

Solutions homework \#2

Carlos Cotrini
October 27, 2017
Probabilistic foundations of artificial intelligence

1. Bayesian Networks: d-separation

- Solutions task 1

Principle of d-separation

- Given a set of observed variables, if there is no active trail between two variables, then they are independent.

B indep from $C \mid A$
Unclear if B indep from C $\mid A, D$

1. Bayesian Networks: d-separation

- Recap on active trails. Case 1. (Mountain)

1. Bayesian Networks: d-separation

- Recap on active trails. Case 2a. (Downhill)

Inactive!

1. Bayesian Networks: d-separation

- Recap on active trails. Case 2b. (Uphill)

1. Bayesian Networks: d-separation

- Recap on active trails. Case 3. (Valley)

1. Bayesian Networks: d-separation

- Recap on active trails. Case 3.

1. Bayesian Networks: d-separation

- Recap on active trails. Case 3.

1. Bayesian Networks: d-separation

- Recap on active trails. Case 3.

1. Bayesian Networks: d-separation

- Solutions task 1

1. Bayesian Networks: d-separation

- Solutions task 1

1. Bayesian Networks: d-separation

- Solutions task 1

1. Bayesian Networks: d-separation

- Solutions task 1

1. Bayesian Networks: d-separation

- Solutions task 1

INCONCLUSIVE

1. Bayesian Networks: d-separation

- Solutions task 1

1. Bayesian Networks: d-separation

- Solutions task 1

1. Bayesian Networks: d-separation

- Solutions task 1

1. Bayesian Networks: d-separation

- Solutions task 1

YES!

1. Bayesian Networks: d-separation

- Solutions task 1

1. Bayesian Networks: d-separation

- Solutions task 1

1. Bayesian Networks: d-separation

- Solutions task 1

1. Bayesian Networks: d-separation

- Solutions task 1

1. Bayesian Networks: d-separation

- Solutions task 1

D indep. J given G, H ?

1. Bayesian Networks: d-separation

- Solutions task 1

1. Bayesian Networks: d-separation

- Solutions task 1

YES!

1. Bayesian Networks: d-separation

- Solutions task 1

I indep. B given H ?

1. Bayesian Networks: d-separation

- Solutions task 1

YES!

1. Bayesian Networks: d-separation

- Solutions task 1

1. Bayesian Networks: d-separation

- Solutions task 1

INCONCLUSIVE

1. Bayesian Networks: d-separation

- Solutions task 1

1. Bayesian Networks: d-separation

- Solutions task 1

INCONCLUSIVE

Be careful with the direction of the arrows!

B indep from C ?

A/Hzürich

Be careful with the direction of the arrows!

A indep from D ?

2. Variable elimination

- Compute $P(J=j)$

1. Joint probability implied by BN structure: $P(A, \ldots, J)=P(A) \cdot P(B \mid A) \cdot P(C \mid B)$. $P(G) \cdot P(E \mid G) \cdot P(D \mid C, E) \cdot P(F \mid B, E, D) \cdot P(I \mid G) \cdot P(H \mid G, I) \cdot P(J \mid I)$

2. Variable elimination

- Compute $P(J=j)$

2. Eliminating A :

$$
\begin{aligned}
P(B, \ldots, J) & =\sum_{a} P(a) \cdot P(B \mid a) \cdot P(C \mid B) \cdot P(G) \cdot P(E \mid G) \cdot P(D \mid C, E) \cdot P(F \mid B, E, D) \cdot P(I \mid G) \cdot P(H \mid G, I) \cdot P(J \mid I) \\
& =P(C \mid B) \cdot P(G) \cdot P(E \mid G) \cdot P(D \mid C, E) \cdot P(F \mid B, E, D) \cdot P(I \mid G) \cdot P(H \mid G, I) \cdot P(J \mid I) \cdot \sum_{a} P(a) P(B \mid a) \\
& =P(C \mid B) \cdot P(G) \cdot P(E \mid G) \cdot P(D \mid C, E) \cdot P(F \mid B, E, D) \cdot P(I \mid G) \cdot P(H \mid G, I) \cdot P(J \mid I) \cdot g_{1}(B)
\end{aligned}
$$

2. Variable elimination

- Compute $P(J=j)$

2. Variable elimination

- Compute $P(J=j)$

4. Eliminating $C: P(D, \ldots, J)=P(G) \cdot P(E \mid G) \cdot P(I \mid G) \cdot P(H \mid G, I) \cdot P(J \mid I) \cdot g_{3}(F, E, D)$
5. Eliminating $D: P(E, \ldots, J)=P(G) \cdot P(E \mid G) \cdot P(I \mid G) \cdot P(H \mid G, I) \cdot P(J \mid I) \cdot g_{4}(F, E)$

2. Variable elimination

- Compute $P(J=j)$

4. Eliminating $C: P(D, \ldots, J)=P(G) \cdot P(E \mid G) \cdot P(I \mid G) \cdot P(H \mid G, I) \cdot P(J \mid I) \cdot g_{3}(F, E, D)$
5. Eliminating $D: P(E, \ldots, J)=P(G) \cdot P(E \mid G) \cdot P(I \mid G) \cdot P(H \mid G, I) \cdot P(J \mid I) \cdot g_{4}(F, E)$

2. Variable elimination

- Compute $P(J=j)$

6. Eliminating $E: P(F, \ldots, J)=P(G) \cdot P(I \mid G) \cdot P(H \mid G, I) \cdot P(J \mid I) \cdot g_{5}(F, G)$
7. Eliminating $F: P(G, \ldots, J)=P(G) \cdot P(I \mid G) \cdot P(H \mid G, I) \cdot P(J \mid I) \cdot g_{6}(G)$
8. Eliminating $G: P(H, I, J)=P(J \mid I) \cdot g_{7}(I, H)$

2. Variable elimination

- Compute $P(J=j)$

9. Eliminating $H: P(I, J)=P(J \mid I) \cdot g_{8}(I)$
10. Eliminating $I: P(J)=g_{9}(J)$

3. An algorithm for d-separation

- Given a Bayesian Network, a variable X, and a set of variables \mathbf{E} with observed values \boldsymbol{e}, compute all variables Z that are indep. from X given E .

3. Algorithm for d-separation

3. Algorithm for d-separation

Key insight: Subtrails of active trails are also active!

3. Algorithm for d-separation

Key insight: Subtrails of active trails are also active!

Compute d-reachable variables with a depth-first (or breadth-first) search.

3. Algorithm for d-separation

3. Algorithm for d-separation

3. Algorithm for d-separation

d-reachable $=\{X\}$

3. Algorithm for d-separation

3. Algorithm for d-separation

d-reachable $=\{X, S\}$

3. Algorithm for d-separation

3. Algorithm for d-separation

d-reachable $=\{X, S, U\}$

3. Algorithm for d-separation

3. Algorithm for d-separation

d-reachable $=\{X, S, U\}$

3. Algorithm for d-separation

3. Algorithm for d-separation

d-reachable $=\{X, S, U, R\}$

3. Algorithm for d-separation

3. Algorithm for d-separation

def get_reachable(X, E):
toVisit $=[X]$, visited $=\{ \}$
while toVisit != []:
$\mathrm{V}=$ toVisit.pop()
"visit V"
add \vee to visited
for Y an unvisited neighbor of V :
if then push Y

Loop's invariant: Z is in toVisit iff there is an active trail from X to Z

3. Algorithm for d-separation

def get_reachable(X, E):
toVisit $=[X]$, visited $=\{ \}$, reachable $=\{ \}$ while toVisit != []:
$\mathrm{V}=$ toVisit.pop()
if V is not obs then add V to reachable
add \vee to visited
for Y an unvisited neighbor of V :
if then push Y

Loop's invariant: Z is in toVisit iff there is an active trail from X to Z

What neighbors to append?

- Let V be the node currently visited and Y be an unvisited neighbor.
- By our invariant, there is an active trail \mathbf{t} from X to V.
- What we need to decide if $t . a p p e n d(Y)$ active...

What neighbors to append?

- Let V be the node currently visited and Y be an unvisited neighbor.
- By our invariant, there is an active trail \mathbf{t} from X to V.
- What we need to decide if t.append (Y) active...
- V - -> Y or V <- - Y?

What neighbors to append?

- Let V be the node currently visited and Y be an unvisited neighbor.
- By our invariant, there is an active trail \mathbf{t} from X to V.
- What we need to decide if t.append (Y) active...
- V - -> Y or V <- - Y?
- Is V or any of its descendants observed?

What neighbors to append?

- Let V be the node currently visited and Y be an unvisited neighbor.
- By our invariant, there is an active trail \mathbf{t} from X to V.
- What we need to decide if t.append (Y) active...
- V - -> Y or V <- - Y?
- Is V or any of its descendants observed?
- $\mathrm{W}-->\mathrm{V}$ or $\mathrm{W}<--\mathrm{V}$? (W is V's predecesor in t)

What neighbors to append?

- Let V be the node currently visited and Y be an unvisited neighbor.
- By our invariant, there is an active trail \mathbf{t} from X to V.
- What we need to decide if t.append (Y) active...
- V - -> Y or V <- - Y?

Easy to check

- Is V or any of its descendants observed?
- $\mathrm{W}-->\mathrm{V}$ or $\mathrm{W}<--\mathrm{V}$? (W is V's predecesor in t)

What neighbors to append?

- Let V be the node currently visited and Y be an unvisited neighbor.
- By our invariant, there is an active trail \mathbf{t} from X to V.
- What we need to decide if t.append (Y) active...
- V - -> Y or V <- - Y?

Easy to check

- Is V or any of its descendants observed?

Compute in advance the ancestors of all observed variables

- W - -> V or $\mathrm{W}<--\mathrm{V}$? (W is V's predecesor in t)

What neighbors to append?

- Let V be the node currently visited and Y be an unvisited neighbor.
- By our invariant, there is an active trail \mathbf{t} from X to V.
- What we need to decide if t.append (Y) active...
- V - -> Y or V <- - Y?

Easy to check

- Is V or any of its descendants observed?

Compute in advance the ancestors of all observed variables

- W - -> V or W <- - V? (W is V's predecesor in t)

Keep track how you reached V

3. Algorithm for d-separation

def get_reachable(X, E):
toVisit $=[X]$, visited $=\{ \}$, reachable $=\{ \}$ while toVisit != []:

V = toVisit.pop()
if V is not obs then add V to reachable
add \vee to visited
for Y an unvisited neighbor of V :
if then push Y

Loop's invariant: Z is in toVisit iff there is an active trail from X to Z

3. Algorithm for d-separation

def get_reachable(X, E):
toVisit $=[X]$, visited $=\{ \}$, reachable $=\{ \}$
ancestors_E = computeAncestors(E)
while toVisit != []:
$\mathrm{V}=$ toVisit.pop()
if V is not obs then add V to reachable add \vee to visited for Y an unvisited neighbor of V :
if then push Y
Loop's invariant: Z is in toVisit iff there is an active trail from X to Z

3. Algorithm for d-separation

def get_reachable(X, E):
toVisit $=[(<--, X)]$, visited $=\{ \}$, reachable $=\{ \}$
ancestors_E = computeAncestors(E)
while toVisit != []:
(dir, V) = toVisit.pop()
if V is not obs then add V to reachable add V to visited
for Y an unvisited neighbor of V :
${ }^{\Delta}$ if then push Y
Loop's invariant: Z is in toVisit iff there is an active trail from X to Z

for Y an unvisited neighbor of V :

- If dir == <-- :
- If dir == --> :

for Y an unvisited neighbor of V :

- If dir == <-- :
- If dir == --> :
- If V --> Y :
-
- If V <-- Y :

for Y an unvisited neighbor of V :

- If dir == <-- :
- If V is not observed, then push (dir', Y)
- If dir == --> :
- If V --> Y :
- If V is not observed, then push (-->, Y)
- If $V<--Y$:
- If V is in ancestors_E, then push (<--, Y)

