Learning and Intelligent Systems

SS 2016

Series 2, Mar 15th, 2016 (Kernels)

LAS Group, Institute for Machine Learning

Dept. of Computer Science, ETH Zürich
Prof. Dr. Andreas Krause
Web: http://las.inf.ethz.ch/teaching/lis-s16/
Email questions to:
Adish Singla, adish.singla@inf.ethz.ch

It is not mandatory to submit solutions and sample solutions will be published in two weeks. If you choose to submit your solution, please send an e-mail from your ethz. ch address with subject Exercise2 containing a PDF (ATEX or scan) to lis2016@lists.inf.ethz.ch until Sunday, April 3rd, 2016.

Problem 1 (Kernel Composition):

Assume that $k_{i}: \mathcal{X} \times \mathcal{X} \rightarrow \mathbb{R}, i=1,2$, are kernels with corresponding features mappings $\Phi_{i}: \mathcal{X} \rightarrow \mathbb{R}^{d_{i}}$. For each definition of $k(\cdot, \cdot)$ below, prove that k is also a kernel by finding the corresponding mapping $\Phi: \mathcal{X} \rightarrow \mathbb{R}^{d}$.
(a) $k(\boldsymbol{x}, \boldsymbol{y}):=a k_{1}(\boldsymbol{x}, \boldsymbol{y})$, for some $a>0$.
(b) $k(\boldsymbol{x}, \boldsymbol{y}):=k_{1}(\boldsymbol{x}, \boldsymbol{y})+k_{2}(\boldsymbol{x}, \boldsymbol{y})$.
(c) $k(\boldsymbol{x}, \boldsymbol{y}):=\boldsymbol{x}^{T} \mathbf{M} \boldsymbol{y}$, for $\boldsymbol{x}, \boldsymbol{y} \in \mathbb{R}^{d}$, and some symmetric positive semidefinite matrix $\mathbf{M} \in \mathbb{R}^{d \times d}$.

Solution 1:

(a) Consider the feature mapping $\Phi: \mathcal{X} \rightarrow \mathbb{R}^{d_{1}}$ with $\Phi(\boldsymbol{x})=\sqrt{a} \Phi_{1}(\boldsymbol{x})$. Then,

$$
\begin{aligned}
k(\boldsymbol{x}, \boldsymbol{y}) & =\langle\Phi(\boldsymbol{x}), \Phi(\boldsymbol{y})\rangle \\
& =\left\langle\sqrt{a} \Phi_{1}(\boldsymbol{x}), \sqrt{a} \Phi_{1}(\boldsymbol{y})\right\rangle \\
& =a\left\langle\Phi_{1}(\boldsymbol{x}), \Phi_{1}(\boldsymbol{y})\right\rangle \\
& =a k_{1}(\boldsymbol{x}, \boldsymbol{y})
\end{aligned}
$$

(b) Consider the feature mapping $\Phi: \mathcal{X} \rightarrow \mathbb{R}^{d_{1}+d_{2}}$ with $\Phi(\boldsymbol{x})=\left[\Phi_{1}(\boldsymbol{x}), \Phi_{2}(\boldsymbol{x})\right]$, that is, the concatenation of the features of Φ_{1} and Φ_{2}. Then,

$$
\begin{aligned}
k(\boldsymbol{x}, \boldsymbol{y}) & =\langle\Phi(\boldsymbol{x}), \Phi(\boldsymbol{y})\rangle \\
& =\left\langle\left[\Phi_{1}(\boldsymbol{x}), \Phi_{2}(\boldsymbol{x})\right],\left[\Phi_{1}(\boldsymbol{y}), \Phi_{2}(\boldsymbol{y})\right]\right\rangle \\
& =\left\langle\Phi_{1}(\boldsymbol{x}), \Phi_{1}(\boldsymbol{y})\right\rangle+\left\langle\Phi_{2}(\boldsymbol{x}), \Phi_{2}(\boldsymbol{y})\right\rangle \\
& =k_{1}(\boldsymbol{x}, \boldsymbol{y})+k_{2}(\boldsymbol{x}, \boldsymbol{y})
\end{aligned}
$$

(c) Since \mathbf{M} is symmetric positive semi-definite, it has an eigendecomposition of the form $\mathbf{M}=\mathbf{V} \boldsymbol{\Sigma} \mathbf{V}^{T}$, where $\mathbf{V} \in \mathbb{R}^{d \times d}$ is orthogonal, and $\boldsymbol{\Sigma} \in \mathbb{R}^{d \times d}$ is diagonal containing the (non-negative) eigenvalues of \mathbf{M}.

Consider the feature mapping $\Phi: \mathbb{R}^{d} \rightarrow \mathbb{R}^{d}$ with $\Phi(\boldsymbol{x})=\boldsymbol{\Sigma}^{1 / 2} \mathbf{V}^{T} \boldsymbol{x}$. Then,

$$
\begin{aligned}
k(\boldsymbol{x}, \boldsymbol{y}) & =\langle\Phi(\boldsymbol{x}), \Phi(\boldsymbol{y})\rangle \\
& =\left\langle\boldsymbol{\Sigma}^{1 / 2} \mathbf{V}^{T} \boldsymbol{x}, \boldsymbol{\Sigma}^{1 / 2} \mathbf{V}^{T} \boldsymbol{y}\right\rangle \\
& =\left(\boldsymbol{\Sigma}^{1 / 2} \mathbf{V}^{T} \boldsymbol{x}\right)^{T} \boldsymbol{\Sigma}^{1 / 2} \mathbf{V}^{T} \boldsymbol{y} \\
& =\boldsymbol{x}^{T} \mathbf{V} \boldsymbol{\Sigma}^{1 / 2} \boldsymbol{\Sigma}^{1 / 2} \mathbf{V}^{T} \boldsymbol{y} \\
& =\boldsymbol{x}^{T} \mathbf{V} \boldsymbol{\Sigma} \mathbf{V}^{T} \boldsymbol{y} \\
& =\boldsymbol{x}^{T} \mathbf{M} \boldsymbol{y}
\end{aligned}
$$

Problem 2 (Kernelized Linear Regression):

In this exercise you will derive the kernelized version of linear regression.
(a) Prove that the following identity holds for any matrix $\mathbf{B} \in \mathbb{R}^{n \times m}$, and any invertible matrices $\mathbf{A} \in \mathbb{R}^{m \times m}$, and $\mathbf{C} \in \mathbb{R}^{n \times n}$.

$$
\left(\mathbf{A}^{-1}+\mathbf{B}^{T} \mathbf{C}^{-1} \mathbf{B}\right)^{-1} \mathbf{B}^{T} \mathbf{C}^{-1}=\mathbf{A} \mathbf{B}^{T}\left(\mathbf{B A} \mathbf{B}^{T}+\mathbf{C}\right)^{-1}
$$

(b) Remember the solution of ridge regression, $\boldsymbol{w}^{*}=\left(\mathbf{X}^{T} \mathbf{X}+\lambda \mathbf{I}\right)^{-1} \mathbf{X}^{T} \boldsymbol{y}$. Use the matrix identity of part (a) to prove that \boldsymbol{w}^{*} lies in the row space of \mathbf{X}, that is, it can be written as $\boldsymbol{w}^{*}=\mathbf{X}^{T} \boldsymbol{z}^{*}$ for some $\boldsymbol{z}^{*} \in \mathbb{R}^{n}$.
(c) Use the result of part (b) to transform the original ridge regression loss function,

$$
R(\boldsymbol{w})=\|\mathbf{X} \boldsymbol{w}-\boldsymbol{y}\|_{2}^{2}+\lambda\|\boldsymbol{w}\|_{2}^{2}
$$

into a new loss function $\hat{R}(\boldsymbol{z})$, such that $\hat{R}\left(\boldsymbol{z}^{*}\right)=R\left(\boldsymbol{w}^{*}\right)$, and $\boldsymbol{z}^{*}=\operatorname{argmin}_{\boldsymbol{z}} \hat{R}(\boldsymbol{z})$.
(d) Assuming that you are given a kernel $k(\cdot, \cdot)$, express the kernel matrix \mathbf{K} of the data set as a function of the data matrix \mathbf{X}, and substitute it in the new loss function $\hat{R}(\boldsymbol{z})$ to obtain the kernelized version of the ridge regression loss function.
(e) To complete the kernelized version of ridge regression, show how you would predict the value y of a new point \boldsymbol{x}, assuming that you have already computed \boldsymbol{z}^{*}.

Solution 2:

(a) We multiply both sides by $\left(\mathbf{B A B} \mathbf{B}^{T}+\mathbf{C}\right)$ from the right. The right side gives $\mathbf{A B} \mathbf{B}^{T}$, and the left hand side gives

$$
\begin{aligned}
& \left(\mathbf{A}^{-1}+\mathbf{B}^{T} \mathbf{C}^{-1} \mathbf{B}\right)^{-1} \mathbf{B}^{T} \mathbf{C}^{-1}\left(\mathbf{B} \mathbf{A} \mathbf{B}^{T}+\mathbf{C}\right) \\
= & \left(\mathbf{A}^{-1}+\mathbf{B}^{T} \mathbf{C}^{-1} \mathbf{B}\right)^{-1}\left(\mathbf{B}^{T} \mathbf{C}^{-1} \mathbf{B} \mathbf{A} \mathbf{B}^{T}+\mathbf{B}^{T}\right) \\
= & \left(\mathbf{A}^{-1}+\mathbf{B}^{T} \mathbf{C}^{-1} \mathbf{B}\right)^{-1}\left(\mathbf{B}^{T} \mathbf{C}^{-1} \mathbf{B} \mathbf{A} \mathbf{B}^{T}+\mathbf{A}^{-1} \mathbf{A} \mathbf{B}^{T}\right) \\
= & \left(\mathbf{A}^{-1}+\mathbf{B}^{T} \mathbf{C}^{-1} \mathbf{B}\right)^{-1}\left(\mathbf{B}^{T} \mathbf{C}^{-1} \mathbf{B}+\mathbf{A}^{-1}\right) \mathbf{A} \mathbf{B}^{T} \\
= & \mathbf{A} \mathbf{B}^{T},
\end{aligned}
$$

therefore the sides are equal, which proves the identity.
(b) Using the above matrix identity with $\mathbf{A}=\frac{1}{\lambda} \mathbf{I}, \mathbf{B}=\mathbf{X}$, and $\mathbf{C}=\mathbf{I}$, we get

$$
\begin{aligned}
& \left(\lambda \mathbf{I}+\mathbf{X}^{T} \mathbf{X}\right)^{-1} \mathbf{X}^{T} \\
= & \frac{1}{\lambda} \mathbf{X}^{T}\left(\frac{1}{\lambda} \mathbf{X} \mathbf{X}^{T}+\mathbf{I}\right)^{-1} \\
= & \mathbf{X}^{T}\left(\mathbf{X} \mathbf{X}^{T}+\lambda \mathbf{I}\right)^{-1} .
\end{aligned}
$$

Therefore, $\boldsymbol{w}^{*}=\left(\mathbf{X}^{T} \mathbf{X}+\lambda \mathbf{I}\right)^{-1} \mathbf{X}^{T} \boldsymbol{y}=\mathbf{X}^{T}\left(\mathbf{X X}^{T}+\lambda \mathbf{I}\right)^{-1} \boldsymbol{y}$, and \boldsymbol{w}^{*} is in the row space of \mathbf{X}, since it can be written as $\boldsymbol{w}^{*}=\mathbf{X}^{T} \boldsymbol{z}^{*}$, if we define $\boldsymbol{z}^{*}=\left(\mathbf{X X}^{T}+\lambda \mathbf{I}\right)^{-1} \boldsymbol{y}$.
(c) For any $\boldsymbol{z} \in \mathbb{R}^{n}$, substituting $\boldsymbol{w}=\mathbf{X}^{T} \boldsymbol{z}$ in $R(\boldsymbol{w})$, we get

$$
\begin{aligned}
\hat{R}(\boldsymbol{z}) & =R\left(\mathbf{X}^{T} \boldsymbol{z}\right) \\
& =\left\|\mathbf{X X}^{T} \boldsymbol{z}-\boldsymbol{y}\right\|_{2}^{2}+\lambda\left\|\mathbf{X}^{T} \boldsymbol{z}\right\|_{2}^{2} \\
& =\left\|\mathbf{X X}^{T} \boldsymbol{z}-\boldsymbol{y}\right\|_{2}^{2}+\lambda \boldsymbol{z}^{T} \mathbf{X} \mathbf{X}^{T} \boldsymbol{z} .
\end{aligned}
$$

By definition, it holds that $R\left(\boldsymbol{w}^{*}\right)=R\left(\mathbf{X}^{T} \boldsymbol{z}^{*}\right)=\hat{R}\left(\boldsymbol{z}^{*}\right)$. It also holds that $\boldsymbol{z}^{*}=\operatorname{argmin}_{\boldsymbol{z}} \hat{R}(\boldsymbol{z})$. Assume to the contrary that $\exists \overline{\boldsymbol{z}}$, such that $\hat{R}(\overline{\boldsymbol{z}})<\hat{R}\left(\boldsymbol{z}^{*}\right)$. Then, if we define $\overline{\boldsymbol{w}}=\mathbf{X}^{T} \overline{\boldsymbol{z}}$, we get

$$
R(\overline{\boldsymbol{w}})=\hat{R}(\overline{\boldsymbol{z}})<\hat{R}\left(\boldsymbol{z}^{*}\right)=R\left(\boldsymbol{w}^{*}\right)
$$

which contradicts the definition of \boldsymbol{w}^{*}.
(d) The kernel matrix can be written as $\mathbf{K}=\mathbf{X} \mathbf{X}^{T}$, which we can substitute into \hat{R} to get

$$
\hat{R}(\boldsymbol{z})=\|\mathbf{K} \boldsymbol{z}-\boldsymbol{y}\|_{2}^{2}+\lambda \boldsymbol{z}^{T} \mathbf{K} \boldsymbol{z}
$$

(e) We would predict the value of point \boldsymbol{x} as

$$
\begin{aligned}
\boldsymbol{y}=\boldsymbol{w}^{T} \boldsymbol{x} & =\left(\mathbf{X}^{T} \boldsymbol{z}\right)^{T} \boldsymbol{x} \\
& =\boldsymbol{z}^{T} \mathbf{X} \boldsymbol{x} \\
& =\sum_{i=1}^{n} z_{i} \boldsymbol{x}_{i}^{T} \boldsymbol{x} \\
& =\sum_{i=1}^{n} z_{i} k\left(\boldsymbol{x}_{i}, \boldsymbol{x}\right),
\end{aligned}
$$

from which we see that we can also predict using only the kernel, without the need for any operations in the feature space.

Problem 3 (Classifiers):

The following figure shows three classifiers trained on the same data set. One of them is a k-nearest neighbor classifier, and the other two are support vector machines (SVMs) using a quadratic and a Gaussian kernel respectively. Based on the shape of the decision boundary, can you guess which plot corresponds to which classifier?

Solution 3:

Plot (b) corresponds to the quadratic kernel SVM. Because of the quadratic kernel, the decision boundary is a second-order curve, in this case, an ellipse. Plot (c) corresponds to the k-NN classifier. The decision boundary is notably non-smooth, because of the nearest neighbor classification rule. (Increasing k would make it smoother.) Finally, plot (a) corresponds to the Gaussian kernel SVM.

