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Sample spaces and probabilities

I A sample space Ω is the set of outcomes of a random
experiment.

I Subsets A ⊆ Ω are called events.

I For example, consider the experiment of tossing a fair coin
twice.

I Sample space: Ω = {HH,HT, TH, TT}
I Event of at least one “head” occurring: A = {HH,HT, TH}.

I A probability distribution is a function that assigns a real
number Pr[A] to each event A ⊆ Ω.
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Random variables

I Usually, we do not deal directly with sample spaces. Instead,
we define random variables and probability distributions on
those.

I A random variable is a function X : Ω → R.

I For example, if X := “the number of heads in two coin
tosses”, then

X(HH) = 2

X(HT ) = 1

X(TH) = 1

X(TT ) = 0
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Probabilities of random variables

I If we denote by X the set of values a random variable X can
take, we can define probabilities directly on X .

I In the above example, X = {0, 1, 2} and we define

Pr[X = 0] := Pr[{TT}]
Pr[X = 1] := Pr[{HT, TH}]
Pr[X = 2] := Pr[{HH}]

I In practice, we often completely forget about the sample
space and work only with random variables.
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Discrete random variables
I X is called a discrete random variable if X is a finite or

countably infinite set.

I Examples:
I X = {0, 1}
I X = N
I X = Nd

I The corresponding probability distribution

P (x) := Pr[X = x]

is called a probability mass function.

I Non-negativity: P (x) ≥ 0, ∀x ∈ X

I Normalization:
∑
x∈X

P (x) = 1
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Continuous random variables

I X is called a continuous random variable if X is an
uncountably infinite set.

I Examples:
I X = [0, 1]
I X = R
I X = Rd

I The corresponding probability distribution p(x) is called a
probability density function.

I Non-negativity: p(x) ≥ 0, ∀x ∈ X

I Normalization:

∫
X
p(x)dx = 1
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The meaning of density

I Important: For continuous random variables

p(x) ̸= Pr[X = x] = 0

I To acquire a probability, we have to integrate p over the
desired set

Pr[a < X < b] =

∫ b

a
p(x)dx

a b

p(x)

Pr[a < X < b]
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Joint distributions

I For two random variables X ∈ X and Y ∈ Y, their joint
distribution is defined as

P (x, y) := Pr[X = x, Y = y]

I Non-negativity: P (x, y) ≥ 0

I Normalization:
∑
x∈X

∑
y∈Y

P (x, y) = 1

I For example, assume we throw two fair six-sided dice and
define X := “the number on the first die” and Y := “the
number on the second die”.

I X = Y = {1, 2, 3, 4, 5, 6}
I P (6, 6) = Pr[X = 6, Y = 6] =

1

36
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Marginal and conditional distributions
Let P (x, y) be a joint distribution of random variables X and Y .

I The marginal distribution of X is defined as

P (x) := Pr[X = x] :=
∑
y∈Y

P (x, y)

I The conditional distribution of X given that Y has a known
value y is defined as

P (x|y) := Pr[X = x|Y = y]

:=
P (x, y)

P (y)
(defined if P (y) > 0)

I Note that for any fixed y, P (x|y) is a distribution over x, i.e.∑
x∈X

P (x|y) = 1, ∀y ∈ Y
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The chain rule

I By definition of conditional distributions, we can always write
a joint distribution of X and Y as a product of conditionals:

P (x, y) = P (x|y)P (y)

I We can do the same for an arbitrary number of random
variables X1, . . . , Xn:

P (x1, . . . , xn) = P (x1|x2, . . . , xn) . . . P (xn−1|xn)P (xn)
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Bayes’ rule

I For two random variables X and Y , by definition of the
conditional distribution of X given Y :

P (x|y) = P (x, y)

P (y)

I Also, by the chain rule:

P (x, y) = P (y|x)P (x)

I Combining the above we get Bayes’ rule:

P (x|y) = P (y|x)P (x)

P (y)

LIS ’16 11/20



Independence

I Two random variables X and Y are called independent, if
knowing the value of X does not give any additional
information about the distribution of Y (and vice versa):

P (x|y) = P (x)

⇔ P (y|x) = P (y)

I Equivalently, X and Y are independent if their joint
distribution factorizes:

P (x, y) = P (x|y)P (y) = P (x)P (y)
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IID

I IID := Independent and Identically Distributed

I Random variables X1, ..., Xn are called IID if
I Each of them has the same (marginal) distribution
I They are mutually independent

I Note that if X1, ..., Xn are IID, then

P (x1, ..., xn) = P (x1)...P (xn)

=

n∏
i=1

P (xi)
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Expectation

I The expectation of a random variable X is defined as

µX := E[X] :=
∑
x∈X

xP (x)

I Note that the expectation E[X] is not the same as the most
likely value max

x∈X
P (x).

I Can also be defined for a function f of X:

E[f(X)] :=
∑
x∈X

f(x)P (x)
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Variance

I The variance of a random variable X is defined as

Var[X] := E[(X − µX)2] :=
∑
x∈X

(x− µX)2P (x)

I Var[X] ≥ 0

I The standard deviation of X is defined as

σX :=
√

Var[X]
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Multidimensional moments

Let X = (X1, . . . , Xn) be a vector of random variables.

I The expectation of X is defined as

E[X] := (E[X1], . . . ,E[Xn])

I The covariance of variables Xi and Xj is defined as

Cov[Xi, Xj ] := E[(Xi − µXi)(Xj − µXj )]

I Cov[Xi, Xi] = Var[Xi]
I Xi, Xj independent ⇒ Cov[Xi, Xj ] = 0
I Cov[Xi, Xj ] > 0 roughly means that Xi and Xj increase and

decrease together.
I Cov[Xi, Xj ] < 0 roughly means that when Xi increases Xj

decreases (and vice versa).
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Covariance matrix

For a random vector X = (X1, . . . , Xn) we define its n× n
covariance matrix as follows:

ΣX =


Var[X1] Cov[X1, X2] · · · Cov[X1, Xn]

Cov[X2, X1] Var[X2] · · · Cov[X2, Xn]
...

...
. . .

...
Cov[Xn, X1] Cov[Xn, X2] · · · Var[Xn]


I The diagonal elements are the variances of each random

variable Cov[Xi, Xi] = Var[Xi].

I ΣX is symmetric, because Cov[Xi, Xj ] = Cov[Xj , Xi].

I ΣX is positive semi-definite.

I What does it mean if ΣX is diagonal?
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Gaussian distribution (1-D)
I Random variable X with X = R
I Probability density function

p(x) :=
1√
2πσ

exp

(
−(x− µ)2

2σ2

)
I E[X] = µ, Var[X] = σ2

µ− 3σ µ− 2σ µ− σ −µ− µ+ σ µ+ 2σ µ+ 3σ

2.1% 13.6%

34.1% 34.1%

13.6% 2.1%
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Gaussian Distribution (n-D)

I Random vector X = (X1, . . . , Xn) with X = Rn

I Probability density function

p(x) :=
1

(2π)
n
2 |Σ|

1
2

exp

(
−1

2
(x− µ)⊤Σ−1(x− µ)

)
I E[X] = µ

I Σ is the covariance matrix of X and |Σ| is its determinant.
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Data vs. distribution

I Be careful to distinguish between models (usually smooth
parametric distributions) and data (sets of points).

I Machine learning:
I Data = input
I Distribution = model or assumption

I ML methods usually make some general assumptions about
the distribution (e.g. a parametric family), then try to obtain
(“infer”) the specifics from the data available.

I Example:

1. Modeling step: Assume a Gaussian distribution as model
(parameterized by µ and σ).

2. Inference step: Estimate parameters µ and σ from data.
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