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Problem 1 (EM for Näıve Bayes):

Assume that you want to train a näıve Bayes model on data with missing class labels. Specifically, there are
k binary variables X1, . . . Xk corresponding to the features, and a variable Y taking on values in {1, 2, . . . ,m}
denoting the class. Let us denote the set of model parameters as P (Xi = 1|Y = y) = θi|y and P (Y = y) = θy.

You are given n data points D = {(x1, y1), ..., (xn, yn)} where xi ∈ {0, 1}k and yi ∈ {1, 2, . . . ,m,×}. The value
× means that the label of the data point is missing.

• Write down the log-likelihood `(θ) of the data as a function of the parameters θ.

• Recall that the E-step of the EM algorithm computes the posterior over the unknown variables when we fix
the parameters θ. Compute these probabilities γj(xi) = P (Y = j | xi; θ) for j s.t. yi = ×.

• Once we have the quantities γj(·), we can compute the M-step update, which is computed as the maximizer
θ∗ of

∑n
i=1

∑m
j=1 γj(xi) logP (xi, yi = j; θ). Show how to compute θ∗. Note that there are constraints on

θ∗ to make sure that the distributions are valid (non-negative and sum up to 1).

Solution 1:

The log-likelihood is equal to

`(θ) = logP (D)

=

n∑
i=1
yi=×

logP (xi; θ) +

n∑
i=1
yi 6=×

logP (xi, yi; θ)

=

n∑
i=1
yi=×

log

m∑
j=1

P (xi, Y = j; θ) +

n∑
i=1
yi 6=×

logP (xi, yi; θ)

=

n∑
i=1
yi=×

log

m∑
j=1

P (xi | Y = j; θ)P (Y = j; θ) +

n∑
i=1
yi 6=×

logP (xi, yi; θ)

=

n∑
i=1
yi=×

log

m∑
j=1

θj

k∏
l=1

θ
xi,l
l|j (1− θl|j)1−xi,l +

n∑
i=1
yi 6=×

log θyi

k∏
l=1

θ
xi,l
l|yi (1− θl|yi)

1−xi,l .



To compute the requested posterior probabilities, note that by Bayes’ rule

γj(xi) = P (yi = j | xi; θ)

=
P (xi | yi = j; θ)P (yi = j; θ)

P (xi; θ)

=
1

Z
P (xi | yi = j; θ)P (yi = j; θ)

=
1

Z
θj

k∏
l=1

θ
xi,l
l|j (1− θl|j)1−xi,l .

We then have to compute the normalizer Z so that
∑m
j=1 γj(xi) = 1. Note that for those data points xi for

which we are given the labels yi we set the γj(xi) to be a deterministic distribution, i.e. γj(xi) = [j = yi].

To compute the M-step update we have to optimize the following quantity

n∑
i=1

m∑
j=1

γj(xi) logP (xi, yi = j; θ) =

n∑
i=1

m∑
j=1

γj(xi)
[
log θj +

k∑
l=1

log θ
xi,l
l|j (1− θl|j)1−xi,l

]
with respect to the parameters θ. We form the Lagrangian by adding a multiplier λ to make sure that

∑m
j=1 θj = 1:

L(θ, λ) =
n∑
i=1

m∑
j=1

γj(xi)
[
log θj +

k∑
l=1

log θ
xi,l
l|j (1− θl|j)1−xi,l

]
+ λ(

m∑
j=1

θj − 1).

By setting the derivatives to zero we obtain:

∂

∂θl|j
L(θ, λ) =

n∑
i=1
xi,l=1

γj(xi)/θl|j +

n∑
i=1
xi,l=0

γj(xi)/(θl|j − 1) = 0 =⇒ θl|j =

∑n
i=1[xi,l = 1]γj(xi)∑n

i=1 γj(xi)

∂

∂θj
L(θ, λ) =

n∑
i=1

γj(xi)/θj + λ = 0 =⇒ θj = −
∑n
i=1 γj(xi)

λ

From the constraint
∑m
j=1 θj = 1 we find the correct multiplier to be λ = −

∑n
i=1

∑n
j=1 γj(xi) = −n.

Problem 2 (EM for a 1D Laplacian Mixture Model):

In this problem you will derive the EM algorithm for a one-dimensional Laplacian mixture model. You are given
n observations x1, . . . , xn ∈ R and we want to fit a mixture of m Laplacians, which has the following density

f(x) =

m∑
j=1

πjfL(x;µj , βj),

where fL(x;µj , βj) = 1
2βj

e
− 1
βj
|x−µj |

, and the mixture weights πj are a convex combination, i.e. πj ≥ 0 and∑m
j=1 πj = 1. For simplicity, assume that the scale parameters βj > 0 are known beforehand and thus fixed.

• Introduce latent variables so that we can apply the EM procedure.

• Analogously to the previous question, write down the steps of the EM procedure for this model. If some
updates cannot be written analytically, give an approach on how to compute them.

(Hint: Recall a property of functions that makes them easy to optimize.)
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Solution 2:

For each data point xi, we introduce a latent variable Yi ∈ {1, 2, . . . ,m} denoting the component that point
belongs to. For the E-step, we compute the posterior over the classes similarly to the previous problem, i.e.

γj(xi) = P (yi = j | xi) ∝ P (xi | yi = j)P (yi = j) = πjfL(xi;µj , βj).

Again, we have to normalize, so that the final posterior is equal to

γj(xi) =
πjfL(xi;µj , βj)∑m
l=1 πlfL(xi;µl, βl)

.

In the M-step, we optimize

n∑
i=1

m∑
j=1

γj(xi) logP (xi, yi = j) =

n∑
i=1

m∑
j=1

γj(xi) log πjfL(xi;µj , βj) (1)

=

n∑
i=1

m∑
j=1

γj(xi)(log πj −
1

βj
|xi − µj |) + const.

We add a Lagrange multiplier λ to make sure that
∑m
j=1 πj = 1 and obtain the Lagrangian

L(π, µ, λ) =
n∑
i=1

m∑
j=1

γj(xi)(log πj −
1

βj
|xi − µj |) + λ(

m∑
j=1

πj − 1).

Exactly as in the previous problem, by setting the gradient with respect to πj to zero, we obtain

∂

∂πj
L(π, µ, λ) =

n∑
i=1

γj(xi)/πj + λ = 0 =⇒ πj =

∑n
i=1 γj(xi)

−λ
.

The multiplier is again equal to λ = −n and we arrive at the same equation as in the last example. If we want to
maximize (1) with respect to the variables µj , we have to solve m separate optimization problems, one for each
µj . These m problems have the following form

maximize
µj

−
n∑
i=1

γj(xi)

βj
|xi − µj |.

These are one-dimensional convex optimization problems (the negative of the objective is easily seen to be convex).
While one can try solving this via an iterative process like subgradient descent, a direct approach is also possible
if we observe that the function is piecewise linear and the breakpoints are x1, x2, . . . , xn. Hence, the optimum
must be attained at one of these n points and we can simply set µj to the point xi with the largest objective
value.
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Problem 3 (A different perspective on EM 1):

In this question you will show that EM can be seen as iteratively maximizing a lower bound on the log-likelihood.
We will treat any general model P (X,Z) with observed variables X and latent variables Z. For the sake of
simplicity, we will assume that Z is discrete and takes on values in {1, 2, . . . ,m}. If we are observe X = x, the
goal is to maximize the log-likelihood

`(θ) = logP (x; θ) = log

m∑
z=1

P (x, z; θ)

with respect to the parameter vector θ. In what follows we will denote by Q(Z) any distribution over the latent
variables.

• Show that if Q(z) > 0 when P (x, z) > 0, then it holds that (Hint: Consider using Jensen’s inequality)

`(θ) ≥ EQ[logP (X,Z)]−
m∑
z=1

Q(z) logQ(z).

Hence, we have a bound on the log-likelihood parametrized by a distribution Q(Z) over the latent variables.

• Show that for a fixed θ, the lower bound is maximized for Q∗(Z) = P (Z | X; θ). Moreover, show that the
bound is exact (holds with equality) for this specific distribution Q∗(Z).

(Hint: Do not forget to add Lagrange multipliers to make sure that Q∗ is a valid distribution.)

• Show that if we optimize with respect to Q and θ in an alternating manner, that this corresponds to the
EM procedure. Discuss what this implies for the convergence properties of EM.

Solution 3:

For the first part, note that

`(θ) = logP (x; θ)

= log

m∑
z=1

P (x, z; θ)

= log

m∑
z=1

P (x, z; θ)

Q(z)
Q(z)

= logEZ∼Q[
P (x, z; θ)

Q(z)
]

≥ EZ∼Q[log
P (x, z; θ)

Q(z)
]

= EZ∼Q[logP (x, z; θ)]−
m∑
z=1

Q(z) logQ(z),

where for the inequality we have used Jensen’s inequality. Now, assume that we want to maximize the above
with respect to Q, and let us add a multiplier λ to make sure that Q sums up to 1. Then, we have the following
Lagrangian

L(Q,λ) =
m∑
z=1

Q(z) logP (x, z; θ)−
m∑
z=1

Q(z) logQ(z) + λ(

m∑
z=1

Q(z)− 1).

1This is an advanced question.
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By setting the derivative of the Lagrangian with respect to Q(z) to zero, we have

∂

∂Q(z)
L(Q,λ) = logP (x, z; θ)− 1− logQ(z) + λ = 0 =⇒ Q(z) = eλ−1P (x, z; θ).

Hence, we have that Q(z) ∝ P (x, z; θ) and this is exactly the posterior P (Z | x; θ), which we had to show. It is
also easy to see that the bound is tight, as

EZ∼Q[log
P (x, z; θ)

Q(z)
] =

m∑
z=1

Q(z) log
P (x, z; θ)

Q(z)
=

m∑
z=1

P (z | x; θ) log P (z | x; θ)P (x; θ)
P (z | x; θ)

= logP (x; θ).

Then we can easily see the EM algorithm as optimizing the lower bound with respect to Q(·) and θ in an alternating
manner. Specifically, if we optimize with respect to Q we have shown that the optimal Q is the posterior, and
this is exactly the E-step. Optimizing with respect to θ for fixed Q is clearly equivalent to the M-step. As the
lower bound is monotonically increased at every step the EM algorithm has to converge.
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