IML Tutorial 4: Kernels

Mikhail Karasikov

11 March 2019

Motivation

$$
K\left(x_{i}, x_{j}\right)=\left\langle\phi\left(x_{i}\right), \phi\left(x_{j}\right)\right\rangle_{H}
$$

Why use kernels:

- For efficient feature transformation (basis expansion) Example: use polynomial kernel instead of computing all monomials from features
- To use linear models with non-linearly separable data (through mapping the data to a higher dimensional space) Example: solving XOR with a single Perceptron
- Use with complex structured data to avoid computationally expensive feature extraction
Example: String kernels, graph kernels

Kernels

Definition

A symmetric function $K: X \times X \rightarrow \mathbb{R}$ is called a kernel if

1. symmetric: $K(x, y)=K(y, x) \quad \forall x, y \in X$,
2. positive semi-definite: $\left[K\left(x_{i}, x_{j}\right)\right]_{i, j=1}^{n} \succeq 0 \quad \forall x_{1}, \ldots, x_{n} \in X$, $n<\infty$, that is,

$$
\sum_{i=1}^{n} \sum_{j=1}^{n} c_{i} c_{j} K\left(x_{i}, x_{j}\right) \geq 0 \quad \forall c_{1}, \ldots, c_{n} \in \mathbb{R}
$$

- Kernels compute inner products:

$$
K\left(x_{i}, x_{j}\right)=\left\langle\phi\left(x_{i}\right), \phi\left(x_{j}\right)\right\rangle_{H}
$$

where $\phi: X \rightarrow H$ is a feature map from X to a Hilbert space H (a vector space with an inner product inducing a complete metric space).

- Any inner product is positive definite, hence defines a Kernel

Kernels

Properties

- Linear combination: $\sum_{i=1}^{n} \alpha_{i} K_{i}(\cdot, \cdot)$ is a kernel if $\alpha_{i} \geq 0 \forall i$
- Product: $\prod_{i=1}^{n} K_{i}^{d_{i}}(\cdot, \cdot)$ is a kernel if $d_{i} \in \mathbb{N} \forall i$
- Limit: $\lim _{n \rightarrow \infty} K_{n}(\cdot, \cdot)$ is a kernel

Examples

- Linear: $K(\boldsymbol{x}, \boldsymbol{y})=\boldsymbol{x}^{T} \boldsymbol{y}$
- Polynomial: $K(\boldsymbol{x}, \boldsymbol{y})=\left(\boldsymbol{x}^{T} \boldsymbol{y}+r\right)^{n}, \quad r \geq 0, n \geq 1$
- Gaussian (RBF Kernel): $K(\boldsymbol{x}, \boldsymbol{y})=e^{-\|\boldsymbol{x}-\boldsymbol{y}\|_{2}^{2} / h}, \quad h>0$
- Laplacian kernel: $K(\boldsymbol{x}, \boldsymbol{y})=e^{-\alpha\|\boldsymbol{x}-\boldsymbol{y}\|_{1}}, \quad \alpha>0$

How to construct/choose a kernel?

- Use domain knowledge
- Cross-validation

Exercises

Assume $K_{1}: X_{1}^{2} \rightarrow \mathbb{R}$ and $K_{2}: X_{2}^{2} \rightarrow \mathbb{R}$ are kernels

1. Show that the following functions are kernels

$$
\begin{aligned}
& 1.1 K_{1}\left(x_{1}, y_{1}\right)+K_{2}\left(x_{2}, y_{2}\right) \text { is a kernel } \\
& 1.2 K_{1}\left(x_{1}, y_{1}\right) K_{2}\left(x_{2}, y_{2}\right) \text { is a kernel } \\
& 1.3 K(\boldsymbol{x}, \boldsymbol{y})=\boldsymbol{x}^{T} \boldsymbol{y} \\
& 1.4 K(\boldsymbol{x}, \boldsymbol{y})=\left(\boldsymbol{x}^{T} \boldsymbol{y}+r r^{n}, \quad r \geq 0, n \geq 1\right. \\
& 1.5 K(\boldsymbol{x}, \boldsymbol{y})=e^{-\|\boldsymbol{x}-\boldsymbol{y}\|_{2}^{2} / h}, \quad h>0
\end{aligned}
$$

2. Construct a feature map ϕ associated with the RBF Kernel
3. Construct a Kernelized Ridge Regression
