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• Bottom-up: Building up concepts from foundational to more advanced.
This strategy has the advantage that the reader at all times is able to rely
on their previously learned concepts.

• Top-down: Drilling down from practical needs to more basic
requirements. This goal-driven approach has the advantage that the
readers know at all times why they need to work on a particular concept.

-- <Mathematics for Machine Learning>

https://mml-book.github.io/
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1. Linear Algebra

2. (Brief) Vector Calculus

3. Probability Theory
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Matrix Multiplications

• Let matrix 𝐴𝐴 ∈ ℝ𝑚𝑚×𝑝𝑝 and 𝐵𝐵 ∈ ℝ𝑝𝑝×𝑛𝑛, matrix-matrix multiplication can be 
defined as

𝐶𝐶𝑖𝑖𝑖𝑖 = �
𝑘𝑘=1

𝑝𝑝

𝐴𝐴𝑖𝑖𝑘𝑘𝐵𝐵𝑘𝑘𝑖𝑖

the result matrix 𝐶𝐶 ∈ ℝ𝑚𝑚×𝑛𝑛

• Vectors can be viewed as matrices: 𝑥𝑥 ∈ ℝ𝑝𝑝×1

𝑦𝑦𝑖𝑖 = �
𝑘𝑘=1

𝑝𝑝

𝐴𝐴𝑖𝑖𝑘𝑘𝑥𝑥𝑘𝑘
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Matrix Multiplications

• Example: matrix-matrix multiplication:

1 2 3
3 2 1

0 2
1 −1
0 1

=

• Example: matrix-vector multiplication:

0 2
1 −1
0 1

2
3 =
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Matrix Multiplications

∀𝐴𝐴 ∈ ℝ𝑚𝑚×𝑛𝑛, 𝐵𝐵 ∈ ℝ𝑛𝑛×𝑝𝑝, 𝐶𝐶,𝐷𝐷 ∈ ℝ𝑝𝑝×𝑞𝑞

• Associativity: 𝐴𝐴𝐵𝐵 𝐶𝐶 = 𝐴𝐴(𝐵𝐵𝐶𝐶)

• Distributivity: 𝐴𝐴 + 𝐵𝐵 𝐶𝐶 = 𝐴𝐴𝐶𝐶 + 𝐵𝐵𝐶𝐶
𝐴𝐴 𝐶𝐶 + 𝐷𝐷 = 𝐴𝐴𝐶𝐶 + 𝐴𝐴𝐷𝐷

• NO Commutativity: 𝐴𝐴𝐵𝐵 ≠ 𝐵𝐵𝐴𝐴
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Linear Systems
• System of linear equations

𝑎𝑎11𝑥𝑥1 + ⋯+ 𝑎𝑎1𝑛𝑛𝑥𝑥𝑛𝑛 = 𝑏𝑏1
… …

𝑎𝑎𝑚𝑚1𝑥𝑥1 + ⋯+ 𝑎𝑎𝑚𝑚𝑛𝑛𝑥𝑥𝑛𝑛 = 𝑏𝑏𝑚𝑚

can be represented through matrix-vector multiplication:

𝑎𝑎11 … 𝑎𝑎1𝑛𝑛
⋮ ⋮

𝑎𝑎𝑚𝑚1 … 𝑎𝑎𝑚𝑚𝑛𝑛

𝑥𝑥1
⋮
𝑥𝑥𝑛𝑛

=
𝑏𝑏1
⋮
𝑏𝑏𝑚𝑚
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Linear Systems 𝐴𝐴𝑥𝑥 = 𝑏𝑏
𝐴𝐴 ∈ ℝ𝑚𝑚×𝑛𝑛, 𝑥𝑥 ∈ ℝ𝑛𝑛, 𝑏𝑏 ∈ ℝ𝑚𝑚: 𝑚𝑚 equations, 𝑛𝑛 variables

• 𝑚𝑚 = 𝑛𝑛: Square Systems
 Can have 0, 1,∞ solution(s).

• 𝑚𝑚 < 𝑛𝑛: Underdetermined Systems
 Typically have ∞ solutions.

• 𝑚𝑚 > 𝑛𝑛: Overdetermined Systems
 Linear Regression: least-squares solution (min 𝐴𝐴𝑥𝑥 − 𝑏𝑏 2

)
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Linear Systems 𝐴𝐴𝑥𝑥 = 𝑏𝑏
Square system examples:

• 2𝑥𝑥 + 3𝑦𝑦 = 5
𝑥𝑥 + 𝑦𝑦 = 3

• 2𝑥𝑥 + 3𝑦𝑦 = 5
4𝑥𝑥 + 6𝑦𝑦 = 5

• 2𝑥𝑥 + 3𝑦𝑦 = 5
4𝑥𝑥 + 6𝑦𝑦 = 10

9

Square system 𝐴𝐴𝑥𝑥 = 𝑏𝑏 has 
an unique solution.

⇔

𝐴𝐴 is invertible.

⇔

𝐴𝐴𝑥𝑥 = 0 only has trivial 
solution 𝑥𝑥 = 0.

⇒ 𝑥𝑥 = 4
𝑦𝑦 = −1

⇒ NO solutions

⇒ 𝑥𝑥 = 5−3𝑦𝑦
2

,∀𝑦𝑦 ∈ ℝ



Invertibility and Determinant
• Matrix 𝐴𝐴 ∈ ℝ𝑛𝑛×𝑛𝑛 is called invertible if there exists 𝐵𝐵 ∈ ℝ𝑛𝑛×𝑛𝑛 s.t. 𝐴𝐴𝐵𝐵 =
𝐼𝐼 = 𝐵𝐵𝐴𝐴, 𝐵𝐵 is then called the inverse of 𝐴𝐴, 𝐵𝐵 = 𝐴𝐴−1.

• 𝐴𝐴 ∈ ℝ𝑛𝑛×𝑛𝑛 is invertible or nonsingular if and only if it is square and full 
rank. Equivalently, having det 𝐴𝐴 ≠ 0.

• det 𝐴𝐴 :ℝ𝑛𝑛×𝑛𝑛 → ℝ

e.g. det 𝑎𝑎 𝑏𝑏
𝑐𝑐 𝑑𝑑 = 𝑎𝑎 𝑏𝑏

𝑐𝑐 𝑑𝑑 = 𝑎𝑎𝑑𝑑 − 𝑐𝑐𝑏𝑏

𝑎𝑎11 𝑎𝑎12 𝑎𝑎13
𝑎𝑎21 𝑎𝑎22 𝑎𝑎23
𝑎𝑎31 𝑎𝑎32 𝑎𝑎33

= 𝑎𝑎11
𝑎𝑎22 𝑎𝑎23
𝑎𝑎32 𝑎𝑎33 − 𝑎𝑎12

𝑎𝑎21 𝑎𝑎23
𝑎𝑎31 𝑎𝑎33 + 𝑎𝑎13

𝑎𝑎21 𝑎𝑎22
𝑎𝑎31 𝑎𝑎32
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Eigenvalues and Eigenvectors
• Let 𝐴𝐴 ∈ ℝ𝑛𝑛×𝑛𝑛 be a square matrix. 𝜆𝜆 ∈ ℝ is an 

eigenvalue of 𝐴𝐴 and 𝑥𝑥 ∈ ℝ𝑛𝑛\ {0} is the 
corresponding eigenvector if

𝐴𝐴𝑥𝑥 = 𝜆𝜆𝑥𝑥

⇔ 𝐴𝐴 − 𝜆𝜆𝐼𝐼𝑛𝑛 𝑥𝑥 = 0 has solutions other than 𝑥𝑥 = 0.

⇔ 𝑑𝑑𝑑𝑑𝑑𝑑 𝐴𝐴 − 𝜆𝜆𝐼𝐼𝑛𝑛 = 0. (Polynomial of degree 𝑛𝑛)
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𝐴𝐴 is invertible. 
Equivalently, det 𝐴𝐴 ≠ 0

⇔

𝐴𝐴𝑥𝑥 = 0 only has trivial 
solution 𝑥𝑥 = 0.



Eigenvalues and Eigenvectors
Example: find the eigenvalues and eigenvectors of 

𝐴𝐴 =
1

1
2

1
2

1
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Solution:

𝜆𝜆1 =
1
2

, 𝐸𝐸𝜆𝜆1 = span 1
−1 ,

𝜆𝜆2 =
3
2

, 𝐸𝐸𝜆𝜆2 = span 1
1 .

Eigenvalues and Eigenvectors



Eigendecomposition

𝐴𝐴
| |
𝑥𝑥1 ⋯ 𝑥𝑥𝑛𝑛
| |

=
| |
𝑥𝑥1 ⋯ 𝑥𝑥𝑛𝑛
| |

𝜆𝜆1 0
⋱

0 𝜆𝜆𝑛𝑛

𝐴𝐴𝐴𝐴 = 𝐴𝐴𝐷𝐷
⇔

𝐴𝐴 = 𝐴𝐴𝐷𝐷𝐴𝐴−1 (if and only if eigenvectors of 𝐴𝐴 form a basis of ℝ𝑛𝑛)
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Eigendecomposition
Example: find the Eigendecomposition of  

𝐴𝐴 =
1

1
2

1
2

1

𝜆𝜆1 =
1
2

, 𝐸𝐸𝜆𝜆1 = span 1
−1 ,

𝜆𝜆2 =
3
2

, 𝐸𝐸𝜆𝜆2 = span 1
1 .
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Eigendecomposition

𝐴𝐴 = 𝐴𝐴𝐷𝐷𝐴𝐴−1

𝐷𝐷 =
1
2

0

0 3
2

, 𝐴𝐴 = 1
2

1 1
−1 1 , 𝐴𝐴−1 = 1

2
1 −1
1 1

16

Optional, to form a set of 
(nice) normalized basis 



Matrix Decompositions
• Eigendecomposition: 𝐴𝐴 ∈ ℝ𝑛𝑛×𝑛𝑛, eigenvectors of 𝐴𝐴 form a basis of ℝ𝑛𝑛

𝐴𝐴 = 𝐴𝐴𝐷𝐷𝐴𝐴−1

• QR/QU Decomposition (from Gram-Schmidt process): 𝐴𝐴 ∈ ℝ𝑛𝑛×𝑛𝑛

𝐴𝐴 = 𝑄𝑄𝑄𝑄
• LU Decomposition (from Gaussian Elimination): 𝐴𝐴 ∈ ℝ𝑚𝑚×𝑛𝑛

𝐴𝐴 = 𝐿𝐿𝑄𝑄
• Singular Value Decomposition (SVD): 
𝐴𝐴 ∈ ℝ𝑚𝑚×𝑛𝑛,𝑄𝑄 ∈ ℝ𝑚𝑚×𝑚𝑚,𝑉𝑉 ∈ ℝ𝑛𝑛×𝑛𝑛. Σ ∈ ℝ𝑚𝑚×𝑛𝑛 is a diagonal matrix.

𝐴𝐴 = 𝑄𝑄Σ𝑉𝑉𝑇𝑇

• Cholesky Decomposition: 𝐴𝐴 ∈ ℝ𝑛𝑛×𝑛𝑛, symmetric and positive definite
𝐴𝐴 = 𝐿𝐿𝐿𝐿𝑇𝑇
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Positive Definiteness of Matrices

• Symmetric: 𝐴𝐴 ∈ ℝ𝑛𝑛×𝑛𝑛 is symmetric if 𝐴𝐴𝑖𝑖𝑖𝑖 = 𝐴𝐴𝑖𝑖𝑖𝑖 ,∀𝑖𝑖, 𝑗𝑗 ∈ [1,𝑛𝑛].

e.g. 1 2
2 0 ,         

1 2 3
2 −1 5
3 5 0

• Symmetric Positive Definite: A Symmetric matrix 𝐴𝐴 ∈ ℝ𝑛𝑛×𝑛𝑛 is called 
symmetric, positive definite if

∀𝑥𝑥 ∈ ℝ𝑛𝑛\{0}:     𝑥𝑥𝑇𝑇𝐴𝐴𝑥𝑥 > 0
If only ≥ holds, 𝐴𝐴 is called symmetric, positive semidefinite.
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Positive Definiteness of Matrices

Example: find out whether the following matrix is symmetric positive 
definite

𝐴𝐴 = 9 6
6 5
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1. Linear Algebra

2. (Brief) Vector Calculus

3. Probability Theory
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Notion of Derivatives

Derivative: Let 𝑓𝑓:ℝ → ℝ, 𝑥𝑥 → 𝑓𝑓(𝑥𝑥), the 
derivative is defined as:

𝑑𝑑𝑓𝑓
𝑑𝑑𝑥𝑥

≔ lim
𝛿𝛿𝛿𝛿→0

𝑓𝑓 𝑥𝑥 + 𝛿𝛿𝑥𝑥 − 𝑓𝑓 𝑥𝑥
𝛿𝛿𝑥𝑥
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Notion of Derivatives
Partial Derivative: Let 𝑓𝑓:ℝ𝑛𝑛 → ℝ,𝒙𝒙 → 𝑓𝑓 𝒙𝒙 ,𝒙𝒙 ∈ ℝ𝑛𝑛 of 𝑛𝑛 variables, the 
partial derivative is defined as:

𝜕𝜕𝑓𝑓
𝜕𝜕𝑥𝑥𝑖𝑖

≔ lim
𝛿𝛿𝛿𝛿→0

𝑓𝑓 𝑥𝑥1, … , 𝑥𝑥𝑖𝑖 + 𝛿𝛿𝑥𝑥, … 𝑥𝑥𝑛𝑛 − 𝑓𝑓 𝑥𝑥1, … , 𝑥𝑥𝑖𝑖 , … 𝑥𝑥𝑛𝑛
𝛿𝛿𝑥𝑥

Gradient: Collect partial derivatives of all variables and form a row 
vector

𝛻𝛻𝑓𝑓 = grad𝑓𝑓 =
𝑑𝑑𝑓𝑓
𝑑𝑑𝒙𝒙

=
𝜕𝜕𝑓𝑓
𝜕𝜕𝑥𝑥1

𝜕𝜕𝑓𝑓
𝜕𝜕𝑥𝑥2

…
𝜕𝜕𝑓𝑓
𝜕𝜕𝑥𝑥𝑛𝑛

∈ ℝ1×𝑛𝑛
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Notion of Derivatives
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Jacobian: Let 𝑓𝑓:ℝ𝑛𝑛 → ℝ𝑚𝑚,𝒙𝒙 → 𝒇𝒇 𝒙𝒙 ,𝒙𝒙 ∈ ℝ𝑛𝑛,𝒇𝒇 𝒙𝒙 ∈ ℝ𝑚𝑚, stacking all 
the gradient of components of 𝒇𝒇 𝒙𝒙 into a matrix:

𝐽𝐽 =
𝑑𝑑𝒇𝒇 𝒙𝒙
𝑑𝑑𝒙𝒙

=

𝑑𝑑𝑓𝑓1 𝒙𝒙
𝑑𝑑𝒙𝒙
⋮

𝑑𝑑𝑓𝑓𝑚𝑚 𝒙𝒙
𝑑𝑑𝒙𝒙

=

𝑑𝑑𝑓𝑓1 𝒙𝒙
𝑑𝑑𝑥𝑥1

⋯
𝑑𝑑𝑓𝑓1 𝒙𝒙
𝑑𝑑𝑥𝑥𝑛𝑛

⋮ ⋮
𝑑𝑑𝑓𝑓𝑚𝑚 𝒙𝒙
𝑑𝑑𝑥𝑥1

⋯
𝑑𝑑𝑓𝑓𝑚𝑚 𝒙𝒙
𝑑𝑑𝑥𝑥𝑛𝑛

∈ ℝ𝑚𝑚×𝑛𝑛



Notion of Derivatives

• Derivative: 𝑓𝑓:ℝ → ℝ, 𝑑𝑑𝑑𝑑
𝑑𝑑𝛿𝛿
∈ ℝ

• Gradient: 𝑓𝑓:ℝ𝑛𝑛 → ℝ, 𝛻𝛻𝑓𝑓 ∈ ℝ1×𝑛𝑛

• Jacobian: 𝑓𝑓:ℝ𝑛𝑛 → ℝ𝑚𝑚, 𝐽𝐽 ∈ ℝ𝑚𝑚×𝑛𝑛
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Chain Rule
• Real-valued functions: 𝑓𝑓,𝑔𝑔:ℝ → ℝ, 𝑥𝑥 → 𝑓𝑓 𝑥𝑥 , 𝑥𝑥 → 𝑔𝑔 𝑥𝑥

𝑑𝑑𝑔𝑔 𝑓𝑓 𝑥𝑥
𝑑𝑑𝑥𝑥

=
𝑑𝑑𝑔𝑔(𝑓𝑓 𝑥𝑥 )
𝑑𝑑𝑓𝑓(𝑥𝑥)

𝑑𝑑𝑓𝑓(𝑥𝑥)
𝑑𝑑𝑥𝑥

• Multi-variable functions: 𝑓𝑓:ℝ𝑛𝑛 → ℝ𝑚𝑚,𝒙𝒙 → 𝒇𝒇 𝒙𝒙 ,𝑔𝑔:ℝ𝑚𝑚 → ℝ,𝒙𝒙 → 𝑔𝑔 𝒙𝒙

𝑑𝑑𝑔𝑔 𝑓𝑓 𝒙𝒙
𝑑𝑑𝒙𝒙

=
𝑑𝑑𝑔𝑔(𝒇𝒇 𝒙𝒙 )
𝑑𝑑𝒇𝒇(𝒙𝒙)

𝑑𝑑𝒇𝒇 𝒙𝒙
𝑑𝑑𝒙𝒙

25

1 × 𝑛𝑛 1 × 𝑚𝑚 𝑚𝑚 × 𝑛𝑛



More Complicated Derivatives

• Derivative of Matrices
• Higher-order Derivatives

[See references]
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Matrix Cookbook
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https://www.math.uwaterloo.ca/%7Ehwolkowi/matrixcookbook.pdf


1. Linear Algebra

2. (Brief) Vector Calculus

3. Probability Theory

28



Probability Space (Ω,𝒜𝒜,𝐴𝐴)

• Sample Space Ω: set of all possible outcomes of an experiment

• Event Space 𝒜𝒜: space of potential results of the experiment (a 
collection of all subsets of Ω in discrete setting) 

• Probability 𝐴𝐴: with each event 𝐴𝐴 ∈ 𝒜𝒜, we associate a number 𝐴𝐴(𝐴𝐴)
that measures the ‘degree of belief’ that the event will occur.
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Probability Space (Ω,𝒜𝒜,𝐴𝐴)

• Sample Space Ω: set of all possible outcomes of an experiment

• Event Space 𝒜𝒜: space of potential results of the experiment (a 
collection of all subsets of Ω in discrete setting) 

• Probability 𝐴𝐴: with each event 𝐴𝐴 ∈ 𝒜𝒜, we associate a number 𝐴𝐴(𝐴𝐴)
that measures the ‘degree of belief’ that the event will occur.

• Random Variable 𝑋𝑋: A function/mapping 𝑋𝑋:Ω → 𝒯𝒯. We are interested 
in the probabilities on elements of 𝒯𝒯.
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Probability Space (Ω,𝒜𝒜,𝐴𝐴)
Example: tossing coins

• Experiment: tossing coins for two consecutive times.
• Sample Space: Ω = {ℎℎ, 𝑑𝑑𝑑𝑑,ℎ𝑑𝑑, 𝑑𝑑ℎ} (ℎ for head and 𝑑𝑑 for tails)
• Random Variable: 𝑋𝑋 maps the event to number of heads. 𝒯𝒯 = 0,1,2 .

𝑋𝑋 ℎℎ = 2,𝑋𝑋 𝑑𝑑𝑑𝑑 = 0,𝑋𝑋 ℎ𝑑𝑑 = 𝑋𝑋 𝑑𝑑ℎ = 1
• Probabilities (on 𝒯𝒯): 

𝐴𝐴 𝑋𝑋 = 0 = 0.25,𝐴𝐴 𝑋𝑋 = 1 = 0.5,𝐴𝐴 𝑥𝑥 = 2 = 0.25
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PDF and CDF
• Probability Density Function (PDF): 

𝑓𝑓:ℝ → ℝ s.t. ∀𝒙𝒙 ∈ ℝ, 𝑓𝑓 𝑥𝑥 ≥ 0 and 
∫ℝ 𝑓𝑓 𝑥𝑥 𝑑𝑑𝑥𝑥 = 1

We can associate a random variable 𝑋𝑋 with 
PDF: 

𝐴𝐴 𝑎𝑎 ≤ 𝑋𝑋 ≤ 𝑏𝑏 = �
𝑎𝑎

𝑏𝑏
𝑓𝑓 𝑥𝑥 𝑑𝑑𝑥𝑥

• Cumulative Distribution Function(CDF):
𝐹𝐹𝑋𝑋 𝑥𝑥 = 𝐴𝐴(𝑋𝑋 ≤ 𝑥𝑥)

𝐹𝐹𝑋𝑋 𝑥𝑥 = �
−∞

𝛿𝛿
𝑓𝑓 𝑧𝑧 𝑑𝑑𝑧𝑧 , 𝑓𝑓 𝑥𝑥 =

𝑑𝑑𝐹𝐹𝑋𝑋 𝑥𝑥
𝑑𝑑𝑥𝑥

32
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Joint Distribution

• Let 𝑋𝑋,𝑌𝑌 be two random variables over the same probability space. 
Joint distribution is defined as

𝐹𝐹𝑋𝑋,𝑌𝑌 𝑥𝑥,𝑦𝑦 = 𝐴𝐴 𝑋𝑋 ≤ 𝑥𝑥,𝑌𝑌 ≤ 𝑦𝑦
joint density:

𝑓𝑓 𝑥𝑥,𝑦𝑦 =
𝜕𝜕2𝐹𝐹𝑋𝑋,𝑌𝑌(𝑥𝑥,𝑦𝑦)

𝜕𝜕𝑥𝑥𝜕𝜕𝑦𝑦
• Marginalization:

𝑓𝑓𝑋𝑋 𝑥𝑥 = �
−∞

∞
𝑓𝑓 𝑥𝑥,𝑦𝑦 𝑑𝑑𝑦𝑦 , 𝐹𝐹𝑋𝑋 𝑥𝑥 = 𝐹𝐹𝑋𝑋,𝑌𝑌(𝑥𝑥,∞)
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Independence 

• Two events 𝐴𝐴 and 𝐵𝐵 are independent if 

𝐴𝐴 𝐴𝐴 ∩ 𝐵𝐵 = 𝐴𝐴 𝐴𝐴 𝐴𝐴(𝐵𝐵)

• Two Random Variables 𝑋𝑋 and 𝑌𝑌 are independent if their joint 
distribution function factorizes, i.e.

𝐹𝐹𝑋𝑋,𝑌𝑌 𝑥𝑥,𝑦𝑦 = 𝐹𝐹𝑋𝑋 𝑥𝑥 𝐹𝐹𝑌𝑌(𝑦𝑦)
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Conditional Probability

Probability of 𝐴𝐴 given 𝐵𝐵 has occurred:

𝐴𝐴 𝐴𝐴 𝐵𝐵 =
𝐴𝐴 𝐴𝐴 ∩ 𝐵𝐵
𝐴𝐴 𝐵𝐵

• Laws regarding conditional probability:
• Law of total probability: 𝐴𝐴 𝐵𝐵 = ∑𝑖𝑖=1𝑛𝑛 𝐴𝐴 𝐵𝐵 𝐴𝐴𝑖𝑖 𝐴𝐴(𝐴𝐴𝑖𝑖)
• Bayes Rule: 𝐴𝐴 𝐴𝐴 𝐵𝐵 = 𝐴𝐴 𝐵𝐵 𝐴𝐴 𝑃𝑃 𝐴𝐴

𝑃𝑃 𝐵𝐵
• Chain Rule: 𝐴𝐴 𝐴𝐴1, …𝐴𝐴𝑛𝑛 = 𝐴𝐴 𝐴𝐴1 𝐴𝐴 𝐴𝐴2 𝐴𝐴1 𝐴𝐴(𝐴𝐴3|𝐴𝐴1,𝐴𝐴2)⋯𝐴𝐴(𝐴𝐴𝑛𝑛|𝐴𝐴1, … ,𝐴𝐴𝑛𝑛−1)

[See references]
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Expectation

• The expected value of a function 𝑔𝑔:ℝ → ℝ of a univariate continuous 
random variable 𝑋𝑋~𝑝𝑝(𝑥𝑥) is given by

𝔼𝔼𝑋𝑋 𝑔𝑔 𝑥𝑥 = �
𝒳𝒳
𝑔𝑔 𝑥𝑥 𝑝𝑝 𝑥𝑥 𝑑𝑑𝑥𝑥

• The mean of a random variable 𝑋𝑋 is defined as 

𝔼𝔼𝑋𝑋 𝑥𝑥 = �
𝒳𝒳
𝑥𝑥𝑝𝑝 𝑥𝑥 𝑑𝑑𝑥𝑥

• Linearity: 
𝔼𝔼𝑋𝑋 𝑎𝑎𝑓𝑓 𝑥𝑥 + 𝑏𝑏𝑔𝑔 𝑥𝑥 = 𝑎𝑎𝔼𝔼𝑋𝑋 𝑓𝑓 𝑥𝑥 + 𝑏𝑏𝔼𝔼𝑋𝑋[𝑔𝑔 𝑥𝑥 ]
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(Co)variance

• Covariance between two univariate random variables 𝑋𝑋,𝑌𝑌 ∈ ℝ:
𝐶𝐶𝐶𝐶𝑣𝑣𝑋𝑋,𝑌𝑌[𝑥𝑥,𝑦𝑦] = 𝔼𝔼𝑋𝑋,𝑌𝑌 (𝑥𝑥 − 𝔼𝔼𝑋𝑋 𝑥𝑥 )(𝑦𝑦 − 𝔼𝔼𝑌𝑌 𝑦𝑦 ) = 𝔼𝔼 𝑥𝑥𝑦𝑦 − 𝔼𝔼 𝑥𝑥 𝔼𝔼[𝑦𝑦]

• Variance is the covariance with itself:
𝕍𝕍 𝑥𝑥 = 𝐶𝐶𝐶𝐶𝑣𝑣𝑋𝑋,𝑋𝑋[𝑥𝑥, 𝑥𝑥] = 𝔼𝔼𝑋𝑋 𝑥𝑥 − 𝔼𝔼𝑋𝑋 𝑥𝑥 2 = 𝔼𝔼𝑋𝑋 𝑥𝑥2 − 𝔼𝔼𝑋𝑋 𝑥𝑥 2

• NOT Linear:
𝕍𝕍 𝑥𝑥 + 𝑦𝑦 = 𝕍𝕍 𝑥𝑥 + 𝕍𝕍 𝑦𝑦 + 𝐶𝐶𝐶𝐶𝑣𝑣 𝑥𝑥,𝑦𝑦 + 𝐶𝐶𝐶𝐶𝑣𝑣[𝑦𝑦, 𝑥𝑥]
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Guassian (Normal) Distribution

• The Gaussian distribution has a density

𝑝𝑝 𝑥𝑥 𝜇𝜇,𝜎𝜎2 =
1
2𝜋𝜋𝜎𝜎2

exp −
𝑥𝑥 − 𝜇𝜇 2

2𝜎𝜎2

Denoted as 𝑋𝑋~𝑁𝑁(𝑥𝑥|𝜇𝜇,𝜎𝜎2)
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PDF, CDF, Joint distribution, Expectation, Covariance, Gaussian Distribution 
can all be extended with some efforts to higher dimensions.
[see references]



References

• Mathematics for Machine Learning
• Matrix Cookbook
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https://mml-book.github.io/
https://www.math.uwaterloo.ca/%7Ehwolkowi/matrixcookbook.pdf


End of Presentation
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