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1. Particle filter

Suppose that you have a robot, which is moving randomly through an 1-dimensional environ-
ment. You want to track the robot’s position, x, which is discretized to integer values, x ∈ Z.
�e robot’s movement is modeled as a random walk,

xt+1 = xt + εt, (1)

where εt is uniformly distributed and can take integer values in [−3, 3]. To track the robot, a
sensor that measures the distance to the robot has been placed at the origin. �e measurement
model is

yt = (xt + ηt)
2, (2)

where ηt is distributed according to

P (ηt) =


0.6 if ηt = 0

0.2 if |ηt| = 1

0 otherwise.
(3)

You want to use a particle �lter with six particles to track the robot’s position. At initial
time, the robot is at the origin, x0 = 0. Hence, the particles are initialized to xi = 0,
i ∈ {0, 1, 2, 3, 4, 5}.

(i) You draw samples from the distribution of ε0 and obtain (−1,−1, 0, 1, 2, 3). What is the
position of the particles a�er the prediction update?

(ii) You obtain a measurement, y1 = 1. What are the weights of the individual particles?

(iii) Are �ve particles enough to accurately estimate the state? Why/Why not?

(iv) Why would a Kalman �lter not work reliably in this case?

Solution

(i) Using the movement model,
x1 = x0 + ε0, (4)

we obtain x′ = (−1,−1, 0, 1, 2, 3).
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(ii) From the measurement model we obtain ηt = ±
√
yt − xt, and consequently the mea-

surement probability distribution

P (yt+1 | x′i) = P (ηt+1 = ±
√
yt+1 − x′i) (5)

�e particle weights are computed as wi =
1

Z
P (yt+1 | x′i)

n = 0, P (y1 = 1 | x′0 = −1) = P (η1 = 0) + P (η1 = 2) = 0.6 + 0.0 = 0.6 (6)
n = 1, P (y1 = 1 | x′1 = −1) = P (η1 = 0) + P (η1 = 2) = 0.6 + 0.0 = 0.6 (7)
n = 2, P (y1 = 1 | x′2 = 0) = P (η1 = −1) + P (η1 = 1) = 0.2 + 0.2 = 0.4 (8)
n = 3, P (y1 = 1 | x′3 = 1) = P (η1 = 0) + P (η1 = −2) = 0.6 + 0.0 = 0.6 (9)
n = 4, P (y1 = 1 | x′4 = 2) = P (η1 = −1) + P (η1 = −3) = 0.2 + 0.0 = 0.2 (10)
n = 5, P (y1 = 1 | x′5 = 3) = P (η1 = −2) + P (η1 = −4) = 0.0 + 0.0 = 0.0 (11)

Z =
N∑
i=0

P (y1 = 1 | x′i) = 0.6 + 0.6 + 0.4 + 0.6 + 0.2 + 0.0 =
24

10
(12)

Consequently, we can calculate the weights with wi =
1
ZP (y1 = 1 |x′i)

w0 =
6

24
, w1 =

6

24
, w2 =

4

24
. w3 =

6

24
, w4 =

2

24
, w5 = 0 (13)

(iii) No, because we cannot even capture the probability distribution of the movement pre-
diction accurately (uniform distribution). We need more samples to accurately estimate
the state.

(iv) A Kalman �lter can only describe Gaussian distributions (unimodal). Here, the noise is
not Gaussian and the measurements are nonlinear. Furthermore, the distance measure-
ments cannot break the symmetry in the problem, so that the posterior state distribution
a�er one step is bimodal.

2. Hero in the maze

Consider the following problem related to probabilistic planning. You are a hero H who is
being chased by a ghost G in a maze.

(i) Suppose the maze is a simple (in�nite) chain of nodes, each node labeled with a number
(from −∞ to ∞): H starts at 0, G starts at -2. H always tries to move away from G,
but only succeeds with probability p, and with probability 1 − p gets stuck (i.e., with
probability p, H moves 1 step to the right, from node i to i+1, and gets 1 unit of reward;
with probability 1 − p, H doesn’t change its location and gets 0 units of reward). G
always chases a�er H and never gets stuck. If G catches H, H incurs -10 reward in the
timestep in which it got caught (and 0 reward in all subsequent time steps). Both G and
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H move simultaneously. Write down the state space with the transition probabilities.
For a discount factor γ, what is the expected long term future reward as a function p
and γ? Calculate its value for p = .9 and γ = .95. Hint: You may want to consider the
relative positions of H and G instead of their absolute positions when choosing your state
representation.

(ii) Now, suppose the maze is a “T”, i.e, an (in�nitely large) tree, where only one node, the
starting node of H, has degree 3, all other nodes have degree 2. In the �rst round, H
has the choice of either moving “right” and being chased (the same as above); or moving
”down” and not being chased. If H moves “down”, it will also get stuck with probability
1 − p like above, but only incur reward 1/2 for each step moved (which happens with
probability p. In all subsequent actions, H continues to (a�empt to) move in the same
direction as in the �rst round (i.e., once it decides to move right, it has to continue to
move right etc.) What is the expected long term future reward in this case, as a function
of p and γ? Calculate its value for p = .9 and γ = .95. For these values of p and γ, which
initial action should H take? For a value of γ = .95, give an explicit rule on howH should
choose its initial action as a function of p. Compute the critical (decision-relevant) values
of p (you may have to do this numerically).

Solution

2 1 0

p (+1)

1-p (-10)

1 (0)

p (+1)

1-p (0)
2

1-p (0)

p (+1/2)

1-p (0)1-p (0)

p (+1/2) p (+1/2)

(a) (b)

Figure 1: (a) Hero moving right; (b) hero moving down

(i) Both Ghost and Hero can only move right (hero gets stuck randomly).
State space is the set of all possible relative positions of H to G: X = {2, 1, 0}. �ere is
only one action that the hero will move forward (although sometimes he may get stuck).
Transition probabilities are labelled as Figure 1 (a):

P (Next state = 2|state = 2) = p
P (Next state = 1|state = 2) = 1− p
P (Next state = 1|state = 1) = p
P (Next state = 0|state = 1) = 1− p
P (Next state = 0|state = 0) = 1

For the optimal policy π∗ it holds (Bellman equation)

V ∗(x) = max
a∈A(x)

∑
x′

P (x′|x, a)
(
r(a, x, x′) + γV ∗(x′)

)
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�e value functions for (ending up at) the three states 2, 1, 0 will converge to some
constant values V (2), V (1), V (0). �erefore,

V (0) = 0 (14)
V (1) = p(1 + γV (1)) + (1− p)(−10 + γV (0))) (15)
V (2) = p(1 + γV (2)) + (1− p)(0 + γV (1)) (16)

Solve the equations, so that the long-term future reward V (1) = −0.6897, V (2) =
5.7551.

(ii) Hero can choose to move down in the �rst round.
As Figure 1 (b) shows, when hero moves down, all following states has exactly the same
transition probabilities. �us if the value function converges, it should be a constant
value V ∗ for all states when t→∞. Using Bellman equation, we have:

V ∗ =
p

2
+ γ{(1− p)V ∗ + pV ∗} =⇒ V ∗ =

1/2 ∗ p
1− γ

=
0.5 ∗ 0.9
1− 0.95

= 9.
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Figure 2: Expected long-term reward as a function of p. γ = .95

Figure 2 shows the expected rewards for moving right and moving down. When p ≥
0.9277, hero chooses to move right; otherwise, hero moves down.
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3. Policy iteration

Consider an undiscountedMDP having three states, (1, 2, 3), with rewards -1, -2, 0, respectively.
State 3 is a terminal state. In states 1 and 2 there are two possible actions: a and b. �e transition
model is as follows:

• In state 1, action a moves the agent to state 2 with probability 0.8 and makes the agent
stay put with probability 0.2.

• In state 2, action a moves the agent to state 1 with probability 0.8 and makes the agent
stay put with probability 0.2.

• In either state 1 or state 2, action b moves the agent to state 3 with probability 0.1 and
makes the agent stay put with probability 0.9.

Answer the following questions:

(i) Draw the MDP described above. What can be determined qualitatively about the optimal
policy in states 1 and 2?

(ii) Apply policy iteration, showing each step in full, to determine the optimal policy and
the values of states 1 and 2. Assume that the initial policy has action b in both states.

(iii) What happens to policy iteration if the initial policy has action a in both states? Does
discounting help? Does the optimal policy depend on the discount factor?

Solution

(i) Intuitively, the agent wants to get to state 3 as soon as possible, because it will pay a cost
for each time step it spends in state 1 and state 2. However, the only action that reaches
state 3 (action b) succeeds with low probability, so the agent should minimize the cost
it incurs while trying to reach the terminal state. �is suggests that the agent should
de�nitely try action b in state 1; in state 2, it might be be�er to try action a to get to state
1 (which is the be�er place to wait for admission to state 3), rather than aiming directly
for state 3. �e decision in state 2 involves a numerical tradeo�.

(ii) �e application of policy iteration precedes in alternating steps of value determination
and policy update.

• Initialization: U ← 〈−1,−2, 0〉, P ← 〈b, b〉.
• Value determination: Write out the equations in terms of the values (rewards and
transition probabilities are known for a �xed policy π(x))

u(x) = r(x) +
∑
x′

P (x′|x, π(x))u(x′)

u1 = −1 + 0.1u3 + 0.9u1

u2 = −2 + 0.1u3 + 0.9u2

u3 = 0
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Which have the solution, u1 = −10 and u2 = −20.
Policy update:
�e reward is not dependent on the action, so it does not a�ect the maximization
problem and is neglected in the following. In state 1,∑

j

T (1, a, j)uj = 0.8×−20 + 0.2×−10 = −18

while ∑
j

T (1, b, j)uj = 0.1× 0 + 0.9×−10 = −9

so action b is preferred for state 1.
In state 2, ∑

j

T (1, a, j)uj = 0.8×−10 + 0.2×−20 = −12

while ∑
j

T (1, a, j)uj = 0.1× 0 + 0.9×−20 = −18

so action a is preferred for state 2. We set unchanged?← false and proceed.
• Value determination:

u1 = −1 + 0.1u3 + 0.9u1

u2 = −2 + 0.8u1 + 0.2u2

u3 = 0

once more, u1 = −10; now, u2 = −12.5.
Policy update:
In state 1, ∑

j

T (1, a, j)uj = 0.8×−15 + 0.2×−10 = −14

while ∑
j

T (1, b, j)uj = 0.1× 0 + 0.9×−10 = −9

so action b is still preferred for state 1.
In state 2, ∑

j

T (1, a, j)uj = 0.8×−10 + 0.2×−12.5 = −10.5

while ∑
j

T (1, a, j)uj = 0.1× 0 + 0.9×−12.5 = −11.25

so action a is still preferred for state 2. unchanged? remains true, andwe terminate.
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Note that the resulting policy matches our intuition: when in state 2, try to move to state
1, and when in state 1, try to move to state 3.

(iii) An initial policy with action a in both states leads to an unsolvable problem. �e initial
value determination problem has the form

u1 = −1 + 0.2u1 + 0.8u2

u2 = −2 + 0.8u1 + 0.2u2

u3 = 0

and the �rst two equations are inconsistent. If we were to try to solve them iteratively,
we would �nd the values tending to −∞.
Discounting leads towell-de�ned solutions by bounding the penalty (expected discounted
cost) an agent can incur at either state. However, the choice of disc out factor will a�ect
the policy that results. For γ small, the cost incurred in the distant future plays a neg-
ligible role in the value computation, because γn is near 0. As a result, an agent could
choose action b in state 2 because the discounted short-term cost of remaining in the
non-terminal states (states 1 and 2) outweighs the discounted long-term cost of action
b failing repeatedly and leaving the agent in state 2 (as an additional exercise, you can
decide the value of γ at which the agent is indi�erent between the two choices).

4. Value iteration

In �nite MDPs, the value function can be expressed as a vector that has as many entries as
states in the state space, X . Given a value vector V , we de�ned the Bellman update operator,
B(·), for every element of V as follows:

B(V (x)) = max
a

(
r(x, a) + γ

∑
x′

P (x′|x, a)V (x′)
)
. (17)

Show that the Bellman operator is a contraction with respect to ‖ · ‖∞, that is to say that, for
any V, V ′, holds that:

max
x∈X
|B(V (x))− B(V ′(x))| = ‖BV − BV ′‖∞ ≤ γ‖V − V ′‖∞. (18)

Solution

By considering a generic x ∈ X we can write |B(V (x))− B(V ′(x))| as:

|max
a

(
r(x, a) + γ

∑
x′

P (x′|x, a)V (x′)
)
−max

a

(
r(x, a) + γ

∑
x′

P (x′|x, a)V ′(x′)
)
|,

≤ |max
a

(
r(x, a) + γ

∑
x′

P (x′|x, a)V (x′)− r(x, a) + γ
∑
x′

P (x′|x, a)V ′(x′)
)
|,

= γ|max
a

(∑
x′

P (x′|x, a)(V (x′)− V ′(x′))
)
|,

= γ|
∑
x′

P (x′|x, a∗)(V (x′)− V ′(x′))|,
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where a∗ is the action that a�ains the maximum. At this point, it is important to notice that
V (x′)−V ′(x′) <= ‖V −V ′‖∞ by de�nition. Furthermore, remember that P (x′|x, a) ≥ 0 for
every x′ ∈ X and that

∑
x′ P (x′|x, a) = 1. �ese statements allow us to say the following:

|B(V (x))− B(V ′(x))| ≤ γ|
∑
x′

P (x′|x, a∗)(V (x′)− V ′(x′))|,

≤ γ‖V − V ′‖∞|
∑
x′

P (x′|x, a∗)|,

= γ‖V − V ′‖∞.

We proved that this inequality holds for a generic x ∈ X . �is means that it must hold in
particular for the value that a�ains the maximum of the le� hand side of the inequality:

|‖BV − BV ′‖∞ = max
x∈X
|B(V (x))− B(V ′(x))| ≤ γ‖V − V ′‖∞. (19)
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