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1. Conditional Probabilities

For each statement below, either prove it is true, or give a counterexample showing it is false.
In the following, we assume that all events have non-zero probability.

(a) If P (a|b, c) = P (b|a, c), then P (a|c) = P (b|c)

(b) If P (a|b, c) = P (a), then P (b|c) = P (b)

(c) If P (a|b) = P (a), then P (a|b, c) = P (a|c)

Solution

(a). True.

From Bayes’ rule, we get

P (a, b, c) = P (a|b, c)P (b|c)P (c) (1)

and

P (a, b, c) = P (b|a, c)P (a|c)P (c) (2)

From the question we have P (a|b, c) = P (b|a, c), and therefore we can rewrite (1) as
P (a, b, c) = P (b|a, c)P (b|c)P (c). Combining with (2) we get P (a|c) = P (b|c).

(b). False.

�e statement is equivalent to: a ⊥ (b, c) ⇒ b ⊥ c, which is false. See Figure 1 for a
counterexample (description below).
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Figure 1: Example from lecture slides: casual parametrization
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Counterexample. If a = JohnCalls, b = Burglary, c = Earthquake, then

a ⊥ (b, c) | Alarm.

However, the event Burglary is dependent with Earthquake if Alarm is observed:

b 6⊥ c | Alarm

�erefore, we have identi�ed an example where the statement is false.

(c). False.

Counterexample. Suppose a ⊥ b, each taking 0 and 1 with probability 0.5, and c = ab.
P (a = 0|b = 0) = 1/2. But, when c = 0, P (a = 0) = 2/3 and P (a = 0) > P (a =
0|b = 0). �erefore the statement a ⊥ b | c is false.

2. Finding the fake coin

Suppose you are given a bag containing n unbiased coins. You are also told that n− 1 of these
coins are normal, that is, they have a head on one side and a tail in the other. �e remaining
one is fake and has heads on both sides.

(a) Suppose you pick a coin from the bag uniformly at random, you �ip it, and get a head.
Given this result, what is the probability that the coin you picked is the fake one? (Note
that we ask for a conditional probability.)

(b) Suppose you continue �ipping the same coin for a total of k times and you get k heads.
Given this result, what is the probability that you picked the fake coin?

(c) Now, suppose you devise the followingmethod to determine if the coin is fake or not. You
�ip it k times, a�er which you conclude that it is the fake one if all k �ips have resulted in
heads, else you conclude that it is normal. What is the probability that using this method
you arrive at a wrong conclusion? (Note that this time we ask for an unconditional
probability.)

Solution

(a) De�ne a random variable C corresponding to the coin that takes values N (normal) or
F (fake) and a random variable E corresponding to the outcome of the �ip that takes
values H (heads) or T (tails). From the problem description, we can write down the
following probabilities:

P (C = N) =
n− 1

n

P (C = F ) =
1

n
P (E = H | C = N) = 0.5

P (E = H | C = F ) = 1

2



To compute the probability P (C = F | E = H), we can use Bayes’ rule:

P (C = F | E = H) =
P (E = H | C = F )P (C = F )

P (E = H)

=
P (E = H | C = F )P (C = F )

P (E = H | C = N)P (C = N) + P (E = H | C = F )P (C = F )

=
1 ∗ 1

n

0.5 ∗ n− 1

n
+ 1 ∗ 1

n

=
2

n+ 1

(b) Since the outcomes of coin �ips are conditionally independent given the coin, if we de-
note by Ek the random variable that corresponds to the outcome of k �ips with value
Hk when k heads occur, then we have that

P (Ek = Hk | C = N) = 2−k

P (Ek = Hk | C = F ) = 1.

Using Bayes’ rule similarly to the previous question we have

P (C = F | Ek = Hk) =
P (Ek = Hk | C = F )P (C = F )

P (Ek = Hk)

=
P (Ek = Hk | C = F )P (C = F )

P (Ek = Hk | C = N)P (C = N) + P (Ek = Hk | C = F )P (C = F )

=
1 ∗ 1

n

2−k ∗ n− 1

n
+ 1 ∗ 1

n

=
1

1 + (n− 1)2−k

Figure 2 shows how the probability of having picked the fake coin among n = 50 total
coins increases as the number of observed heads k gets larger.

(c) A wrong conclusion is reached when we pick a normal coin and claim it is fake (i.e.,
we observe k heads) or we pick the fake coin and claim it is normal (i.e., observe tails
at least once). Note that the la�er event is not possible (happens with probability 0) by
de�nition of the fake coin. �erefore, the probability of a wrong conclusion is

P (C = N,Ek = Hk) = P (Ek = Hk | C = N)P (C = N)

=
n− 1

n
2−k,

which is depicted in Figure 3 for n = 50.

Suppose you throw a dice repeatedly until you get a 6.

(a) What is the probability of �nding a sequence of length n?
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Figure 2: Probability of having picked the fake coin given k observed heads (n = 50).
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Figure 3: Probability of reaching a wrong conclusion using k �ips (n = 50).

(b) What is the expected value of the sequence length?

(c) What is the expected number of 3s we observe?

Solution

(a) A sequence of length n is obtained only if the �rst n− 1 throws are not a 6 and the n-th
throw is exactly a 6.

P (Ln) =

(
5

6

)(n−1) 1

6
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(b) �e expected length is:

E[Ln] =
∞∑
i=1

i

(
5

6

)(i−1) 1

6

=
1

6

∞∑
i=1

i

(
5

6

)(i−1)

=
1

6

1

(1− (5/6))2
= 6

(c) By symmetry, the expected number of 3s or any other number (except 6) should be the
same. We denote with Xi the total number of i in the sequence. Also denote X as the
total numbers from 1 to 5 in the sequence. �erefore, X =

∑5
i=1Xi.

For any sequence of length n, the random variableX takes the valueX = n−1. Hence,

E[X] = E[Ln]− 1

=
5∑

i=1

E[Xi]

= 5E[X3]

E[X3] =
1

5
(E[Ln]− 1) = 1
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