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Sample spaces and probabilities

» A sample space () is the set of outcomes of a random
experiment.
» Subsets A C 2 are called events.
» For example, consider the experiment of tossing a fair coin
twice.
» Sample space: Q= {HH,HT,TH,TT}
» Event of at least one "head” occurring: A={HH, HT,TH}.
» A probability distribution is a function that assigns a real

number Pr[A] to each event A C Q.
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Random variables

> Usually, we do not deal directly with sample spaces. Instead,
we define random variables and probability distributions on
those.

» A random variable is a function X : 2 — R.

» For example, if X := "the number of heads in two coin
tosses”, then

X(HH) =2
X(HT) =1
X(TH) =1
X(TT) =0
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Probabilities of random variables

> If we denote by X the set of values a random variable X can

take, we can define probabilities directly on X.

> In the above example, X = {0, 1,2} and we define

Pr[X =0] := Pr[{TT}]
Pr[X =1]:=Pr[{HT,TH}]
Pr[X = 2| :=Pr[{HH}]

> In practice, we often completely forget about the sample
space and work only with random variables.

LIS '16



Discrete random variables

» X is called a discrete random variable if X" is a finite or
countably infinite set.

» Examples:

» X ={0,1}
> X:N
» X =N¢

» The corresponding probability distribution
P(z) :=Pr[X = z]

is called a probability mass function.
» Non-negativity: P(z) >0, Vz € X

» Normalization: Z P(x)=1
reX
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Continuous random variables
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X is called a continuous random variable if X is an
uncountably infinite set.

Examples:
» X =[0,1]
> X:R
» XY =R?

The corresponding probability distribution p(z) is called a
probability density function.

Non-negativity: p(z) >0, Vo € X

Normalization: /p(x)d:v— 1
X



The meaning of density

» Important: For continuous random variables
p(z) # PrlX = 2] =0

» To acquire a probability, we have to integrate p over the
desired set

Prla < X <b] = /bp(x)dx

p(z)
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Joint distributions
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For two random variables X € X and Y € ), their joint
distribution is defined as

P(z,y) :=Pr[X =xz,Y =y]

Non-negativity: P(z,y) >0

Normalization: Z Z P(z,y) =1

reX yey
For example, assume we throw two fair six-sided dice and
define X := “the number on the first die” and Y := “the
number on the second die".

» X =Y=1{1,2,3,4,5,6}

1
> P(6,6) = Pr[X =6,Y =6 =



Marginal and conditional distributions
Let P(z,y) be a joint distribution of random variables X and Y.

» The marginal distribution of X is defined as
P(z):=Pr[X ZP z,y)
yey

» The conditional distribution of X given that Y has a known
value y is defined as

P(xly) := Pr[X = z|Y = y]

= (defined if P(y) > 0)

» Note that for any fixed y, P(x|y) is a distribution over z, i.e.

Z P(zly) =1, Vye)y

reX
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The chain rule

» By definition of conditional distributions, we can always write
a joint distribution of X and Y as a product of conditionals:

P(z,y) = P(z|y)P(y)

» We can do the same for an arbitrary number of random
variables X1,..., X,:

P(x1,...,xp) = P(x1|x2, ..., 2p) ... P(xp_1|zn)P(20)
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Bayes’ rule

» For two random variables X and Y, by definition of the
conditional distribution of X given Y

P(xly) =

» Also, by the chain rule:
P(z,y) = P(y|lz)P(z)
» Combining the above we get Bayes’ rule:

Pylz)P(z)

P(zly) = Ply)
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Independence

» Two random variables X and Y are called independent, if
knowing the value of X does not give any additional
information about the distribution of Y (and vice versa):

P(zy) = P(z)
& P(ylz) = P(y)

» Equivalently, X and Y are independent if their joint
distribution factorizes:

P(x,y) = P(z|y)P(y) = P(z)P(y)
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11D

» |ID := Independent and Identically Distributed
» Random variables X7, ..., X, are called IID if

» Each of them has the same (marginal) distribution
» They are mutually independent

» Note that if X4, ..., X, are lID, then

P(z1,...,xy) = P(x1)...P(zy)

=[P
i=1
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Expectation

» The expectation of a random variable X is defined as

ux = E[X]:= Z xP(z)
reX

» Note that the expectation E[X] is not the same as the most
likely value max P(x).
reX

» Can also be defined for a function f of X:

E[f(X)]:= ) f(z)P()

rzeX
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Variance

» The variance of a random variable X is defined as

Var[X] == E[(X - ux)?] = 3 (2 — px)*P(2)
TEX

» Var[X]| >0

» The standard deviation of X is defined as

ox =/ Var[X]
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Multidimensional moments

Let X = (X1,...,X,) be a vector of random variables.

» The expectation of X is defined as
E[X] := (E[X4],...,E[X,])
» The covariance of variables X; and X is defined as

COV[XZWXj] = E[(Xl - /"LXi)(Xj - :qu)]

v

COV[XZ', Xz] = Var[Xi}

» X;, X, independent = Cov[X;, X;] =0

Cov[X;, X;] > 0 roughly means that X; and X increase and
decrease together.

Cov[X;, X;] < 0 roughly means that when X increases X;
decreases (and vice versa).

v

v
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Covariance matrix

For a random vector X = (X1,...,X,,) we define its n x n
covariance matrix as follows:

Var[Xl] COV[Xl,XQ] ce COV[Xl,Xn]
Cov|[X2, X1] Var[X3] -+ Cov[Xa, X,]
Yx = : : _
Cov[Xy, X1] Cov[X,,Xo] --- Var[X,,]

v

The diagonal elements are the variances of each random
variable COV[XZ', Xz] = Var[Xz}

Yx is symmetric, because Cov[X;, X;] = Cov[X}, X;].
» Y x is positive semi-definite.

v

v

What does it mean if X x is diagonal?
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Gaussian distribution (1-D)
» Random variable X with X =R
» Probability density function
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Gaussian Distribution (n-D)

v

Random vector X = (X3,...,X,) with X =R"

» Probability density function
1 _
)= e (e —w S @)
(2m)3]5)3
» EX]=pn

v

Y. is the covariance matrix of X and |X| is its determinant.
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Data vs. distribution

» Be careful to distinguish between models (usually smooth
parametric distributions) and data (sets of points).

» Machine learning:
» Data = input
» Distribution = model or assumption

» ML methods usually make some general assumptions about
the distribution (e.g. a parametric family), then try to obtain
(“infer”) the specifics from the data available.

» Example:

1. Modeling step: Assume a Gaussian distribution as model
(parameterized by u and o).
2. Inference step: Estimate parameters i and o from data.
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