A Refresher on Probabilities

Alkis Gotovos, Josip Djolonga

March 1, 2016

Sample spaces and probabilities

- A sample space Ω is the set of outcomes of a random experiment.
- Subsets $A \subseteq \Omega$ are called events.
- For example, consider the experiment of tossing a fair coin twice.
- Sample space: $\Omega=\{H H, H T, T H, T T\}$
- Event of at least one "head" occurring: $A=\{H H, H T, T H\}$.
- A probability distribution is a function that assigns a real number $\operatorname{Pr}[A]$ to each event $A \subseteq \Omega$.

Random variables

- Usually, we do not deal directly with sample spaces. Instead, we define random variables and probability distributions on those.
- A random variable is a function $X: \Omega \rightarrow \mathbb{R}$.
- For example, if $X:=$ "the number of heads in two coin tosses", then

$$
\begin{aligned}
X(H H) & =2 \\
X(H T) & =1 \\
X(T H) & =1 \\
X(T T) & =0
\end{aligned}
$$

Probabilities of random variables

- If we denote by \mathcal{X} the set of values a random variable X can take, we can define probabilities directly on \mathcal{X}.
- In the above example, $\mathcal{X}=\{0,1,2\}$ and we define

$$
\begin{aligned}
& \operatorname{Pr}[X=0]:=\operatorname{Pr}[\{T T\}] \\
& \operatorname{Pr}[X=1]:=\operatorname{Pr}[\{H T, T H\}] \\
& \operatorname{Pr}[X=2]:=\operatorname{Pr}[\{H H\}]
\end{aligned}
$$

- In practice, we often completely forget about the sample space and work only with random variables.

Discrete random variables

- X is called a discrete random variable if \mathcal{X} is a finite or countably infinite set.
- Examples:
- $\mathcal{X}=\{0,1\}$
- $\mathcal{X}=\mathbb{N}$
- $\mathcal{X}=\mathbb{N}^{d}$
- The corresponding probability distribution

$$
P(x):=\operatorname{Pr}[X=x]
$$

is called a probability mass function.

- Non-negativity: $P(x) \geq 0, \forall x \in \mathcal{X}$
- Normalization: $\sum_{x \in \mathcal{X}} P(x)=1$

Continuous random variables

- X is called a continuous random variable if \mathcal{X} is an uncountably infinite set.
- Examples:
- $\mathcal{X}=[0,1]$
- $\mathcal{X}=\mathbb{R}$
- $\mathcal{X}=\mathbb{R}^{d}$
- The corresponding probability distribution $p(x)$ is called a probability density function.
- Non-negativity: $p(x) \geq 0, \forall x \in \mathcal{X}$
- Normalization: $\int_{\mathcal{X}} p(x) d x=1$

The meaning of density

- Important: For continuous random variables

$$
p(x) \neq \operatorname{Pr}[X=x]=0
$$

- To acquire a probability, we have to integrate p over the desired set

$$
\operatorname{Pr}[a<X<b]=\int_{a}^{b} p(x) d x
$$

Joint distributions

- For two random variables $X \in \mathcal{X}$ and $Y \in \mathcal{Y}$, their joint distribution is defined as

$$
P(x, y):=\operatorname{Pr}[X=x, Y=y]
$$

- Non-negativity: $P(x, y) \geq 0$
- Normalization: $\sum_{x \in \mathcal{X}} \sum_{y \in \mathcal{Y}} P(x, y)=1$
- For example, assume we throw two fair six-sided dice and define $X:=$ "the number on the first die" and $Y:=$ "the number on the second die".
- $\mathcal{X}=\mathcal{Y}=\{1,2,3,4,5,6\}$
- $P(6,6)=\operatorname{Pr}[X=6, Y=6]=\frac{1}{36}$

Marginal and conditional distributions

Let $P(x, y)$ be a joint distribution of random variables X and Y.

- The marginal distribution of X is defined as

$$
P(x):=\operatorname{Pr}[X=x]:=\sum_{y \in \mathcal{Y}} P(x, y)
$$

- The conditional distribution of X given that Y has a known value y is defined as

$$
\begin{aligned}
P(x \mid y) & :=\operatorname{Pr}[X=x \mid Y=y] \\
& :=\frac{P(x, y)}{P(y)} \quad(\text { defined if } P(y)>0)
\end{aligned}
$$

- Note that for any fixed $y, P(x \mid y)$ is a distribution over x, i.e.

$$
\sum_{x \in \mathcal{X}} P(x \mid y)=1, \forall y \in \mathcal{Y}
$$

The chain rule

- By definition of conditional distributions, we can always write a joint distribution of X and Y as a product of conditionals:

$$
P(x, y)=P(x \mid y) P(y)
$$

- We can do the same for an arbitrary number of random variables X_{1}, \ldots, X_{n} :

$$
P\left(x_{1}, \ldots, x_{n}\right)=P\left(x_{1} \mid x_{2}, \ldots, x_{n}\right) \ldots P\left(x_{n-1} \mid x_{n}\right) P\left(x_{n}\right)
$$

Bayes' rule

- For two random variables X and Y, by definition of the conditional distribution of X given Y :

$$
P(x \mid y)=\frac{P(x, y)}{P(y)}
$$

- Also, by the chain rule:

$$
P(x, y)=P(y \mid x) P(x)
$$

- Combining the above we get Bayes' rule:

$$
P(x \mid y)=\frac{P(y \mid x) P(x)}{P(y)}
$$

Independence

- Two random variables X and Y are called independent, if knowing the value of X does not give any additional information about the distribution of Y (and vice versa):

$$
\begin{aligned}
P(x \mid y) & =P(x) \\
\Leftrightarrow P(y \mid x) & =P(y)
\end{aligned}
$$

- Equivalently, X and Y are independent if their joint distribution factorizes:

$$
P(x, y)=P(x \mid y) P(y)=P(x) P(y)
$$

IID

- IID := Independent and Identically Distributed
- Random variables X_{1}, \ldots, X_{n} are called IID if
- Each of them has the same (marginal) distribution
- They are mutually independent
- Note that if X_{1}, \ldots, X_{n} are IID, then

$$
\begin{aligned}
P\left(x_{1}, \ldots, x_{n}\right) & =P\left(x_{1}\right) \ldots P\left(x_{n}\right) \\
& =\prod_{i=1}^{n} P\left(x_{i}\right)
\end{aligned}
$$

Expectation

- The expectation of a random variable X is defined as

$$
\mu_{X}:=\mathrm{E}[X]:=\sum_{x \in \mathcal{X}} x P(x)
$$

- Note that the expectation $\mathrm{E}[X]$ is not the same as the most likely value $\max _{x \in \mathcal{X}} P(x)$.
- Can also be defined for a function f of X :

$$
\mathrm{E}[f(X)]:=\sum_{x \in \mathcal{X}} f(x) P(x)
$$

Variance

- The variance of a random variable X is defined as

$$
\operatorname{Var}[X]:=\mathrm{E}\left[\left(X-\mu_{X}\right)^{2}\right]:=\sum_{x \in \mathcal{X}}\left(x-\mu_{X}\right)^{2} P(x)
$$

- $\operatorname{Var}[X] \geq 0$
- The standard deviation of X is defined as

$$
\sigma_{X}:=\sqrt{\operatorname{Var}[X]}
$$

Multidimensional moments

Let $\boldsymbol{X}=\left(X_{1}, \ldots, X_{n}\right)$ be a vector of random variables.

- The expectation of \boldsymbol{X} is defined as

$$
\mathrm{E}[\boldsymbol{X}]:=\left(\mathrm{E}\left[X_{1}\right], \ldots, \mathrm{E}\left[X_{n}\right]\right)
$$

- The covariance of variables X_{i} and X_{j} is defined as

$$
\operatorname{Cov}\left[X_{i}, X_{j}\right]:=\mathrm{E}\left[\left(X_{i}-\mu_{X_{i}}\right)\left(X_{j}-\mu_{X_{j}}\right)\right]
$$

- $\operatorname{Cov}\left[X_{i}, X_{i}\right]=\operatorname{Var}\left[X_{i}\right]$
- X_{i}, X_{j} independent $\Rightarrow \operatorname{Cov}\left[X_{i}, X_{j}\right]=0$
- $\operatorname{Cov}\left[X_{i}, X_{j}\right]>0$ roughly means that X_{i} and X_{j} increase and decrease together.
- $\operatorname{Cov}\left[X_{i}, X_{j}\right]<0$ roughly means that when X_{i} increases X_{j} decreases (and vice versa).

Covariance matrix

For a random vector $\boldsymbol{X}=\left(X_{1}, \ldots, X_{n}\right)$ we define its $n \times n$ covariance matrix as follows:

$$
\Sigma_{\boldsymbol{X}}=\left[\begin{array}{cccc}
\operatorname{Var}\left[X_{1}\right] & \operatorname{Cov}\left[X_{1}, X_{2}\right] & \cdots & \operatorname{Cov}\left[X_{1}, X_{n}\right] \\
\operatorname{Cov}\left[X_{2}, X_{1}\right] & \operatorname{Var}\left[X_{2}\right] & \cdots & \operatorname{Cov}\left[X_{2}, X_{n}\right] \\
\vdots & \vdots & \ddots & \vdots \\
\operatorname{Cov}\left[X_{n}, X_{1}\right] & \operatorname{Cov}\left[X_{n}, X_{2}\right] & \cdots & \operatorname{Var}\left[X_{n}\right]
\end{array}\right]
$$

- The diagonal elements are the variances of each random variable $\operatorname{Cov}\left[X_{i}, X_{i}\right]=\operatorname{Var}\left[X_{i}\right]$.
- $\Sigma_{\boldsymbol{X}}$ is symmetric, because $\operatorname{Cov}\left[X_{i}, X_{j}\right]=\operatorname{Cov}\left[X_{j}, X_{i}\right]$.
- $\Sigma_{\boldsymbol{X}}$ is positive semi-definite.
- What does it mean if $\Sigma_{\boldsymbol{X}}$ is diagonal?

Gaussian distribution (1-D)

- Random variable X with $\mathcal{X}=\mathbb{R}$
- Probability density function

$$
p(x):=\frac{1}{\sqrt{2 \pi} \sigma} \exp \left(-\frac{(x-\mu)^{2}}{2 \sigma^{2}}\right)
$$

- $\mathrm{E}[X]=\mu, \operatorname{Var}[X]=\sigma^{2}$

Gaussian Distribution (n-D)

- Random vector $\boldsymbol{X}=\left(X_{1}, \ldots, X_{n}\right)$ with $\mathcal{X}=\mathbb{R}^{n}$
- Probability density function

$$
p(\boldsymbol{x}):=\frac{1}{(2 \pi)^{\frac{n}{2}}|\Sigma|^{\frac{1}{2}}} \exp \left(-\frac{1}{2}(\boldsymbol{x}-\boldsymbol{\mu})^{\top} \Sigma^{-1}(\boldsymbol{x}-\boldsymbol{\mu})\right)
$$

- $\mathrm{E}[\boldsymbol{X}]=\boldsymbol{\mu}$
- Σ is the covariance matrix of \boldsymbol{X} and $|\Sigma|$ is its determinant.

Data vs. distribution

- Be careful to distinguish between models (usually smooth parametric distributions) and data (sets of points).
- Machine learning:
- Data $=$ input
- Distribution $=$ model or assumption
- ML methods usually make some general assumptions about the distribution (e.g. a parametric family), then try to obtain ("infer") the specifics from the data available.
- Example:

1. Modeling step: Assume a Gaussian distribution as model (parameterized by μ and σ).
2. Inference step: Estimate parameters μ and σ from data.
