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Problem 1 (Kernel Composition):

Assume that ki : X × X → R, i = 1, 2, are kernels with corresponding features mappings Φi : X → Rdi . For
each definition of k(·, ·) below, prove that k is also a kernel by finding the corresponding mapping Φ : X → Rd.

(a) k(x,y) := ak1(x,y), for some a > 0.

(b) k(x,y) := k1(x,y) + k2(x,y).

(c) k(x,y) := xTMy, for x,y ∈ Rd, and some symmetric positive semidefinite matrix M ∈ Rd×d.

Solution 1:

(a) Consider the feature mapping Φ : X → Rd1 with Φ(x) =
√
aΦ1(x). Then,

k(x,y) = 〈Φ(x),Φ(y)〉
= 〈
√
aΦ1(x),

√
aΦ1(y)〉

= a〈Φ1(x),Φ1(y)〉
= ak1(x,y)

(b) Consider the feature mapping Φ : X → Rd1+d2 with Φ(x) = [Φ1(x),Φ2(x)], that is, the concatenation of
the features of Φ1 and Φ2. Then,

k(x,y) = 〈Φ(x),Φ(y)〉
= 〈[Φ1(x),Φ2(x)] , [Φ1(y),Φ2(y)]〉
= 〈Φ1(x),Φ1(y)〉+ 〈Φ2(x),Φ2(y)〉
= k1(x,y) + k2(x,y)

(c) Since M is symmetric positive semi-definite, it has an eigendecomposition of the form M = VΣVT , where
V ∈ Rd×d is orthogonal, and Σ ∈ Rd×d is diagonal containing the (non-negative) eigenvalues of M.



Consider the feature mapping Φ : Rd → Rd with Φ(x) = Σ1/2VTx. Then,

k(x,y) = 〈Φ(x),Φ(y)〉

=
〈
Σ1/2VTx,Σ1/2VTy

〉
=
(
Σ1/2VTx

)T
Σ1/2VTy

= xTVΣ1/2Σ1/2VTy

= xTVΣVTy

= xTMy

Problem 2 (Kernelized Linear Regression):

In this exercise you will derive the kernelized version of linear regression.

(a) Prove that the following identity holds for any matrix B ∈ Rn×m, and any invertible matrices A ∈ Rm×m,
and C ∈ Rn×n. (

A−1 + BTC−1B
)−1

BTC−1 = ABT
(
BABT + C

)−1

(b) Remember the solution of ridge regression, w∗ =
(
XTX + λI

)−1
XTy. Use the matrix identity of part (a)

to prove that w∗ lies in the row space of X, that is, it can be written as w∗ = XTz∗ for some z∗ ∈ Rn.

(c) Use the result of part (b) to transform the original ridge regression loss function,

R(w) = ‖Xw − y‖22 + λ‖w‖22,

into a new loss function R̂(z), such that R̂(z∗) = R(w∗), and z∗ = argminz R̂(z).

(d) Assuming that you are given a kernel k(·, ·), express the kernel matrix K of the data set as a function of
the data matrix X, and substitute it in the new loss function R̂(z) to obtain the kernelized version of the
ridge regression loss function.

(e) To complete the kernelized version of ridge regression, show how you would predict the value y of a new
point x, assuming that you have already computed z∗.

Solution 2:

(a) We multiply both sides by
(
BABT + C

)
from the right. The right side gives ABT , and the left hand side

gives (
A−1 + BTC−1B

)−1
BTC−1

(
BABT + C

)
=
(
A−1 + BTC−1B

)−1 (
BTC−1BABT + BT

)
=
(
A−1 + BTC−1B

)−1 (
BTC−1BABT + A−1ABT

)
=
(
A−1 + BTC−1B

)−1 (
BTC−1B + A−1

)
ABT

= ABT ,

therefore the sides are equal, which proves the identity.
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(b) Using the above matrix identity with A = 1
λI, B = X, and C = I, we get(
λI + XTX

)−1
XT

=
1

λ
XT

(
1

λ
XXT + I

)−1

= XT
(
XXT + λI

)−1
.

Therefore, w∗ =
(
XTX + λI

)−1
XTy = XT

(
XXT + λI

)−1
y, and w∗ is in the row space of X, since it

can be written as w∗ = XTz∗, if we define z∗ =
(
XXT + λI

)−1
y.

(c) For any z ∈ Rn, substituting w = XTz in R(w), we get

R̂(z) = R(XTz)

= ‖XXTz − y‖22 + λ‖XTz‖22
= ‖XXTz − y‖22 + λzTXXTz.

By definition, it holds that R(w∗) = R(XTz∗) = R̂(z∗). It also holds that z∗ = argminz R̂(z). Assume
to the contrary that ∃z̄, such that R̂(z̄) < R̂(z∗). Then, if we define w̄ = XT z̄, we get

R(w̄) = R̂(z̄) < R̂(z∗) = R(w∗),

which contradicts the definition of w∗.

(d) The kernel matrix can be written as K = XXT , which we can substitute into R̂ to get

R̂(z) = ‖Kz − y‖22 + λzTKz.

(e) We would predict the value of point x as

y = wTx =
(
XTz

)T
x

= zTXx

=

n∑
i=1

zix
T
i x

=

n∑
i=1

zik(xi,x),

from which we see that we can also predict using only the kernel, without the need for any operations in
the feature space.
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Problem 3 (Classifiers):

The following figure shows three classifiers trained on the same data set. One of them is a k-nearest neighbor
classifier, and the other two are support vector machines (SVMs) using a quadratic and a Gaussian kernel respec-
tively. Based on the shape of the decision boundary, can you guess which plot corresponds to which classifier?
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Solution 3:

Plot (b) corresponds to the quadratic kernel SVM. Because of the quadratic kernel, the decision boundary is a
second-order curve, in this case, an ellipse. Plot (c) corresponds to the k-NN classifier. The decision boundary is
notably non-smooth, because of the nearest neighbor classification rule. (Increasing k would make it smoother.)
Finally, plot (a) corresponds to the Gaussian kernel SVM.
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