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Entropy

Let p = (p1, . . . , pk) be a distribution over k objects. The entropy of

p is defined as

H(p) = −
k∑
i=1

pi log pi.

There are several intuitions about (Shannon’s) entropy, most importantly

the compression idea, but we describe another interesting one.



Let X1, . . . , Xn be independent draws from the distribution p. Define

Yi = − log p(Xi). It is easy to check that E[Yi] = H(p). We now use

the law of large numbers:

∀ε > 0, lim
n→∞

P
( ∣∣∣∣∣1n

n∑
i=1

Yi −H(p)

∣∣∣∣∣ ≤ ε

)
= 1.



But we know that

1

n

n∑
i=1

Yi = −1

n
log p(X1, . . . , Xn),

resulting in

2−n(H+ε) ≤ p(X1, . . . , Xn) ≤ 2−n(H−ε),

with high probability!



Another way to state this is that

For large n, the distribution over sequences is like a uniform

distribution over Group A, and zero on Group B.

We call sequences in Group A, the “typical sequences”.



As an example, take a biased coin with distribution (34,
1
4). We toss this

coin 1000 times. Now the “most probable outcome” of this experiment,

is the sequence of all heads. For this sequence we have 1
n

∑
Yi =

− 1
1000 log(34)1000 ≈ 0.125, but the entropy of the distribution is−3

4 log 3
4−

1
4 log 1

4 ≈ 0.811. These two numbers are far away, and this makes the

“all heads” sequence not a typical sequence.



One thing to keep in mind, is that the size of the typical set is determined

by entropy. The higher the entropy, the larger the set of typical sequences.

In the extreme case, if we have an unbiased coin, then every sequence

would be typical. By simple calculation, one can show that the size of

typical set is approximatly equal to 2nH(p), so

Entropy is a measure of the volume of the typical set,

another intuition!



Kullback-Leibler Divergence

Let x be a string of length n over the alphabet {1, . . . , k}. For x we

can compute the frequencies of each alphabet letter and put all these

frequencies in a vector (p1, . . . , pk). We call this vector the “type of x”

and write it as Px. For example, if x = 1314231, and the alphabet is

{1, . . . , 4}, then Px = (37,
1
7,

2
7,

1
7).



Exercise 1. Show that the number of sequences having a certain

type P , is approximately equal to 2−nH(P ).



Now take an arbitrary distribution Q over the alphabet. The question

that we can ask now is what is the probability of observing a sequence

of type P under the assumption that the sequence is generated by Q.

Interestingly we can compute this probability and in the limit (n→∞)

the solution would be approximately equal to. . .



2−nKL(P‖Q),

where

KL(P‖Q) =

k∑
i=1

pi log
pi
qi
,

is called the Kullback-Leibler Divergence of P from Q.



As an example, let us say that we toss a fair coin 1000 times, and ask

what is the probability to get a sequence in which 3
4 of the outcomes are

heads and 1
4 of the outcomes are tails. We can see that

KL((34,
1
4)‖(12,

1
2)) =

3

4
log

3

2
+

1

4
log

1

2
≈ 0.189,

and by the result above we see that the probability is about 2−189 ≈

10−57.



This means that the higher the divergence of the “candidate distribution”

P and the “true distribution” Q gets, the lower would be the probability

of observing an outcome of P . That is why we can see the KL divergence

as a measure of “distance” between distributions.



Properties of KL Divergence

• Always KL(P‖Q) ≥ 0.

• For product distributions, KL is additive. That is,

KL(P1 ⊗ P2‖Q1 ⊗Q2) = KL(P1‖Q1) + KL(P2‖Q2).

• The Pinsker Inequality:

dTV(P,Q)2 ≤ 2 KL(P‖Q)



Application: Testing a Coin

We are given a coin, but we don’t know if it is biased or not. We only

know that the bias is either 1/2 or 1/2 + ε.

Question 1. How many times we should toss this coin, so that we

can tell if it is the biased coin or not?



Let us denote by X = (X1, . . . , Xn) the results of the tosses. Suppose

that we have a decision rule ψ that

ψ : X 7→ {B,U}.

Then, the probability of ψ making a mistake is

P[error] =
1

2
PB[ψ(X) 6= B] +

1

2
PU [ψ(X) 6= U ].



The following theorem tells us what is the best we can achieve:

Theorem 1. We have

inf
ψ
{PB[ψ(X) 6= B] + PU [ψ(X) 6= U ]} = 1− dTV(PB,PU).



Proof. Let A ⊂ Ω be the set {X : ψ(X) = B}. Note that a classifier

is identified by its acceptance set A. We have

PB[ψ(X) 6= B] + PU [ψ(X) 6= U ] = PB(Ac) + PU(A)

= 1− PB(A) + PU(A).



Taking the infimum gives

inf
ψ
{· · ·} = inf

A
{1− PB(A) + PU(A)}

= 1− sup
A

(PB(A) + PU(A))

= 1− dTV(PB,PU).



Now using Pinsker inequality, we understand that the least probability

of error is bounded below by

1−
√

2 KL(PB ‖PU).

Remains to compute the KL divergence. Note that both PB and PU are

product probability distributions.



Denote by pB the distribution of a single biased coin and pU likewise.

Then

KL(PB ‖PU) = n · KL(pB‖pU)

= n ·
(

(12 + ε) log
1
2 + ε

1
2

+ (12 − ε) log
1
2 − ε

1
2

)
≈ n ·

(
(12 + ε)(1 + 2ε) + (12 − ε)(1− 2ε)

)
= n · (1 + 4ε2) = O(nε2)



So for example, if we want to have P[error] ≤ 1/4, we should have

n = Ω(ε−2).
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Entropy

Let p = (p1, . . . , pk) be a distribution over k objects. The entropy

of p is defined as

H(p) = �
kX

i=1

pi log pi.

There are several intuitions about (Shannon’s) entropy, most impor-

tantly the compression idea, but we describe another interesting

one.



Let X1, . . . , Xn be independent draws from the distribution p. Define

Yi = � log p(Xi). It is easy to check that Yi = H(p). We now use the

law of large numbers:

8" > 0, lim
n!1

¶
✓ �����

1

n

nX

i=1

Yi �H(p)

�����  "

◆
= 1.



But we know that

1

n

nX

i=1

Yi = �1

n
log p(X1, . . . , Xn),

resulting in

2�n(H+")  p(X1, . . . , Xn)  2�n(H�")
,

with high probability!



Another way to state this is that

For large n, the distribution over sequences is like a uni-

form distribution over Group A, and zero on Group B.

We call sequences in Group A, the “typical sequences” .



As an example, take a biased coin with distribution (34,
1
4). We toss this

coin 1000 times. Now the “most probable outcome” of this experiment

is

For this sequence we have 1
n

P
Yi =

but the entropy of the distribution is �3
4 log

3
4 �

1
4 log

1
4 ⇡ 0.811.



One thing to keep in mind, is that the size of the typical set is deter-

mined by entropy.

By simple calculation, one can show that (Exercise) the size of typical

set is approximatly equal to 2nH(p), so

Entropy is a measure of the volume of the typical set,

another intuition to keep in mind!



Kullback-Leibler Divergence

Let x be a string of length n over the alphabet {1, . . . , k}. For x we

can compute the frequencies of each alphabet letter and put all these

frequencies in a vector (p1, . . . , pk). We call this vector the type of x

and write it as Px.



Exercise 1. Show that the number of sequences having a certain type

P , is approximately equal to 2�nH(P )
.



Now take an arbitrary distribution Q over the alphabet.

Question 1. What is the probability of observing a sequence of type

P under the assumption that the sequence is generated by Q.

Interestingly we can compute this probability and in the limit (n !

1) the solution would be approximately equal to. . .



2�nPQ

where

PQ =
kX

i=1

pi log
pi

qi
,

is called the Kullback-Leibler Divergence of P from Q.



As an example, let us say that we toss a fair coin 1000 times, and ask

what is the probability to get a sequence in which 3
4 of the outcomes

are heads and 1
4 of the outcomes are tails. We can see that

(34,
1
4)(

1
2,

1
2) = ,

and by the result above we see that the probability is about



This means that the higher the divergence of the “candidate distribu-

tion” P from the “true distribution” Q gets, the lower would be the

probability of observing an outcome of P . That is why we can see the

KL divergence as a measure of “distance” between distributions.



Properties of KL Divergence

• Always PQ � 0.

• For product distributions, KL is additive. That is,

P1 ⌦ P2Q1 ⌦Q2 = P1Q1 + P2Q2.

• The Pinsker Inequality:

P,Q
2  2PQ



Application: Testing a Coin

We are given a coin, but we don’t know if it is fair or not. We only

know that the bias is either 1/2 or 1/2 + ✏.

Question 2. How many times we should toss this coin, so that we

can tell if it is the biased coin or not?



Let us denote by X = (X1, . . . , Xn) the results of the tosses. Suppose

that we have a decision rule  that

 : X 7! {B,U}.

Then, the probability of  making a mistake is

¶[error] = 1

2
¶B (X) 6= B +

1

2
¶U (X) 6= U.



The following theorem tells us what is the best we can achieve:

Theorem 1. We have

inf
 

⇤¶B (X) 6= B + ¶U (X) 6= U = 1� ¶B,¶U.



Proof. Let A ⇢ ⌦ be the set X :  (X) = B.



Taking the infimum gives



Now we use Pinsker inequality:



Denote by pB the distribution of a single biased coin and pU likewise.

Then

¶B¶U = n · pBpU



So for example, if we want to have ¶[error]  1/4, we should have

n = ⌦(✏�2).



Learned Concepts

1. Shannon Entropy

2. Typical Sequence

3. Kullback-Leibler Divergence

4. Total Variation Distance



After break

1. Cross-entropy Loss (CE)

2. Relation to MLE and KL

3. Demo for intuition

4. Handling imbalance with CE



Maximum Likelihood Estimation (Recap)

Predicted likelihood P̂ (Y,X|w)
n

Data D= (Y, X) = { ( xi , Yi ) Yi .- o
W model parameters

iid

MLE
argm.ae Fly, xlw) = argmwax

F (Yl x , W) =
W

= argmwax II , FC Yilxicw)
=

r-argmiwn-7.logpcyilxi.ir#T



MLE and Cross-entropy discrete courtier

• Def Cross - entropy tecp.o.ge#pC-logQI--..IZpihegqi=-!pCDhyfCDify--y
:

• p =p Cy Ix) true distribution PCY ki ) = { ! else

p^w ← Fly ix. w) predictive dist ⇒ one -
hot encoding

-2 fly - c Ix , w ) =L
• Cross - entropy : for point xi cec

Hi Cp . Fw ) = -Zay pcylxihogpwcylxi) = - tagpwcyilxi )
For dataset D i-II Tam:

as ↳



KL divergence and Cross-entropy
• KL ( Pll Paw ) - Epc- log PIP] =EpfichgPwthgPJ-tEpw3-EpElogp@tlCPFwJteCPjteCP.P

) = HCP) t KLC Pll Pw) - min
=minwct-misnexactlywhatf.IS

tecp
,
Pw) the same as reversed te Cpw , P)=kL) t tec Pw ) for classification ?

reversed KL

Pcylxi) is one- hot encoding
where all mass is on y

=

yi

t
HCP

,
Pj ) computed only in

points where Ply--yilxi) =L

① and Pnw is ignored in other points y EY .

Alternatively , tick ,
P ) doesn't penalize a

for points where Pcylx ) >o , but Pwlylx) -o.

④



Eduapp

→ 0
. . .

I
. . .

O

"
c

O

-

CE (x) = - ¥, PH
Ix) .x,w)-

I



Eduapp

How to a'void that surprise
?



CE into the wild (NN case)
'

ii:÷÷:i÷÷:
"-

O

'

ipcyilxi.no) pcylxi)
to

Softmay functions as hypothesis models
are conservative enough
2-



Why CE? 3 class classification cat 1 dog / rabbit

Model 1 output Model 2 output

output ph target correct ?

i: f :0.3 0.4 0.3 d o o

0.2 0.1 0.7 t O O
O - O

← nuschassification error is
's

classification error = 7/3 the same classic
. error = %

et = - #fo - leg to:D . .,y
et =- ( o . log loan) to - bag 6.2) + a.ly/o.ajL'--In.?..cEi=gfhgo.ya-hyMt=a.ssL

"

= In ?_?
.

Cti - I = o.su

ego.at =



Why CE?
FH) n

.

CE is more
sensitive to p

as . (
mis classif . error e- max (pm -p)

€?j5÷!!:{"9.9!:p. a.
different.ae

? Why not MSE ? - Hwa. compare gradient step in tews

for CE with gradient step for MSE



Visualization

https://www.desmos.com/calculator/zytm2sf56e

Here p
is continuous , though in classification it is discrete

CE?

E
Try different configurations :

Ci ) p
is uuimode Cii) p has 2 modes Ciii) tecp, f) f- Hcp, g)

to see how CE & KL change



Weighted CE loss
What if D= { (Xi, Yi ) } != , is imbalanced ?

He binary classification : logistic

ID , I - Fo and 11321=-91

the.tw) = Ply: # ylx) - C- yx)
u

Dwllw) = ? Dw li Cw)
=L

use weighted CE loss b- deal with imbalance



Learned Concepts

1. Basics of Information Theory

2. KL divergence and Cross-Entropy

3. Imbalance in data



Eduapp: the question


