## Intro to ML Classification

Kjong Lehmann

Evaluating a classifier (Accuracy/Sensitivity/Specificity)

Sensitivity = 
$$\frac{\text{TP}}{\text{TP+FN}}$$
  
Specificity =  $\frac{\text{TN}}{\text{TN+FP}}$ 

accuracy = 
$$\frac{\text{nr. correct predictions}}{\text{nr. total predictions}} = \frac{\text{TP+TN}}{\text{TP+TN+FP+FN}}$$

#### **Evaluation Metrics (F1 score)**

$$ext{Precision} = rac{tp}{tp+fp} ext{Recall} = rac{tp}{tp+fn}$$

**D**INFK

#### **Evaluation Metrics (F1 score)**



selected elements

#### **ROC and AUC**



#### DINFK

#### **Evaluation Metrics (F1 score)**

$$ext{Precision} = rac{tp}{tp+fp} ext{Recall} = rac{tp}{tp+fn}$$

$$F = 2 \cdot \frac{\text{precision} \cdot \text{recall}}{\text{precision} + \text{recall}}$$

#### **Evaluation Metrics (F1 score Example)**

Harmonic mean example : Doku-Cam

#### **Evaluation Metrics (F1 score Example)**

Harmonic mean example :

$$= \frac{\text{Total distance traveled}}{\text{Total time taken}}$$
$$= \frac{2d}{\frac{d}{x} + \frac{d}{y}} = \frac{2d}{\frac{yd + xd}{xy}} = \frac{2dxy}{d(x + y)}$$
$$= \frac{2xy}{x + y} \text{ (harmonic mean of x and y)}$$

#### **PRC and AUPRC**



What is the sense in PRAUC? Is this correct way to think about it?

#### DINFK

## Example

Would you recommend a classifier with 0.89 accuracy and 1.0 recall?

### Example

Would you recommend a classifier with 0.89 accuracy and 1.0 recall?

No, since the high recall implies low precision

#### Imbalance issues example

accuracy = 
$$\frac{\text{nr. correct predictions}}{\text{nr. total predictions}} = \frac{\text{TP+TN}}{\text{TP+TN+FP+FN}}$$

Assume 90% of data is positive?!?

$$ext{Precision} = rac{tp}{tp+fp} ext{Recall} = rac{tp}{tp+fn}$$

#### **Imbalanced Dataset**

Small Demo

#### Loss Functions as surrogates of evaluation metric

- Classification Loss
- Perceptron Loss
- Hinge Loss

Evaluation of test and validation data Loss function as surrogate to estimate w on training data

#### Loss Functions as surrogates of evaluation metric

#### **Classification Losses**

 $\begin{aligned} L \text{perceptron} : \{-1,1\} \times \mathbb{R} \to \mathbb{R} \\ \text{Find the best separation hyperplane} \end{aligned}$ 

$$\mathbf{y}, f(\mathbf{x}) \to max\left(0, -\mathbf{y}f(\mathbf{x})\right)$$

Lhinge:  $\{-1, 1\} \times \mathbb{R} \to \mathbb{R}$ Find large separation margin  $\mathbf{y}, f(\mathbf{x}) \rightarrow max\left(0, 1 - \mathbf{y}f(\mathbf{x})\right)$ 

Llogistic :  $\{-1, 1\} \times \mathbb{R} \to \mathbb{R}$  y Link to cross entropy and probabilistic interpretation, (cf. lecture logistic regression)

$$\mathbf{y}, f(\mathbf{x}) \rightarrow log\left(1 + exp\left(-\mathbf{y}f(\mathbf{x})\right)\right)$$

Which one more sensitive to outliers?



#### **Break?**

#### **Encodings (Feature Scaling)**

- SGD is scale sensitive
- Classifier relying on distances/similarities are scale sensitive
- Implications on test/train data

$$x'=rac{x-ar{x}}{\sigma}$$

### **Encodings (One-hot encoding)**

#### Label Encoding

#### **One Hot Encoding**

| Food Name | Categorical # | Calories |
|-----------|---------------|----------|
| Apple     | 1             | 95       |
| Chicken   | 2             | 231      |
| Broccoli  | 3             | 50       |

| Apple | Chicken | Broccoli | Calories |
|-------|---------|----------|----------|
| 1     | 0       | 0        | 95       |
| 0     | 1       | 0        | 231      |
| 0     | 0       | 1        | 50       |

## Useful when utilizing some distance/similarity measure Generalization?!?

#### **Encodings (Bag of words)**



#### **Feature Selection**

- Important features can provide insights
- High model complexity can lead to overfitting (example)
- More features -> longer training time| memory (Trade-off)

#### Feature Selection (Univariate selection)

- F-Test or other test statistics, mutual information conditioned on label
  - Careful about linearity vs non-linearity

#### **Feature Selection**

- Greedily add or remove features from model
  - Cross-validation, importance/coefficient measure
- L1 penalty

Informative to understand algorithm?

# End of Presentation Start of Q&A