IML Tutorial 2 Linear Regression

26.02.2020 Xianyao Zhang (CGL/DRS) xianyao.zhang@inf.ethz.ch

Correction of HW 1 on Moodle

- Question 14
- <u>https://piazza.com/class/k6i4ygvjdai2re?cid=40</u>

Today's Tutorial

- A recap on recent lectures regarding regression
- More in-depth demos based on Prof. Krause's demos
 - Also a bit about python usage
- Please only ask questions about this tutorial
 - Unless you think it is relevant enough and I can definitely answer it :)

• Model: $\hat{y} = w_1 x_1 + w_2 x_2 + \ldots + w_{d-1} x_{d-1} + w_0$

- Model: $\hat{y} = w_1 x_1 + w_2 x_2 + \ldots + w_{d-1} x_{d-1} + w_0$

• **OR**: $\hat{y} = \mathbf{w}^T \mathbf{x}, \mathbf{w} = [w_0, w_1, w_2, ..., w_{d-1}]^T, \mathbf{x} = [1, x_1, x_2, ..., x_{d-1}]^T$

- Model: $\hat{y} = w_1 x_1 + w_2 x_2 + \ldots + w_{d-1} x_{d-1} + w_0$
- **OR**: $\hat{y} = \mathbf{w}^T \mathbf{x}, \mathbf{w} = [w_0, w_1, w_2, ..., w_{d-1}]^T, \mathbf{x} = [1, x_1, x_2, ..., x_{d-1}]^T$
- Data distribution: $(\mathbf{x}_i, y_i) \sim P_{(\mathbf{x}, y)}$
 - e.g. $y = \mathbf{u}^T \mathbf{x} + \epsilon$, $\epsilon \sim N(0,1)$; e.g. $y \sim N(\|\mathbf{x}\|_2, \sigma^2)$

- Model: $\hat{y} = w_1 x_1 + w_2 x_2 + \ldots + w_{d-1} x_{d-1} + w_0$
- Data distribution: $(\mathbf{x}_i, y_i) \sim P_{(\mathbf{x}, y)}$
 - e.g. $y = \mathbf{u}^T \mathbf{x} + \epsilon$, $\epsilon \sim N(0,1)$; e.g. $y \sim N(||\mathbf{x}||_2, \sigma^2)$
- True risk of model w: $R(\mathbf{w}) = \mathbb{E}_{P_{(x,y)}}[(y \mathbf{w}^T \mathbf{x})^2]$

• OR: $\hat{y} = \mathbf{w}^T \mathbf{x}, \mathbf{w} = [w_0, w_1, w_2, \dots, w_{d-1}]^T, \mathbf{x} = [1, x_1, x_2, \dots, x_{d-1}]^T$

- Model: $\hat{y} = w_1 x_1 + w_2 x_2 + \ldots + w_{d-1} x_{d-1} + w_0$
- **OR**: $\hat{y} = \mathbf{w}^T \mathbf{x}, \mathbf{w} = [w_0, w_1, w_2, ..., w_{d-1}]^T, \mathbf{x} = [1, x_1, x_2, ..., x_{d-1}]^T$
- Data distribution: $(\mathbf{x}_i, y_i) \sim P_{(\mathbf{x}, y)}$
- e.g. $y = \mathbf{u}^T \mathbf{x} + \epsilon$, $\epsilon \sim N(0,1)$; e.g. $y \sim N(\|\mathbf{x}\|_2, \sigma^2)$ • True risk of model w: $R(\mathbf{w}) = \mathbb{E}_{P(x,y)}[(y - \mathbf{w}^T \mathbf{x})^2]$
- Data is usually infinite. How to estimate the true risk?

• Given a function $f(\cdot)$ and a distri $\mathbb{E}_{X \sim p}[f(X)]$

• Given a function $f(\cdot)$ and a distribution $p(\cdot)$ in a domain Ω , estimate

 $\mathbb{E}_{X \sim p}[f(X)]$

•
$$\mathbb{E}_{X \sim p}[f(X)] = \int_{\Omega} f(x)p(x) \, dx \approx \frac{1}{N} \sum_{i=1}^{N} f(x^{(i)})$$

• $x^{(i)}$ are i.i.d. samples from distribution p

• Given a function $f(\cdot)$ and a distribution $p(\cdot)$ in a domain Ω , estimate

 $\mathbb{E}_{X \sim p}[f(X)]$

$$\mathbb{E}_{X \sim p}[f(X)] = \int_{\Omega} f(x)p(x) \, dx \approx \frac{1}{N} \sum_{i=1}^{N} f(x^{(i)})$$

- $x^{(i)}$ are i.i.d. samples from distribution p
- This estimate is unbiased: $\mathbb{E}_{\chi^{(i)}}$

• Given a function $f(\cdot)$ and a distribution $p(\cdot)$ in a domain Ω , estimate

$$\sum_{p} \left[\frac{1}{N} \sum_{i=1}^{N} f(x^{(i)}) \right] = \int_{\Omega} f(x) p(x) \, dx$$

- In general, to estimate integral $\int_{\Omega} f(x) dx$
- Use samples from distribution $q(\cdot)$

$$\int_{\Omega} f(x) \, dx \approx \frac{1}{N} \sum_{i=1}^{N} \frac{f(x^{(i)})}{q(x^{(i)})}$$

• $x^{(i)} \sim q$ instead of p

 \bullet

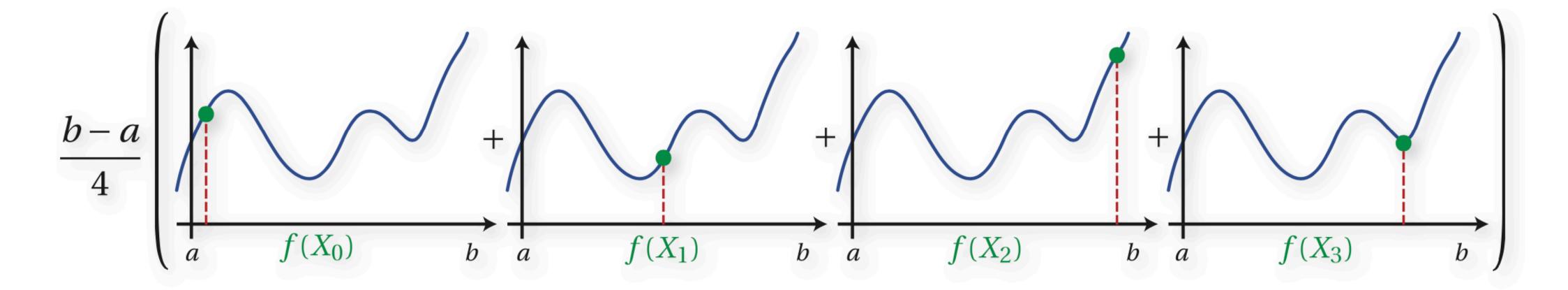
- In general, to estimate integral $\int_{\Omega} f(x) dx$
- Use samples from distribution $q(\cdot)$

$$\int_{\Omega} f(x) \, dx \approx \frac{1}{N} \sum_{i=1}^{N} \frac{f(x^{(i)})}{q(x^{(i)})}$$

• $x^{(i)} \sim q$ instead of p

 \bullet

• Unbiased if q(x) is non-zero wherever f(x) is non-zero



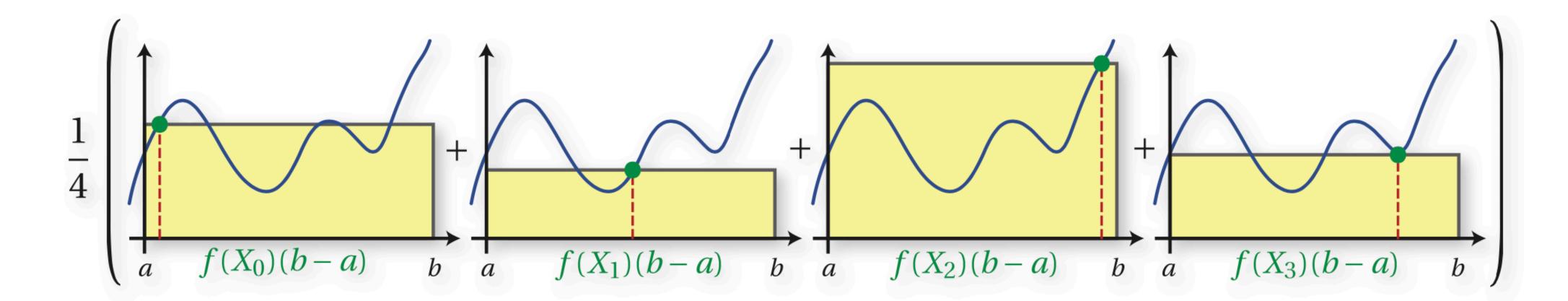


Image credit: Wojciech Jarosz

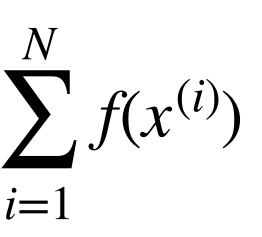
•
$$\mathbb{E}_{X \sim p}[f(X)] = \int_{\Omega} f(x)p(x) \, dx \approx \frac{1}{N} \sum_{i=1}^{N} \sum_{i=1}^{N} \sum_{i=1}^{N} \frac{1}{N} \sum_{i=1}^{N} \sum_{i=1}^{N} \frac{1}{N} \sum_{i=1}^{N} \sum_{i=1}^{N}$$

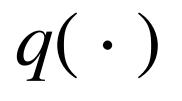
• Can also use another distribution $q(\cdot)$

$$\int_{\Omega} f(x)p(x) \, dx = \int_{\Omega} f(x)\frac{p(x)}{q(x)}q(x) \, dx \approx \frac{1}{N} \sum_{i=1}^{N} f(x^{(i)})\frac{p(x^{(i)})}{q(x^{(i)})}$$

• $x^{(i)} \sim q$ instead of p

• Unbiased if q(x) is non-zero wherev





$$\operatorname{ver} f(x)p(x)$$
 is non-zero

• Hence we can use a finite dataset to estimate true risk $R(\mathbf{w})$

•
$$R(\mathbf{w}) = \mathbb{E}_{P_{(\mathbf{x},y)}}[(y - \mathbf{w}^T \mathbf{x})^2]$$

• Hence we can use a finite dataset to estimate true risk R(w)

•
$$R(\mathbf{w}) = \mathbb{E}_{P_{(\mathbf{x},y)}}[(y - \mathbf{w}^T \mathbf{x})^2]$$

Empirical risk of model w on D: •

• Dataset: $D = \{(\mathbf{x}_i, y_i)\}_{i=1}^N, D \sim P_D$, i.i.d. data examples $(\mathbf{x}_i, y_i) \sim P(\mathbf{x}, y)$

$$\hat{R}_D(\mathbf{w}) = \frac{1}{N} \sum_{i=1}^N (y_i - \mathbf{w}^T \mathbf{x}_i)^2$$

• Hence we can use a finite dataset to estimate true risk $R(\mathbf{w})$

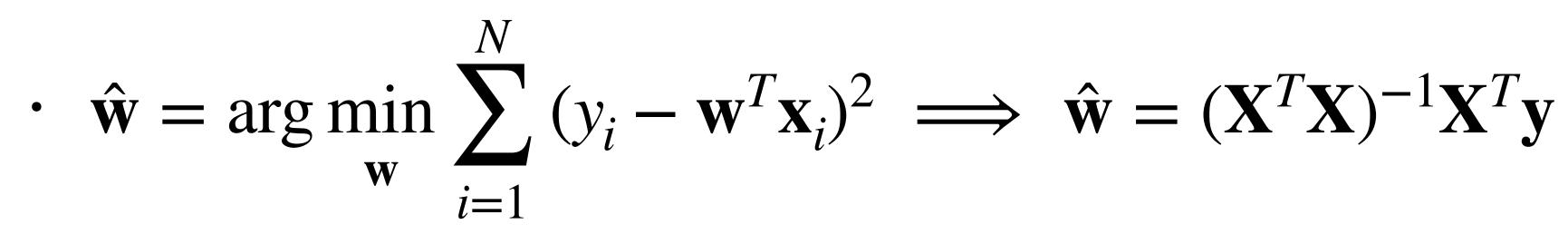
•
$$R(\mathbf{w}) = \mathbb{E}_{P_{(\mathbf{x},y)}}[(y - \mathbf{w}^T \mathbf{x})^2]$$

- Dataset: $D = \{(\mathbf{x}_i, y_i)\}_{i=1}^N, D \sim P_D$, i.i.d. data examples $(\mathbf{x}_i, y_i) \sim P(\mathbf{x}, y)$
- Empirical risk of model w on D: $\hat{R}_D(\mathbf{w})$

- Unbiased estimate of $R(\mathbf{w})$ if we only use it to evaluate \mathbf{w}
 - But we want to find a good model w with D (training)!

$$\mathbf{y}) = \frac{1}{N} \sum_{i=1}^{N} (\mathbf{y}_i - \mathbf{w}^T \mathbf{x}_i)^2$$

Closed-form solution



• $\mathbf{X} = [\mathbf{x}_1, \mathbf{x}_2, ..., \mathbf{x}_N]^T \in \mathbb{R}^{N \times d}, \mathbf{y} = [y_1, y_2, ..., y_N]^T \in \mathbb{R}^N$

• Reformulate: $\mathbf{y} = \mathbf{X}\mathbf{w}$, usually over-constrained ($N \gg d$)

• \implies Least squares!

Gradient Descent

- $\mathbf{W}_0 \in \mathbb{R}^d$: initialization
- $\mathbf{w}_t = \mathbf{w}_{t-1} \eta_t \nabla \hat{R}(\mathbf{w}_t)$: update at step t = 1, 2, 3, ...

Gradient Descent

• $\mathbf{w}_0 \in \mathbb{R}^d$: initialization

•
$$\mathbf{w}_t = \mathbf{w}_{t-1} - \eta_t \nabla \hat{R}(\mathbf{w}_t)$$
: update a

• Convex function: convergence guaranteed for small η_t

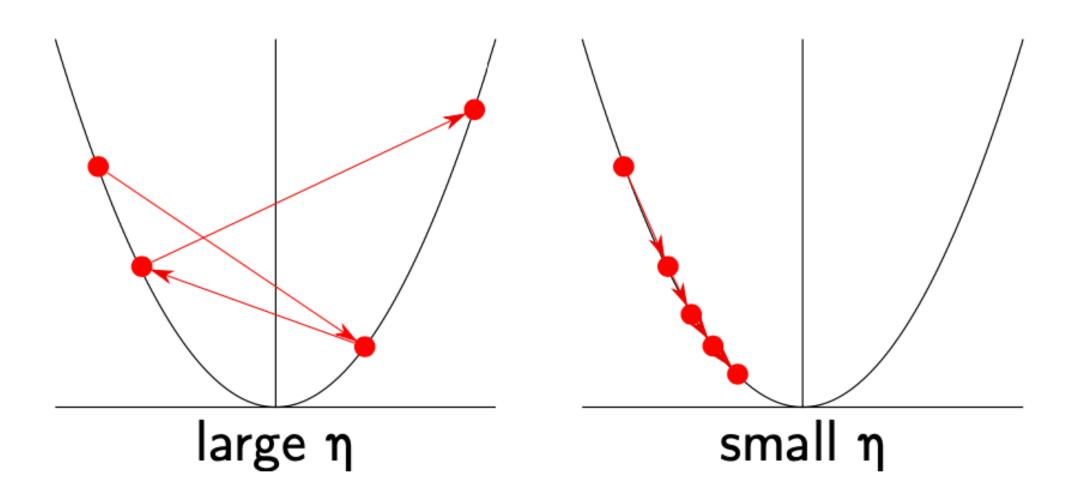
at step t = 1, 2, 3, ...

Gradient Descent

• $\mathbf{w}_0 \in \mathbb{R}^d$: initialization

•
$$\mathbf{w}_t = \mathbf{w}_{t-1} - \eta_t \nabla \hat{R}(\mathbf{w}_t)$$
: update a

• Convex function: convergence guaranteed for small η_t



at step t = 1, 2, 3, ...

• $y = \mathbf{w}^T \mathbf{x} \to y = \mathbf{v}^T \phi(\mathbf{x}), \mathbf{w} \in \mathbb{R}^m, \mathbf{v} \in \mathbb{R}^n$

- $\mathbf{y} = \mathbf{w}^T \mathbf{x} \to \mathbf{y} = \mathbf{v}^T \boldsymbol{\phi}(\mathbf{x}), \, \mathbf{w} \in \mathbb{R}^m, \, \mathbf{v} \in \mathbb{R}^n$
- $\phi(\mathbf{x})$ is nonlinear: $\mathbb{R}^m \to \mathbb{R}^n$
 - e.g. $\mathbf{x} = [x_1, x_2, x_3]^T$, $\phi(\mathbf{x}) = [1, x_1, x_1^2, x_2^2 x_3, \ln 5x_3, e^{x_2 x_1}]^T$

- $y = \mathbf{w}^T \mathbf{x} \to y = \mathbf{v}^T \phi(\mathbf{x}), \mathbf{w} \in \mathbb{R}^m, \mathbf{v} \in \mathbb{R}^n$
- $\phi(\mathbf{x})$ is nonlinear: $\mathbb{R}^m \to \mathbb{R}^n$

• e.g.
$$\mathbf{x} = [x_1, x_2, x_3]^T, \phi(\mathbf{x}) =$$

• Can lead to better models if a good $\phi(\cdot)$ is selected

 $[1, x_1, x_1^2, x_2^2 x_3, \ln 5 x_3, e^{x_2 - x_1}]^T$

- $y = \mathbf{w}^T \mathbf{x} \to y = \mathbf{v}^T \phi(\mathbf{x}), \mathbf{w} \in \mathbb{R}^m, \mathbf{v} \in \mathbb{R}^n$
- $\phi(\mathbf{x})$ is nonlinear: $\mathbb{R}^m \to \mathbb{R}^n$

• e.g.
$$\mathbf{x} = [x_1, x_2, x_3]^T$$
, $\phi(\mathbf{x}) = [1, x_1, x_1^2, x_2^2 x_3, \ln 5x_3, e^{x_2 - x_1}]^T$

- Can lead to better models if a good $\phi(\cdot)$ is selected
 - Worse models when picking a bad one :/
 - Also, tricky to pick the "just right" ones

Which Models Are Better?

• The models w with lower true risk R(w)

Which Models Are Better?

- The models w with lower true risk $R(\mathbf{w})$
- Under-fitting: not enough capacity
- Over-fitting: too much capacity —> fitting the noise!

Which Models Are Better?

- The models w with lower true risk $R(\mathbf{w})$
- Under-fitting: not enough capacity
- Over-fitting: too much capacity —> fitting the noise!
- Good model: neither under-fitting nor over-fitting

Training/Testing Split

- Empirical risk $\hat{R}_D(\hat{\mathbf{w}}_D)$ usually underestimate true risk $R(\hat{\mathbf{w}}_D)$
 - $\mathbb{E}_D[\hat{R}_D(\hat{\mathbf{w}}_D)] \le \mathbb{E}_D[R(\hat{\mathbf{w}}_D)]$

What if we evaluate performance on training data?

 $\hat{\mathbf{w}}_D = \operatorname{argmin} \hat{R}_D(\mathbf{w})$ In general, it holds that $\mathbb{E}_{S}[\hat{R}_{S}(\hat{w}_{S})] \stackrel{\text{ERM}}{=} \mathbb{E}_{S}[\hat{w}_{S}]$ Def. un $E_{101} = \frac{1}{101} \frac{1}{1$ $= \min_{w} R(w) \leq \mathbb{E}_{n}[R(\hat{w}_{n})]$

• Thus, we obtain an overly optimistic estimate!

$$\mathbf{w}^{*} = \operatorname{argmin}_{\mathbf{w}} R(\mathbf{w})$$

$$\mathbf{w}^{*} = \operatorname{argmin}_{\mathbf{w}} R(\mathbf{w})$$

$$\mathbf{w}^{*} = \operatorname{E}_{D} \left[\hat{R}_{D}(\hat{\mathbf{w}}_{D}) \right] \leq \mathbb{E}_{D} \left[R(\hat{\mathbf{w}}_{D}) \right]$$

$$\hat{R}_{D}(\omega) \leq \min_{\mathbf{w}} \mathbb{E}_{D} \left[\hat{R}_{D}(\omega) \right]$$

$$\frac{1}{2} \sum_{i=1}^{i_{i} i_{i} i_{i}} \frac{1}{i_{i}} \mathbb{E}_{i_{i} i_{i}} \mathbb{E}_{i_{i} i_{i}} \left[\sum_{i_{i} i_{i} i_{i} i_{i}} \left[\sum_{i_{i} i_{i}} \sum_{i_{i} i_{i}} \left[\sum_{i_{i} i_{i}} \left[\sum_{i_{i} i_{i}} \left[\sum_{i_{i} i_{i}} \left[\sum_{i_{i} i_{i}} \sum_{i_{i} i_{i}} \left[\sum_{i_{i} i_{i}$$

Training/Testing Split

- Empirical risk $\hat{R}_D(\hat{\mathbf{w}}_D)$ usually underestimate true risk $R(\hat{\mathbf{w}}_D)$

•
$$\mathbb{E}_D[\hat{R}_D(\hat{\mathbf{w}}_D)] \le \mathbb{E}_D[R(\hat{\mathbf{w}}_D)]$$

- "Too optimistic" about the model
 - OR: the model only performs well on training data

Training/Testing Split

- Empirical risk $\hat{R}_D(\hat{\mathbf{w}}_D)$ usually underestimate true risk $R(\hat{\mathbf{w}}_D)$
 - $\mathbb{E}_D[\hat{R}_D(\hat{\mathbf{w}}_D)] \leq \mathbb{E}_D[R(\hat{\mathbf{w}}_D)]$
 - "Too optimistic" about the model
 - OR: the model only performs well on training data
- Unbiasedly estimate the true risk: random test set

•
$$\mathbb{E}_{D_{test}}[\hat{R}_{D_{test}}(\hat{\mathbf{w}}_{D_{train}})] = R(\hat{\mathbf{w}}_{D_{train}})$$

Validation and Testing Sets?

• If we use only the training/testing split, we can overfit the testing set

•
$$\hat{R}_{D_{test}}(\hat{\mathbf{w}}_{D_{train}}) \neq R(\hat{\mathbf{w}}_{D_{train}})$$

Validation and Testing Sets?

• If we use only the training/testing split, we can overfit the testing set

•
$$\hat{R}_{D_{test}}(\hat{\mathbf{w}}_{D_{train}}) \neq R(\hat{\mathbf{w}}_{D_{train}})$$

• Do not select the model based on test set

Validation and Testing Sets?

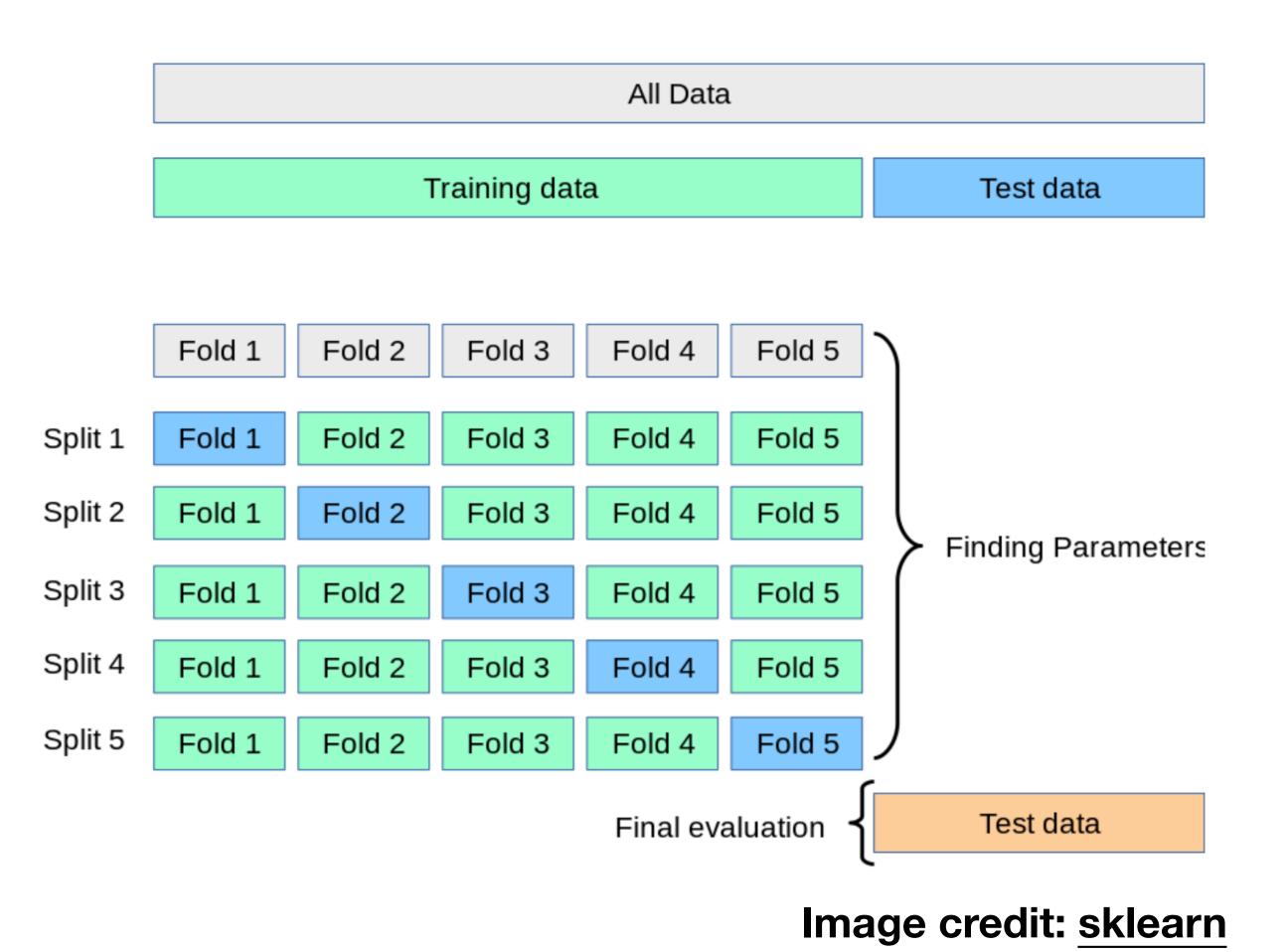
• If we use only the training/testing split, we can overfit the testing set

•
$$\hat{R}_{D_{test}}(\hat{\mathbf{w}}_{D_{train}}) \neq R(\hat{\mathbf{w}}_{D_{train}})$$

- Do not select the model based on test set
- Validation set = reserve part of training set for model selection
 - Actually the "test set" before is a validation set
- Cross-validation = avoid bias of the validation set selection

Cross-validation

Demo: k-fold CV for model selection



- from noise"
 - \implies Penalize large weights in the loss functions

• "Our models cannot be that complex, those large weights can only come

• $\min \hat{R}_D(\mathbf{w}) + \lambda C(\mathbf{w})$ W

• Linear regression: $\hat{R}_D(\mathbf{w}) = \frac{1}{N} \sum_{i=1}^N (y_i - \mathbf{w}^T \mathbf{x})^2$

• $\min \hat{R}_D(\mathbf{w}) + \lambda C(\mathbf{w})$

• Linear regression: $\hat{R}_D(\mathbf{w}) = \frac{1}{N} \sum_{i=1}^{N} \hat{N}_i$

• Ridge (L_2): $C(\mathbf{w}) = ||\mathbf{w}||_2^2 = \sum_{k=1}^d w_k^2$, has closed form solution k=1

$$(y_i - \mathbf{w}^T \mathbf{x})^2$$

• $\min \hat{R}_D(\mathbf{w}) + \lambda C(\mathbf{w})$

• Linear regression: $\hat{R}_D(\mathbf{w}) = \frac{1}{N} \sum_{n=1}^{N} \sum_{n=1}^$

• Ridge (L_2): $C(\mathbf{w}) = ||\mathbf{w}||_2^2 = \sum_{k=1}^{a} w_k^2$, has closed form solution k=1

• Lasso (L_1): $C(\mathbf{w}) = ||\mathbf{w}||_1 = \sum_{k=1}^{n} |w_k|$, doesn't have closed form solution k=1

$$(y_i - \mathbf{w}^T \mathbf{x})^2$$

Lasso Leads to Sparsity

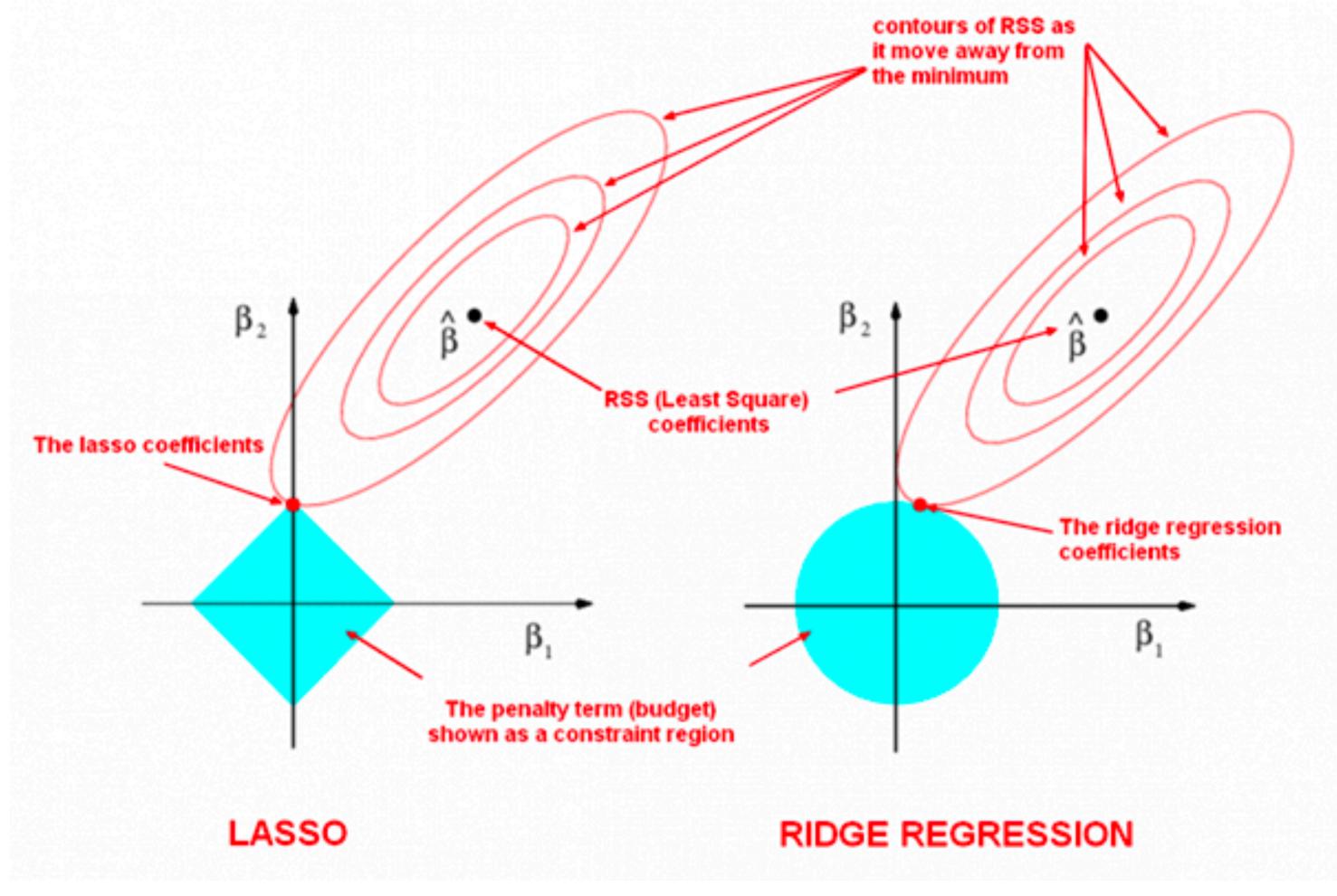


Image credit: <u>link</u>

• The "small-weight" idea only applies when the data is standardized

- The "small-weight" idea only applies when the data is standardized
- e.g. x_1 is income (10⁴), x_2 is altitude (10³), x_3 is height (10⁰)

- The "small-weight" idea only applies when the data is standardized
- e.g. x_1 is income (10⁴), x_2 is altitude (10³), x_3 is height (10⁰)
- Originally $w_1 = 0.1, w_2 = 2, w_3 = 2000$
- Penalize $\|\mathbf{w}\|_{2}^{2}$ and get $w_{1} = w_{2} = w_{3} = 1$
- x_3 will be useless!

- The "small-weight" idea only applies when the data is standardized
- e.g. x_1 is income (10⁴), x_2 is altitude (10³), x_3 is height (10⁰)
- Penalize $\|\mathbf{w}\|_2^2$ and get $w_1 = w_2$ =
- x_3 will be useless!
- Standardize when using regulariza

$$= w_3 = 1$$

ation:
$$\tilde{x}_{ij} = \frac{x_{ij} - \hat{\mu}_j}{\hat{\sigma}_j}$$

End of Presentation Beginning of Q&A

IML Tutorial 2 Linear Regression

26.02.2020 Xianyao Zhang (CGL/DRS) xianyao.zhang@inf.ethz.ch