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1. Variable elimination

In this exercise you will use variable elimination to perform inference on a bayesian network.
Consider the network in �gure 1 and its corresponding conditional probability tables (CPTs).

A C

B

E D

F

Figure 1: Bayesian network for problem 1.

P (A = t) = 0.3 (1)
P (C = t) = 0.6 (2)

Table 1: CPTs for problem 1.

A C P (B = t)

f f 0.2
f t 0.8
t f 0.3
t t 0.5

C P (D = t)

f 0.9
t 0.75

B P (E = t)

f 0.2
t 0.4

D E P (F = t)

f f 0.95
f t 1
t f 0
t t 0.25
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Assuming a query on A with evidence for B and D, i.e. P (A | B,D), use the variable elimi-
nation algorithm to answer the following queries. Make explicit the selected ordering for the
variables and compute the probability tables of the intermediate factors.

1. P (A = t | B = t,D = f)

2. P (A = f | B = f,D = f)

3. P (A = t | B = t,D = t)

Consider now the ordering,C,E, F,D,B,A, use again the variable elimination algorithm and
write down the intermediate factors, this time without computing their probability tables. Is
this ordering be�er or worse than the one you used before? Why?

Solution

From the problem statement, we want to calculate P (Q | E) and we know the following:

Q = {A} (3)
E = {B,D} (4)

X\{Q,E} = {C,E, F} (5)

�e variables to eliminate are given in equation 5. A good ordering must be chosen for them,
a possibility is: [F,E,C]. First let’s write down the initial factors derived from the CPTs:

Table 2: Initial factors

A g1(A)

f 0.7
t 0.3

C g2(C)

f 0.4
t 0.6

C D g3(C,D)

f f 0.10
f t 0.90
t f 0.25
t t 0.75

B E g4(B,E)

f f 0.8
f t 0.2
t f 0.6
t t 0.4

A B C g5(A,B,C)

f f f 0.8
f f t 0.2
f t f 0.2
f t t 0.8
t f f 0.7
t f t 0.5
t t f 0.3
t t t 0.5

D E F g6(D,E, F )

f f f 0.05
f f t 0.95
f t f 0.00
f t t 1.00
t f f 1.00
t f t 0.00
t t f 0.75
t t t 0.25
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Eliminate F

g7(D,E) =
∑
f

∏
jε{6}

gj =
∑
f

g6(D,E, f) (6)

�e resulting factor is presented in table 3. Note that this marginalization trivializes the factor
g7(D,E) because the conditional query is independent of F .

Table 3: Intermediate factor g7(D,E)

D E g7(D,E)

f f 0.05 + 0.95 = 1
f t 0.00 + 1.00 = 1
t f 1.00 + 0.00 = 1
t t 0.75 + 0.25 = 1

Eliminate E

g8(B,D) =
∑
e

g4(B, e)g7(D, e) =
∑
e

f1(B,D, e) (7)

A product of the factors, f1(B,D,E) = g4(B,E)g7(D,E), is presented in table 4.

Table 4: Product factor f1(B,D,E)

B D E f1(B,D,E)

f f f 1× 0.8 = 0.8
f f t 1× 0.2 = 0.2
f t f 1× 0.8 = 0.8
f t t 1× 0.2 = 0.2
t f f 1× 0.6 = 0.6
t f t 1× 0.4 = 0.4
t t f 1× 0.6 = 0.6
t t t 1× 0.4 = 0.4

A�er marginalizing E, the resulting factor is in table 5.

Table 5: Intermediate factor g8(B,D)

B D g8(B,D)

f f 1
f t 1
t f 1
t t 1

�erefore, the query is independent of E or F given the evidence variables.
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Eliminate C

f2(C,D) = g2(C)g3(C,D) (8)
f3(A,B,C,D) = f2(C,D)g5(A,B,C) (9)

g9(A,B,D) =
∑
c

g2(c)g3(c,D)g5(A,B, c) =
∑
c

f3(A,B, c,D) (10)

Tables 6 and 7 show the product of the factors containing C .

Table 6: Product factor f2(C,D)

C D f2(C,D)

f f 0.10× 0.4 = 0.04
f t 0.90× 0.4 = 0.36
t f 0.25× 0.6 = 0.15
t t 0.75× 0.6 = 0.45

Table 7: Product factor f3(A,B,C,D)

A B C D f3(A,B,C,D)

f f f f 0.04× 0.8 = 0.032
f f f t 0.36× 0.8 = 0.288
f f t f 0.15× 0.2 = 0.030
f f t t 0.45× 0.2 = 0.090
f t f f 0.04× 0.2 = 0.008
f t f t 0.36× 0.2 = 0.072
f t t f 0.15× 0.8 = 0.120
f t t t 0.45× 0.8 = 0.360
t f f f 0.04× 0.7 = 0.028
t f f t 0.36× 0.7 = 0.252
t f t f 0.15× 0.5 = 0.075
t f t t 0.45× 0.5 = 0.225
t t f f 0.04× 0.3 = 0.012
t t f t 0.36× 0.3 = 0.108
t t t f 0.15× 0.5 = 0.075
t t t t 0.45× 0.5 = 0.225

Table 8 shows the resulting factor a�er marginalizing C .

Answering queries

P (a | b, d) ∝ g1(a)g8(b, d)g9(a, b, d) (11)

g1(A = f)g8(B = t,D = f)g9(A = f,B = t,D = f) = 0.7× 1× 0.128 = 0.0896 (12)
g1(A = t)g8(B = t,D = f)g9(A = t, B = t,D = f) = 0.3× 1× 0.087 = 0.0261 (13)
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Table 8: Intermediate factor g9(A,B,D)

A B D g9(A,B,D)

f f f 0.032 + 0.030 = 0.062
f f t 0.288 + 0.090 = 0.378
f t f 0.008 + 0.120 = 0.128
f t t 0.072 + 0.360 = 0.432
t f f 0.028 + 0.075 = 0.103
t f t 0.252 + 0.225 = 0.477
t t f 0.012 + 0.075 = 0.087
t t t 0.108 + 0.225 = 0.333

Re-normalizing,

P (A | B = t,D = f) =< 0.7744, 0.2256 > (14)

g1(A = f)g8(B = f,D = f)g9(A = f,B = f,D = f) = 0.7× 1× 0.062 = 0.0434 (15)
g1(A = t)g8(B = f,D = f)g9(A = t, B = f,D = f) = 0.3× 1× 0.103 = 0.0309 (16)

Re-normalizing,

P (A | B = f,D = f) =< 0.5841, 0.4159 > (17)

g1(A = f)g8(B = t,D = t)g9(A = f,B = t,D = t) = 0.7× 1× 0.432 = 0.3024 (18)
g1(A = t)g8(B = t,D = t)g9(A = t, B = t,D = t) = 0.3× 1× 0.333 = 0.0999 (19)

Re-normalizing,

P (A | B = t,D = t) =< 0.7517, 0.2483 > (20)

Another ordering

Let’s consider now the orderingC,E, F for variable elimination. �e intermediate factors are:
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g7(A,B,D) =
∑
c

g2(c)g3(c,D)g5(A,B, c) (21)

g8(B,D,F ) =
∑
e

g4(B, e)g6(D, e, F ) (22)

g9(B,D) =
∑
f

g8(B,D, f) (23)

Is this ordering better? Note that with the former ordering, only one of the factors has 3
variables, i.e. g9(A,B,D) in equation 10. On the other hand, with the la�er ordering we
would have to compute the table for g8(B,D,F ) in equation 22 only to marginalize F in the
next step. �erefore, the former ordering is be�er as it requires less operations to answer the
given queries.

2. Belief propagation

In this exercise, you will implement the belief propagation algorithm for performing inference
in Bayesian networks. As you have seen in the class lectures, the algorithm is based on con-
verting the Bayesian network to a factor graph and then passing messages between variable
and factor nodes of that graph until convergence.

You are provided some skeleton Python code in the .zip �le accompanying this document.
Take the following steps for this exercise.

1. Install the Python dependencies listed in README.txt, if your system does not already
satisfy them. A�er that, you should be able to run demo.py and produce some plots,
albeit wrong ones for now.

2. Implement the missing code in bprop.py marked with TODO. In particular, you have to
�ll in parts of the two functions that are responsible for sending messages from variable
to factor nodes and vice versa, as well as parts of the function that returns the resulting
marginal distribution of a variable node a�er message passing has terminated.

3. Now, set up the full-�edged earthquake network, whose structure was introduced in
Problem Set 2 and is shown again in Figure 2. Here is the story behind this network:
While Fred is commuting to work, he receives a phone call from his neighbor saying that
the burglar alarm in Fred’s house is ringing. Upon hearing this, Fred immediately turns
around to get back and check his home. A few minutes on his way back, however, he
hears on the radio that there was an earthquake near his home earlier that day. Relieved
by the news, he turns around again and continues his way to work.
To build up the conditional probability tables (CPTs) for the network of Figure 2 youmay
make the following assumptions about the variables involved:

• All variables in the network are binary.
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Phone

AlarmRadio

Earthquake Burglar

Figure 2: �e earthquake network to be implemented.

• As can be seen from the network structure, burglaries and earthquakes are assumed
to be independent. Furthermore, each of them is assumed to occur with probability
0.1%.

• �e alarm is triggered in the following ways: (1) When a burglar enters the house,
the alarm will ring 99% of the time; (2) when an earthquake occurs, there will
be a false alarm 1% of the time; (3) the alarm might go o� due to other causes
(wind, rain, etc.) 0.1% of the time. �ese three types of causes are assumed to be
independent of each other.

• �e neighbor is assumed to call only when the alarm is ringing, but only does so
70% of the time when it is actually ringing.

• �e radio is assumed to never falsely report an earthquake, but it might fail to
report an earthquake that actually happened 50% of the time. (�is includes the
times that Fred fails to listen to the announcement.)

4. A�er having set up the network and its CPTs, answer the following questions using your
belief propagation implementation:

(a) Before Fred gets the neighbor’s call, what is the probability of a burglary having
occurred? What is the probability of an earthquake having occurred?

(b) How do these probabilities change a�er Fred receives the neighbor’s phonecall?
(c) How do these probabilities change a�er Fred listens to the news on the radio?

Solution

�e complete solution code can be found in the .zip �le accompanying this �le. Now we
show how to derive the CPT from the problem statement and the expected results to check the
obtained solution from your code.
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Defining the CPTs

First, we show here the derivation of the conditional probability table (CPT) for the alarm
variable A. Let us de�ne the following quantities from the problem description:

• fb = 0.99: the probability that the alarm will ring because of a burglar,

• fe = 0.01: the probability that the alarm will ring because of an earthquake,

• fo = 0.001: the probability that the alarm will ring because of other causes.

Using the facts that these three causes are independent of each other, and that the alarm is
triggered by either of them, we can compute the following probabilities:

P (A = f | B = f,E = f) = 1− fo = 0.999 (24)
P (A = f | B = f,E = t) = (1− fe)× (1− fo) = 0.98901 (25)
P (A = f | B = t, E = f) = (1− fb)× (1− fo) = 0.00999 (26)
P (A = f | B = t, E = t) = (1− fb)× (1− fe)× (1− fo) = 0.0098901. (27)

�e CPTs for the alarm variable is presented in table 9 together with the other variables which
can be obtained straightforwardly from the description.

Table 9: CPTs for problem 2.

B E P (A = t)

f f 0.0010000
f t 0.0109900
t f 0.9900100
t t 0.9901099

A P (P = t)

f 0.0
t 0.7

E P (R = t)

f 0.0
t 0.5

�e probabilities of the independent variables are:

P (E = t) = 0.001 (28)
P (B = t) = 0.001 (29)

�eries

�e correct results for the queries from point 5 are:

1. P (B = t) = 0.1% and P (E = t) = 0.1%

2. P (B = t | P = t) = 49.5% and P (E = t | P = t) = 0.6%

3. P (B = t | P = t, R = t) = 8.3% and P (E = t | P = t, R = t) = 100%
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Figure 3: An example factor graph and two of its subtrees.

3. Belief propagation on tree factor graphs*

In this exercise we will prove that the belief propagation algorithm converges to the exact
marginals a�er a �xed number of iterations given that the factor graph is a tree, that is, given
that the original Bayesian network is a polytree.

We will assume that the factor graph contains no single-variable factors. (You have already
seen that if those exist, they can easily be incorporated into multi-variable factors without
increasing the complexity of the algorithm.) Since the factor graph is a tree, we will designate
a variable node, say a, as the root of the tree. We will consider subtrees T[rt], where r and t are
adjacent nodes in the factor graph and t is closer to the root than r, which are of two types:

• if r is a factor node (and t a variable node), then T[rt] denotes a subtree that has t as its
root, contains the whole subtree under r and, additionally, the edge {r, t},

• if r is a variable node (and t a factor node), then T[rt] denotes the whole subtree under r
with r as its root.

See Figure 3 for two example subtrees, one of each type. �e depth of a tree is de�ned as the
maximum distance between the root and any other node. Note that, both types of subtrees
T[rt] de�ned above have always depths that are even numbers.

We will use the subscript notation [rt] to refer to quantities constrained to the subtree T[rt].
In particular, we denote by F[rt] the set of factors in the subtree and by P[rt](xv) the marginal
distribution of v when we only consider the nodes of the subtree. More concretely, if r is a
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(a) Base case.

f

v

. . .

N (v) \ {f}

T[vf ]

(b) First induction step.

v

f

. . .

N (f) \ {v}

T[fv]

(c) Second induction step.

Figure 4: �e three cases considered in the proof by induction.

variable node, by the sum rule we get

P[rt](xr) ∝
∑

x[rt]\{r}

∏
f∈F[rt]

f(xf ), (1)

where ∝ denotes equality up to a normalization constant.

Remember the form of the messages passed between variable and factor nodes at each iteration
of the algorithm:

µ
(t+1)
v→f (xv) :=

∏
g∈N (v)\{f}

µ(t)g→v(xv) (2)

µ
(t+1)
f→v (xv) :=

∑
xf\{v}

f(xf )
∏

w∈N (f)\{v}

µ
(t)
w→f (xw). (3)

We also de�ne the estimated marginal distribution of variable v at iteration t as

P̂ (t)(xv) :=
∏

g∈N (v)

µ(t)g→v(xv). (4)

Our ultimate goal is to show that the estimated marginals are equal to the true marginals for
all variables a�er a number iterations. However, we will �rst consider the rooted version of the
factor graph and show that the previous statement holds for the root node a. More concretely,
if we denote variable nodes with v and factor nodes with f , we will show using induction that
for all subtrees T[fv] of depth τ , it holds that, for all t ≥ τ ,

µ
(t)
f→v(xv) ∝ P[fv](xv). (5)
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Solution

(i) First, note that in this case the messages received by f from any neighboring variable
node w are by de�nition µ(t)w→f (xw) = 1, for all t ≥ 1. �erefore, we have, for all t ≥ 2,

µ
(t)
f→v(xv) =

∑
xf\{v}

f(xf )
∏

w∈N (f)\{v}

µ
(t−1)
w→f (xw) by (3)

=
∑

xf\{v}

f(xf ) using µ(t−1)w→f (xw) = 1

∝ P[fv](xv). by (1)

�e last equality up to normalization follows from the fact that T[fv] contains only one
factor, namely f .

(ii) �ere are two core observations used in this step.

• For any neighboring factor node g of v (except for f ), the subtree T[gv] has the same
depth as T[vf ], which in this case is τ . �erefore, the induction hypothesis (5) holds
for these subtrees.

• Since T[vf ] is a tree, the factors can be partitioned into the factors of each subtree
T[gv]. �is means that there are no common factors between these subtrees and the
union of the factors of all subtrees are exactly the factors of T[vf ]. An analogous
statement can be made for partitioning the variables of T[vf ] except for v.

Using the above, we get, for all t ≥ τ + 1,

P[vf ](xv) ∝
∑

x[vf ]\{v}

∏
g∈F[vf ]

g(xg) by (1)

=
∑

x[vf ]\{v}

∏
g∈N (v)\{f}

∏
h∈F[gv]

h(xh) partition factors

=
∏

g∈N (v)\{f}

∑
x[gv]\{v}

∏
h∈F[gv]

h(xh) partition variables

∝
∏

g∈N (v)\{f}

P[gv](xv) by (1)

∝
∏

g∈N (v)\{f}

µ(t−1)g→v (xv) by induction hypothesis (depth of T[gv] is τ )

= µ
(t)
v→f (xv). by (2)

(iii) �e arguments for this part are very similar to the ones in the previous part.

• Since T[fv] has depth τ +2, all subtrees T[wf ] where w is a neighbor of f except for
v will have a depth of τ , which allows us to use on them the result of the previous
part.

• In this case, we can partition all factors except for f and all variables except for v
into factors and variables of the corresponding subtrees T[wf ].
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Using the above, we get, for all t ≥ τ + 2,

P[fv](xv) ∝
∑

x[fv]\{v}

∏
g∈F[fv]

g(xg) by (1)

=
∑

x[fv]\{v}

f(xf )
∏

w∈N (f)\{v}

∏
h∈F[wf ]

h(xh) partition factors

=
∑

x[fv]\{v}

f(xf )
∏

w∈N (f)\{v}

∑
x[wf ]\{w}

∏
h∈F[wf ]

h(xh) partition variables

=
∑

x[fv]\{v}

f(xf )
∏

w∈N (f)\{v}

P[wf ](xv) by (1)

∝
∑

x[fv]\{v}

f(xf )
∏

w∈N (f)\{v}

µ
(t−1)
w→f (xw) by part (ii) (depth of T[wf ] is τ )

= µ
(t)
f→v(xv). by (3)

�is step combined with step (i) proves our inductive statement (5).

(iv) �is is a direct consequence of the inductive statement proved in the previous steps,
combined with the fact that a is the root of the factor graph. We again use the property
that subtrees partition variables and factors. �e following holds for all t ≥ d:

P̂ (t)(xa) =
∏

g∈N (a)

µ(t)g→a(xa). by (4)

∝
∏

g∈N (a)

P[ga](xa) by (5)

=
∏

g∈N (a)

∑
x[ga]\{a}

∏
h∈F[ga]

h(xh) by (1)

=
∑
x

∏
g∈N (a)

∏
h∈F[ga]

h(xh) by variable partition

=
∑
x

∏
f∈F

f(xf ) by factor partition

= P (xa). by de�nition

(v) For any variable node v, we can see the factor graph as a rooted tree with v as its root
and follow the exact procedure of steps (i)–(iv) to prove that P̂ (t)(xv) ∝ P (xv) holds
for all t ≥ the depth of the corresponding tree. But, since the graph has diameter D, it
follows that every such tree will have depth at most D, therefore the above statement
holds for all t ≥ D.
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