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1. Bayesian networks and Markov chains

Consider the query P (R|S = t,W = t) in the Bayesian network on Slide 20 of https://las.
inf.ethz.ch/courses/pai-f17/slides/pai-06-bayesian-networks-sampling-annotated.pdf

and how Gibbs sampling can answer it.

(i) How many states does the Markov chain have?

(ii) Calculate the transition matrix T containing P (Xt+1 = y | Xt = x) for all x, y.

(iii) What does T 2, the square of the transition matrix, represent?

(iv) What about Tn as n→∞?

(v) Explain how to do probabilistic inference in Bayesian networks, assuming that Tn is
available. Is this a practical way to do inference?

Solution

(i) �ere are two uninstantiated Boolean variables (Cloudy and Rain) and therefore four
possible states.

(ii) First, we compute the sampling distribution for each variable, conditioned on its Markov
blanket.

P (C|r, s) =
1

Z
P (C)P (s|C)P (r|C)

=
1

Z
〈0.5, 0.5〉〈0.1, 0.5〉〈0.8, 0.2〉 =

1

Z
〈0.04, 0.05〉 = 〈4/9, 5/9〉

P (C|¬r, s) =
1

Z
P (C)P (s|C)P (¬r|C)

=
1

Z
〈0.5, 0.5〉〈0.1, 0.5〉〈0.2, 0.8〉 =

1

Z
〈0.01, 0.2〉 = 〈1/21, 20/21〉

P (R|c, s, w) =
1

Z
P (R|c)P (w|s,R)

=
1

Z
〈0.8, 0.2〉〈0.99, 0.9〉 =

1

Z
〈0.792, 0.18〉 = 〈22/27, 5/27〉

P (R|¬c, s, w) =
1

Z
P (R|¬c)P (w|s,R)

=
1

Z
〈0.2, 0.8〉〈0.99, 0.9〉 =

1

Z
〈0.198, 0.72〉 = 〈11/51, 40/51〉
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Strictly speaking, the transition matrix is only well-de�ned for the variant of MCMC in
which the variable to be sampled is chosen randomly1. (In the variant where the variables
are chosen in a �xed order, the transition probabilities depend on where we are in the
ordering.) Now consider the transition matrix.

• Entries on the diagonal correspond to self-loops. Such transitions can occur by
sampling either variable. For example, for the self-loop on (c, r), we obtain:

t((c, r)→ (c, r)) = 0.5P (c|r, s) + 0.5P (r|c, s, w) = 17/27,

where the two factors of 0.5 are corresponding to the probability that the variables
to be sampled are C and R, respectively.

• Entries where one variable is changed must sample that variable. For example,

t((c, r)→ (c,¬r)) = 0.5P (¬r|c, s, w) = 5/54

• Entries where both variables change cannot occur. For example,

t((c, r)→ (¬c,¬r)) = 0

�is gives us the following transition matrix T , where the transition is from the state
given by the row label to the state given by the column label:


(c, r) (c,¬r) (¬c, r) (¬c,¬r)

(c, r) 17/27 5/54 5/18 0
(c,¬r) 11/27 22/189 0 10/21
(¬c, r) 2/9 0 59/153 20/51
(¬c,¬r) 0 1/42 11/102 310/357


(iii) T 2 represents the probability of going from each state to each state in two steps.

(iv) Tn (as n → ∞) represents the long-term probability of being in each state starting in
each state; for ergodic T these probabilities are independent of the starting state, so
every row of T is the same and represents the posterior distribution over states given
the evidence.

(v) We can produce very large powers of T with very few matrix multiplications. For exam-
ple, we can get T 2 with one multiplication, T 4 with two, and T 2k with k. Unfortunately,
in a network with n non-event Boolean variables, the matrix is of size 2n × 2n, so each
multiplication takes O(23n) operations.

2. Gibbs sampling

See .zip �le on course website.

1Slide 14 of https://las.inf.ethz.ch/courses/pai-f17/slides/pai-07-bayesian-networks-mcmc.pdf
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3. Markov chains and detailed balance

Assume that you are given a Markov chain with state space Ω and transition matrix T , which
is de�ned for all x, y ∈ Ω and t ≥ 0 as T (x, y) := P (Xt+1 = y | Xt = x). Furthermore, let π
be the stationary distribution of the chain.

(i) Show that, if for some t the current state Xt is distributed according to the stationary
distribution and additionally the chain satis�es the detailed balance equations

π(x)T (x, y) = π(y)T (y, x), for all x, y ∈ Ω,

then the following holds for all k ≥ 0 and x0, . . . , xk ∈ Ω:

P (Xt = x0, . . . , Xt+k = xk) = P (Xt = xk, . . . , Xt+k = x0).

(�is is why a chain that satis�es detailed balance is called reversible.)

(ii) Show that, if T is a symmetric matrix, then the chain satis�es detailed balance, and the
uniform distribution on Ω is stationary for that chain.

Solution

(i) We use the chain rule, as well as the detailed balance condition:

P (Xt = x0, . . . , Xt+k = xk)

= P (Xt = x0)P (Xt+1 = x1 | Xt = x0) . . . P (Xt+k = xk | Xt+k−1 = xk−1) ch. rule
= π(x0)T (x0, x1) . . . T (xk−1, xk) Xt ∼ π
= T (x1, x0)π(x1) . . . T (xk−1, xk) detailed balance

= . . .
...

= T (x1, x0) . . . T (xk, xk−1)π(xk) detailed balance
= π(xk)T (xk, xk−1) . . . T (x1, x0)

= P (Xt = xk)P (Xt+1 = xk−1 | Xt = xk) . . . P (Xt+k = x0 | Xt+k−1 = x1) Xt ∼ π
= P (Xt = xk, . . . , Xt+k = x0). ch. rule

(ii) By de�nition of a symmetric matrix, we have that π(x)T (x, y) = π(x)T (y, x), for all
x, y ∈ Ω. �erefore, if π(x) = 1

|Ω| , for all x ∈ Ω, then π(x)T (x, y) = π(y)T (y, x),
which means that detailed balance holds for the chain and the uniform distribution is
stationary.
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