{aligned}
$$

Exam question

Exam 2016 Question 5

Consider the following neural network with two logistic hidden units h_{1}, h_{2}, and three inputs x_{1}, x_{2}, x_{3}. The output neuron f is a linear unit, and we are using the squared error cost function $E=(y-f)^{2}$. The logistic function is defined as $\rho(x)=1 /\left(1+e^{-x}\right)$.

(i) Consider a single training example $\boldsymbol{x}=\left[x_{1}, x_{2}, x_{3}\right]$ with target output (label) y. Write down the sequence of calculations required to compute the squared error cost (called forward propagation).
(ii) A way to reduce the number of parameters to avoid overfitting is to tie certain weights together, so that they share a parameter. Suppose we decide to tie the weights w_{1} and w_{4}, so that $w_{1}=$ $w_{4}=w_{\text {tied }}$. What is the derivative of the error E with respect to $w_{\text {tied }}$, i.e. $\nabla_{w_{\text {tied }}} E$?

Exam question II: Backward Pass

First, let's define the linear part of the first hidden layer:

$$
\begin{aligned}
& v_{1}=w_{\text {tied }} x_{1}+w_{3} x_{2}+w_{5} x_{3} \\
& v_{2}=w_{2} x_{1}+w_{\text {tied }} x_{2}+w_{6} x_{3}
\end{aligned}
$$

From I: $E=(y-f)^{2}, f=u_{1} h_{1}+u_{2} h_{2}$ and $h_{1}=\rho\left(v_{1}\right), h_{2}=\rho\left(v_{2}\right)$

Exam question II: Backward Pass

First, let's define the linear part of the first hidden layer:

$$
\begin{aligned}
& v_{1}=w_{t i e d} x_{1}+w_{3} x_{2}+w_{5} x_{3} \\
& v_{2}=w_{2} x_{1}+w_{\text {tied }} x_{2}+w_{6} x_{3}
\end{aligned}
$$

From I: $E=(y-f)^{2}, f=u_{1} h_{1}+u_{2} h_{2}$ and $h_{1}=\rho\left(v_{1}\right), h_{2}=\rho\left(v_{2}\right)$

$$
\frac{\partial E}{\partial w_{\text {tied }}}=\frac{\partial E}{\partial f}\left(\frac{\partial f}{\partial h_{1}} \frac{\partial h_{1}}{\partial v_{1}} \frac{\partial v_{1}}{\partial w_{\text {tied }}}+\frac{\partial f}{\partial h_{2}} \frac{\partial h_{2}}{\partial v_{2}} \frac{\partial v_{2}}{\partial w_{\text {tied }}}\right)
$$

Exam question II: Backward Pass

First, let's define the linear part of the first hidden layer:

$$
\begin{aligned}
& v_{1}=w_{t i e d} x_{1}+w_{3} x_{2}+w_{5} x_{3} \\
& v_{2}=w_{2} x_{1}+w_{\text {tied }} x_{2}+w_{6} x_{3}
\end{aligned}
$$

From I: $E=(y-f)^{2}, f=u_{1} h_{1}+u_{2} h_{2}$ and $h_{1}=\rho\left(v_{1}\right), h_{2}=\rho\left(v_{2}\right)$

$$
\begin{array}{r}
\frac{\partial E}{\partial w_{\text {tied }}}=\frac{\partial E}{\partial f}\left(\frac{\partial f}{\partial h_{1}} \frac{\partial h_{1}}{\partial v_{1}} \frac{\partial v_{1}}{\partial w_{\text {tied }}}+\frac{\partial f}{\partial h_{2}} \frac{\partial h_{2}}{\partial v_{2}} \frac{\partial v_{2}}{\partial w_{\text {tied }}}\right) \\
\frac{\partial E}{\partial f}=2(f-y), \frac{\partial f}{\partial h_{1}}=u_{1} \text { and } \frac{\partial v_{1}}{\partial w_{\text {tied }}}=x_{1} \cdot \frac{\partial h_{1}}{\partial v_{1}} \text { is harder .. }
\end{array}
$$

Exam question II: Backward Pass cont.

$$
\begin{aligned}
\frac{\partial h}{\partial v}=\frac{\partial \rho(v)}{\partial v} & =\frac{\partial}{\partial v} \frac{1}{1+e^{-v}} \\
& =-\left(1+e^{-v}\right)^{-2} \frac{\partial}{\partial v}\left(1+e^{-v}\right) \\
& =-\left(1+e^{-v}\right)^{-2}\left(-e^{-v}\right) \\
& =\frac{1}{\left(1+e^{-v}\right)} \frac{e^{-v}}{1+e^{-v}} \\
& =\rho(v)(1-\rho(v)) \\
& =h(1-h)
\end{aligned}
$$

$$
\begin{aligned}
\frac{\partial E}{\partial w_{\text {tied }}} & =\frac{\partial E}{\partial f}\left(\frac{\partial f}{\partial h_{1}} \frac{\partial h_{1}}{\partial v_{1}} \frac{\partial v_{1}}{\partial w_{\text {tied }}}+\frac{\partial f}{\partial h_{2}} \frac{\partial h_{2}}{\partial v_{2}} \frac{\partial v_{2}}{\partial w_{\text {tied }}}\right) \\
& =2(f-y)\left(u_{1} h_{1}\left(1-h_{1}\right) x_{1}+u_{2} h_{2}\left(1-h_{2}\right) x_{2}\right)
\end{aligned}
$$

CNNs \& Representation Learning

- More layers \rightarrow better representation
- Better representation \rightarrow better accuracy
(Assuming you can optimize)

ResNets: Problem setting

Is learning better networks as easy as stacking more layers?

ResNets: Problem setting

Is learning better networks as easy as stacking more layers?

Deep Residual Learning for Image Recognition

Figure 1. Training error (left) and test error (right) on CIFAR-10 with 20-layer and 56-layer "plain" networks. The deeper network has higher training error, and thus test error. Similar phenomena on ImageNet is presented in Fig. 4.

ResNets: Problem setting

Is learning better networks as easy as stacking more layers?

Deep Residual Learning for Image Recognition

Figure 1. Training error (left) and test error (right) on CIFAR-10 with 20-layer and 56-layer "plain" networks. The deeper network has higher training error, and thus test error. Similar phenomena on ImageNet is presented in Fig. 4.

No! Adding more layers decreases accuracy for both test \& train. Why?

Vanishing Gradients

What happens to the gradients if you build a very deep network?

$$
\frac{\partial L(\mathbf{W})}{\partial w_{i j}^{(k)}}=\frac{\partial L}{\partial v^{(L)}} \frac{\partial v^{(L)}}{\partial z^{(L)}} \frac{\partial z^{(L)}}{\partial v^{(L-1)}} \cdots \frac{\partial v^{(k)}}{\partial z^{(k)}} \frac{\partial z^{(k)}}{\partial w_{i j}^{(k)}}
$$

Vanishing Gradients

What happens to the gradients if you build a very deep network?

$$
\frac{\partial L(\mathbf{W})}{\partial w_{i j}^{(k)}}=\frac{\partial L}{\partial v^{(L)}} \frac{\partial v^{(L)}}{\partial z^{(L)}} \frac{\partial z^{(L)}}{\partial v^{(L-1)}} \cdots \frac{\partial v^{(k)}}{\partial z^{(k)}} \frac{\partial z^{(k)}}{\partial w_{i j}^{(k)}}
$$

Causes of vanishing gradients

- Deep nets e.g. $k \ll L$
- "Saturated" activations
- poor initialization, etc

Sigmoid
$\sigma(x)=\frac{1}{1+e^{-x}}$

tanh
$\tanh (x)$

ResNets: Framework to train super deep networks

- Add skip connections
- More stable gradients through connections
- Only changes the forward pass

Figure 2. Residual learning: a building block.

Let $H(x)=F(x)+x$

$$
\frac{\partial}{\partial x} H(x)=\frac{\partial}{\partial x} F(x)+1
$$

A ResNet module $F(x)$ need only model the residual $H(x)-x$

ResNets: Architecture

ResNets: Performance

Figure 4. Training on ImageNet. Thin curves denote training error, and bold curves denote validation error of the center crops. Left: plain networks of 18 and 34 layers. Right: ResNets of 18 and 34 layers. In this plot, the residual networks have no extra parameter compared to their plain counterparts.

model	top-1 err.	top-5 err.
VGG-16 [41]	28.07	9.33
GoogLeNet [44]	-	9.15
PReLU-net [13]	24.27	7.38
plain-34	28.54	10.02
ResNet-34 A	25.03	7.76
ResNet-34 B	24.52	7.46
ResNet-34 C	24.19	7.40
ResNet-50	22.85	6.71
ResNet-101	21.75	6.05
ResNet-152	$\mathbf{2 1 . 4 3}$	$\mathbf{5 . 7 1}$

Table 3. Error rates (\%, 10-crop testing) on ImageNet validation. VGG-16 is based on our test. ResNet-50/101/152 are of option B that only uses projections for increasing dimensions.

method			error (\%)
Maxout [10]			
NIN [25]			9.38
DSN [24]	8.81		
FitNet [35]	\# layers	\# params	8.22
Highway [42, 43]	19	2.5 M	8.39
Highway [42, 43]	19	2.3 M	$7.54(7.72 \pm 0.16)$
ResNet	20	1.25 M	8.80
ResNet	32	0.27 M	8.75
ResNet	44	0.66 M	7.51
ResNet	56	0.85 M	7.17
ResNet	110	1.7 M	$\mathbf{6 . 4 3}$
ResNet	1202	19.4 M	7.93

Table 6. Classification error on the CIFAR-10 test set. All methods are with data augmentation. For ResNet-110, we run it 5 times and show "best (mean \pm std)" as in [43].

Demo

- Training a ResNet requires a lot of resources
- But the model itself is small and can be loaded onto a laptops

HW2: Problem 1

Solving for w_{ol} :

$$
\begin{align*}
\hat{R}(\mathbf{w}) & =\sum_{i=1}^{n}\left(y_{i}-\mathbf{w}^{T} \mathbf{x}_{i}\right)^{2} \tag{1}\\
& =(\mathbf{y}-\mathbf{X} \mathbf{w})^{T}(\mathbf{y}-\mathbf{X} \mathbf{w}) \tag{2}\\
& =\mathbf{w}^{T} \mathbf{X}^{T} \mathbf{X} \mathbf{w}-2 \mathbf{y}^{T} \mathbf{X} \mathbf{w}+\mathbf{y}^{T} \mathbf{y} \tag{3}
\end{align*}
$$

Compute gradient:

$$
\frac{\partial}{\partial \mathbf{w}} \hat{R}(\mathbf{w})=2 \mathbf{X}^{T} \mathbf{X} \mathbf{w}-2 \mathbf{X}^{T} \mathbf{y}
$$

Set to 0 :

$$
\mathbf{w}_{o l s}=\left(\mathbf{X}^{T} \mathbf{X}\right)^{-1} \mathbf{x}^{T} \mathbf{y}
$$

HW2: Problem 1 cont.

Let $U \Sigma V^{T}$ be the SVD of X. We need:

- U, V orthonormal: $U^{T}=U^{-1}, U^{T} U=\mathbf{I}$
- $(A B)^{-1}=B^{-1} A^{-1}$

What is $\mathrm{w}_{\text {ols }}$?

$$
\begin{align*}
\mathbf{w}_{o l s} & =\left(\mathbf{X}^{T} \mathbf{X}\right)^{-1} \mathbf{X}^{T} \mathbf{y} \tag{1}\\
& =\left(\mathbf{V} \Sigma \mathbf{U}^{T} \mathbf{U} \Sigma \mathbf{V}^{T}\right)^{-1} \mathbf{V} \Sigma \mathbf{U}^{T} \mathbf{y} \tag{2}\\
& =\left(\mathbf{V} \Sigma^{2} \mathbf{V}^{T}\right)^{-1} \mathbf{V} \Sigma \mathbf{U}^{T} \mathbf{y} \tag{3}\\
& =\mathbf{V} \Sigma^{-2} \mathbf{V}^{T} \mathbf{V} \Sigma \mathbf{U}^{T} \mathbf{y} \tag{4}\\
& =\mathbf{V} \Sigma^{-2} \Sigma \mathbf{U}^{T} \mathbf{y} \tag{5}\\
& =\mathbf{V} \Sigma^{-1} \mathbf{U}^{T} \mathbf{y} \tag{6}
\end{align*}
$$

HW2: Problem 3

The ridge penalty term, $\lambda w^{T} w$
(a) shrinks the low variance components.
Σ is a diagonal matrix that contains the singular values of X

- $d_{j}=\Sigma_{j j}$ correspond to the stddev of feature j

$$
\begin{aligned}
\mathbf{w}_{\text {ridge }} & =\mathbf{V}\left(\Sigma^{2}+\lambda \mathbf{I}\right)^{-1} \Sigma \mathbf{U}^{T} \mathbf{y} \\
\mathbf{w}_{o l s} & =\mathbf{V} \Sigma^{-1} \mathbf{U}^{T} \mathbf{y}
\end{aligned}
$$

Since Σ is diagonal we can write:

$$
\begin{gathered}
\mathbf{X} \mathbf{w}_{\text {ols }}=\mathbf{U} \Sigma \mathbf{V}^{T} \mathbf{V} \Sigma^{-1} \mathbf{U}^{T} \mathbf{y}=\mathbf{U} \mathbf{U}^{T} \mathbf{y}=\sum_{j} \mathbf{u}_{j} \mathbf{u}_{j}^{T} \mathbf{y} \\
\mathbf{X} \mathbf{w}_{\text {ridge }}=\mathbf{U} \Sigma\left(\Sigma^{2}+\lambda \mathbf{I}\right)^{-1} \Sigma \mathbf{U}^{T} \mathbf{y}=\sum_{j} \mathbf{u}_{j} \frac{d_{j}^{2}}{d_{j}^{2}+\lambda} \mathbf{u}_{j}^{T} \mathbf{y}
\end{gathered}
$$

See Elements of statistical learning p. 66 for more details.

HW2: Problem 10 Is the variance of \mathbf{w} less than $\mathbf{w}_{\text {ridge }}$?

Define $\Sigma_{\lambda}=\left(\mathbf{X}^{\top} \mathbf{X}+\lambda \mathbf{I}\right) . \Sigma_{\lambda}$ is symmetric: $\left[\Sigma_{\lambda}^{-1}\right]^{T}=\Sigma_{\lambda}^{-1}$
From 8: $\operatorname{Var}[\mathbf{w}]=\sigma^{2}\left(\mathbf{X}^{\top} \mathbf{X}\right)^{-1}$
From 9: $\operatorname{Var}\left[\mathbf{w}_{\text {ridge }}\right]=\sigma^{2} \Sigma_{\lambda}^{-1}\left(\mathbf{X}^{\top} \mathbf{X}\right) \Sigma_{\lambda}^{-1}$

$$
\Delta \operatorname{Var}=\operatorname{Var}[\mathbf{w}]-\operatorname{Var}\left[\mathbf{w}_{\text {ridge }}\right]
$$

$\operatorname{Var}[\mathbf{w}] \succeq \operatorname{Var}\left[\mathbf{w}_{\text {ridge }}\right] \Longrightarrow \Delta \operatorname{Var} \succeq 0$
$A \succeq 0$ iff A is non-negative definite.

HW2: Problem 10 cont.

$$
\begin{align*}
& \Sigma_{\lambda}=\left(\mathbf{X}^{T} \mathbf{X}+\lambda \mathbf{I}\right) \\
& \begin{aligned}
\Delta \operatorname{Var} & =\operatorname{Var}[\mathbf{w}]-\operatorname{Var}\left[\mathbf{w}_{\text {ridge }}\right] \\
& =\sigma^{2}\left[\left(\mathbf{X}^{T} \mathbf{X}\right)^{-1}-\Sigma_{\lambda}^{-1}\left(\mathbf{X}^{T} \mathbf{X}\right) \Sigma_{\lambda}^{-1}\right] \\
& =\sigma^{2}\left[\Sigma_{\lambda}^{-1} \Sigma_{\lambda}\left(\mathbf{X}^{T} \mathbf{X}\right)^{-1} \Sigma_{\lambda} \Sigma_{\lambda}^{-1}-\Sigma_{\lambda}^{-1}\left(\mathbf{X}^{T} \mathbf{X}\right) \Sigma_{\lambda}^{-1}\right] \\
& =\sigma^{2} \Sigma_{\lambda}^{-1}\left[\Sigma_{\lambda}\left(\mathbf{X}^{T} \mathbf{X}\right)^{-1} \Sigma_{\lambda}-\mathbf{X}^{T} \mathbf{X}\right] \Sigma_{\lambda}^{-1} \\
& =\sigma^{2} \Sigma_{\lambda}^{-1}\left[\mathbf{X}^{T} \mathbf{X}+2 \lambda \mathbf{I}+\lambda^{2}\left(\mathbf{X}^{T} \mathbf{X}\right)^{-1}-\mathbf{X}^{T} \mathbf{X}\right] \Sigma_{\lambda}^{-1} \\
& =\sigma^{2} \Sigma_{\lambda}^{-1}\left[2 \lambda \mathbf{I}+\lambda^{2}\left(\mathbf{X}^{T} \mathbf{X}\right)^{-1}\right] \Sigma_{\lambda}^{-1} \\
& \succeq 0
\end{aligned} \tag{1}
\end{align*}
$$

