

Inference in factor trees

Carlos Cotrini
November 3, 2017

Probabilistic foundations of artificial intelligence

$$
P\left(X_{1}=\hat{x}_{1}, \ldots, X_{6}=\hat{x_{6}}\right)=
$$

$$
\frac{1}{Z} f_{a}\left(\hat{x}_{1}, \hat{x}_{4}\right) f_{b}\left(\hat{x_{2}}, \hat{x_{3}}, \hat{x}_{4}\right) f_{c}\left(\hat{x}_{4}, \hat{x_{5}}, \hat{x_{6}}\right)
$$

How do we compute $P\left(X_{5}=\hat{x_{5}}\right)$?

Naive method

$$
\begin{aligned}
& P\left(X_{5}=\hat{x}_{5}\right)= \\
& \sum_{\hat{x}_{1}, \hat{x}_{2}, \hat{x}_{3}, \hat{x}_{4}, \hat{x}_{6}} P\left(X_{1}=\hat{x}_{1}, X_{2}=\hat{x}_{2}, X_{3}=\hat{x}_{3}, X_{4}=\hat{x}_{4}, X_{6}=\hat{x}_{6}\right) .
\end{aligned}
$$

Belief propagation, a better method.

Belief propagation, a better method.

$$
\begin{gathered}
\mu_{X \rightarrow f}^{(t)}(\hat{x})=\prod_{f^{\prime} \in N(X) \backslash\{f\}} \mu_{f^{\prime} \rightarrow X}^{(t-1)}(\hat{x}) \\
\mu_{f \rightarrow X}^{(t)}(\hat{x})=\sum_{\mathrm{x}} f(\hat{\hat{\mathbf{x}}}, \hat{x}) \prod_{X^{\prime} \in N(f) \backslash\{X\}} \mu_{X^{\prime} \rightarrow f}^{(t-1)}\left(\hat{x^{\prime}}\right)
\end{gathered}
$$

- X : a node (i.e., a random variable).
- f : a factor.
- \hat{x} : a value in the range of X.

Initially,
$\mu_{X \rightarrow f}^{(0)}(\hat{x})=1$ and
$\mu_{f \rightarrow X}^{(0)}(\hat{x})=1$.

- $N(f): f^{\prime}$'s neighbors.
- $\hat{\hat{x}}$: a sequence of values in
f's domain.

Before we compute $\mathrm{P}\left(\mathrm{X}_{5}=\mathrm{x}_{5}\right)$, let's observe three useful insights about belief propagation in trees.

First insight

The messages needed to compute another message form a tree*

* This only holds for factor trees!

$$
\begin{gathered}
\mu_{X \rightarrow f}^{(t)}(\hat{x})=\prod_{f^{\prime} \in N(X) \backslash\{f\}} \mu_{f^{\prime} \rightarrow X}^{(t-1)}(\hat{x}) \\
\mu_{f \rightarrow X}^{(t)}(\hat{x})=\sum_{\mathbf{x}} f(\hat{\hat{\mathbf{x}}}, \hat{x}) \prod_{X^{\prime} \in N(f) \backslash\{X\}} \mu_{X^{\prime} \rightarrow f}^{(t-1)}\left(\hat{x}^{\prime}\right)
\end{gathered}
$$

$$
\begin{gathered}
\mu_{X \rightarrow f}^{(t)}(\hat{x})=\prod_{f^{\prime} \in N(X) \backslash\{f\}} \mu_{f^{\prime} \rightarrow X}^{(t-1)}(\hat{x}) \\
\mu_{f \rightarrow X}^{(t)}(\hat{x})=\sum_{\mathbf{x}} f(\hat{\hat{\mathbf{x}}}, \hat{x}) \prod_{X^{\prime} \in N(f) \backslash\{X\}} \mu_{X^{\prime} \rightarrow f}^{(t-1)}\left(\hat{x}^{\prime}\right)
\end{gathered}
$$

$$
\begin{gathered}
\mu_{X \rightarrow f}^{(t)}(\hat{x})=\prod_{f^{\prime} \in N(X) \backslash\{f\}} \mu_{f^{\prime} \rightarrow X}^{(t-1)}(\hat{x}) \\
\mu_{f \rightarrow X}^{(t)}(\hat{x})=\sum_{\mathbf{x}} f(\hat{\hat{\mathbf{x}}}, \hat{x}) \prod_{X^{\prime} \in N(f) \backslash\{X\}} \mu_{X^{\prime} \rightarrow f}^{(t-1)}\left(\hat{x}^{\prime}\right)
\end{gathered}
$$

$$
\begin{gathered}
\mu_{X \rightarrow f}^{(t)}(\hat{x})=\prod_{f^{\prime} \in N(X) \backslash\{f\}} \mu_{f^{\prime} \rightarrow X}^{(t-1)}(\hat{x}) \\
\mu_{f \rightarrow X}^{(t)}(\hat{x})=\sum_{\mathbf{x}} f(\hat{\hat{\mathbf{x}}}, \hat{x}) \prod_{X^{\prime} \in N(f) \backslash\{X\}} \mu_{X^{\prime} \rightarrow f}^{(t-1)}\left(\hat{x}^{\prime}\right)
\end{gathered}
$$

$$
\begin{gathered}
\mu_{X \rightarrow f}^{(t)}(\hat{x})=\prod_{f^{\prime} \in N(X) \backslash\{f\}} \mu_{f^{\prime} \rightarrow X}^{(t-1)}(\hat{x}) \\
\mu_{f \rightarrow X}^{(t)}(\hat{x})=\sum_{\mathbf{x}} f(\hat{\hat{\mathbf{x}}}, \hat{x}) \prod_{X^{\prime} \in N(f) \backslash\{X\}} \mu_{X^{\prime} \rightarrow f}^{(t-1)}\left(\hat{x}^{\prime}\right)
\end{gathered}
$$

First insight

The messages needed to compute another message form a tree*

* This only holds for trees!

Second insight

- At iteration h of BP, the message reaches its final value.

E/Hzürich

$$
\begin{gathered}
\mu_{X \rightarrow f}^{(t)}(\hat{x})=\prod_{f^{\prime} \in N(X) \backslash\{f\}} \mu_{f^{\prime} \rightarrow X}^{(t-1)}(\hat{x}) \\
\mu_{f \rightarrow X}^{(t)}(\hat{x})=\sum_{\mathbf{x}} f(\hat{\hat{\mathbf{x}}}, \hat{x}) \prod_{X^{\prime} \in N(f) \backslash\{X\}} \mu_{X^{\prime} \rightarrow f}^{(t-1)}\left(\hat{x}^{\prime}\right)
\end{gathered}
$$

$$
\begin{gathered}
\mu_{X \rightarrow f}^{(t)}(\hat{x})=\prod_{f^{\prime} \in N(X) \backslash\{f\}} \mu_{f^{\prime} \rightarrow X}^{(t-1)}(\hat{x}) \\
\mu_{f \rightarrow X}^{(t)}(\hat{x})=\sum_{\mathbf{x}} f(\hat{\hat{\mathbf{x}}}, \hat{x}) \prod_{X^{\prime} \in N(f) \backslash\{X\}} \mu_{X^{\prime} \rightarrow f}^{(t-1)}\left(\hat{x}^{\prime}\right)
\end{gathered}
$$

$$
\begin{gathered}
\mu_{X \rightarrow f}^{(t)}(\hat{x})=\prod_{f^{\prime} \in N(X) \backslash\{f\}} \mu_{f^{\prime} \rightarrow X}^{(t-1)}(\hat{x}) \\
\mu_{f \rightarrow X}^{(t)}(\hat{x})=\sum_{\mathbf{x}} f(\hat{\hat{\mathbf{x}}}, \hat{x}) \prod_{X^{\prime} \in N(f) \backslash\{X\}} \mu_{X^{\prime} \rightarrow f}^{(t-1)}\left(\hat{x}^{\prime}\right)
\end{gathered}
$$

$$
\begin{gathered}
\mu_{X \rightarrow f}^{(t)}(\hat{x})=\prod_{f^{\prime} \in N(X) \backslash\{f\}} \mu_{f^{\prime} \rightarrow X}^{(t-1)}(\hat{x}) \\
\mu_{f \rightarrow X}^{(t)}(\hat{x})=\sum_{\mathbf{x}} f(\hat{\hat{\mathbf{x}}}, \hat{x}) \prod_{X^{\prime} \in N(f) \backslash\{X\}} \mu_{X^{\prime} \rightarrow f}^{(t-1)}\left(\hat{x}^{\prime}\right)
\end{gathered}
$$

$$
\begin{gathered}
\mu_{X \rightarrow f}^{(t)}(\hat{x})=\prod_{f^{\prime} \in N(X) \backslash\{f\}} \mu_{f^{\prime} \rightarrow X}^{(t-1)}(\hat{x}) \\
\mu_{f \rightarrow X}^{(t)}(\hat{x})=\sum_{\mathbf{x}} f(\hat{\hat{\mathbf{x}}}, \hat{x}) \prod_{X^{\prime} \in N(f) \backslash\{X\}} \mu_{X^{\prime} \rightarrow f}^{(t-1)}\left(\hat{x}^{\prime}\right)
\end{gathered}
$$

Second insight

- At iteration h , the message reaches its final value.

A/Hzürich

Third insight

Let t_{0} be the time at which all messages have reached their true value. For any $t \geq t_{0}, P(X=\hat{x})=\frac{1}{Z} \prod_{f \in N(X)} \mu_{f \rightarrow X}^{(t)}(\hat{x})$.

$$
P\left(X_{5}=x_{5}\right)
$$

$$
P\left(X_{4}=x_{4}\right)
$$

$$
P\left(X_{4}=x_{4}\right)
$$

Rejection sampling and MCMC

Carlos Cotrini

November 3, 2017
Probabilistic foundations of artificial intelligence

Computing expected loss from a burglary

What is the expected total value of items stolen?

\#\#Hzürich

Computing expected loss from a burglary

Given...

- Col, a collection of objects.
- Cap, the capacity of the bag.
- Let $\mathrm{FIT}:=\left\{A \subseteq \operatorname{Col} \mid \sum_{b \in A}\right.$ weight $(b) \leq$ Cap $\}$
- Let B ~Unif(FIT). That is,

$$
P(B=A)=1 /|F I T|
$$

Estimate

$$
\mathbb{E}\left[\sum_{b \in B} \text { value }(b)\right] .
$$

How about rejection sampling?

EHHzürich

$$
\begin{aligned}
& 6 \text { (} \\
& \text { 慂 } 8
\end{aligned}
$$

EHIzürich

Let's implement it

Generating samples from Q using

 MCMC- Ingredients:
- A prob. algo. T that transforms one sample into another.
- A proof that T is "good" for Q .
- Recipe:
- Take any sample x (not necessarily random).
- For N sufficiently large, let $x^{\prime}=T^{N}(x)=T(\ldots(T(x)) \ldots)$.
- Return x'

What makes T "good" for Q?

- Let $\Omega=\{0,1,2,3\}$ and $Q=\operatorname{Unif}(\Omega)$.

What makes T "good" for Q?

- Let $\Omega=\{0,1,2,3\}$ and $Q=\operatorname{Unif}(\Omega)$.

A/Hzürich

What makes T "good" for Q?

- Let $\Omega=\{0,1,2,3\}$ and $Q=\operatorname{Unif}(\Omega)$.

What makes T "good" for Q?

- Let $\Omega=\{0,1,2,3\}$ and $Q=\operatorname{Unif}(\Omega)$.

What makes T "good" for Q?

- Let $\Omega=\{0,1,2,3\}$ and $Q=\operatorname{Unif}(\Omega)$.

What makes T "good" for Q?

- Let $\Omega=\{0, \ldots ., 9999\}$ and $Q=\operatorname{Unif}(\Omega)$.

What makes T "good" for Q?

- Let M be the Markov chain induced by T and let R be M's transition probability.
- T is "good" for Q if
- M is ergodic.
- $Q(x) R\left(x^{\prime} \mid x\right)=Q\left(x^{\prime}\right) R\left(x^{\prime} \mid x\right)$, for all x, x^{\prime}.

What makes T "good" for Q?

- Let M be the Markov chain induced by T and let R be M's transition probability.
- T is "good" for Q if
- M is ergodic.
- $Q(x) R\left(x^{\prime} \mid x\right)=Q\left(x^{\prime}\right) R\left(x^{\prime} \mid x\right)$, for all x, x^{\prime}.

Warning, these are sufficiency conditions!
There may be other algorithms that are "good" for Q, but do not satisfy these conditions.

Computing expected loss from a burglary

Generating samples from a complex distribution Q using MCMC

- Ingredients:
- A prob. algo. T that transforms one sample into another.
- A proof that T is "good" for Q .
- Recipe:
- Take any sample x (not necessarily random).
- For N sufficiently large, let $x^{\prime}=T^{N}(x)=T(\ldots(T(x)) \ldots)$.
- Return x'

A "good" T for the uniform distr. on $2^{\text {col }}$

- Let B in FIT.
- Flip a coin. If heads, then return B.
- Pick an object b in Col uniformly at random.
- If b in B:
- return B
{b\} }
- If b not in B :
- If the total weight of $B \cup\{b\}<=$ Cap:
- return B $\cup\{b\}$
- Else:
- return B

Proving T is "good" for Q

- Part 1 of 2. Show T induces an ergodic Markov chain.

Proving T is "good" for Q

- Part 1 of 2. Show T induces an ergodic Markov chain.
- Insight 1: The Markov graph of T is connected.
- If you are lucky enough, T transforms any B into the empty set after some steps. If you are even luckier, then T transforms the empty set into B^{\prime} after some steps.

Proving T is "good" for Q

- Part 1 of 2. Show T induces an ergodic Markov chain.
- Insight 1: The Markov graph of T is connected.
- If you are lucky enough, T transforms any B into the empty set after some steps. If you are even luckier, then T transforms the empty set into B^{\prime} after some steps.
- Insight 2: If $L \gg\left|2^{\text {Col }}\right|$, then T can reach any B ' from any B in at most L steps.

Proving T is "good" for Q

- Part 1 of 2. Show T induces an ergodic Markov chain.
- Insight 1: The Markov graph of T is connected.
- If you are lucky enough, T transforms any B into the empty set after some steps. If you are even luckier, then T transforms the empty set into B^{\prime} after some steps.
- Insight 2: If $L \gg\left|2^{\text {CoI }}\right|$, then T can reach any B^{\prime} from any B in at most L steps.
- Insight 3: There is a self-loop for every B' in the Markov graph.
- If you happen to arrive to B' before t steps, just use the extra steps on the self-loop to arrive in exactly t steps.

Proving T is "good" for Q

- Part 2 of 2. $Q(x) R\left(x \mid x^{\prime}\right)=Q\left(x^{\prime}\right) R\left(x^{\prime} \mid x\right)$, for any x, x^{\prime}.

Proving T is "good" for Q

- Part 2 of 2. $Q(x) R\left(x \mid x^{\prime}\right)=Q\left(x^{\prime}\right) R\left(x^{\prime} \mid x\right)$, for any x, x^{\prime}.
- Hint 1: $\mathrm{Q}(\mathrm{x})=\mathrm{Q}\left(\mathrm{x}^{\prime}\right)$.

Proving T is "good" for Q

- Part 2 of 2. $Q(x) R\left(x \mid x^{\prime}\right)=Q\left(x^{\prime}\right) R\left(x^{\prime} \mid x\right)$, for any x, x^{\prime}.
- Hint 1: $\mathrm{Q}(\mathrm{x})=\mathrm{Q}\left(\mathrm{x}^{\prime}\right)$.
- Hint 2: $R\left(x^{\prime} \mid x\right)=R\left(x^{\prime} \mid x\right)$.

