

Inference in factor trees

Carlos Cotrini November 3, 2017

Probabilistic foundations of artificial intelligence

How do we compute $P(X_5 = \hat{x_5})$?

Naive method

$$P(X_5 = \hat{x}_5) = \sum_{\hat{x}_1, \hat{x}_2, \hat{x}_3, \hat{x}_4, \hat{x}_6} P(X_1 = \hat{x}_1, X_2 = \hat{x}_2, X_3 = \hat{x}_3, X_4 = \hat{x}_4, X_6 = \hat{x}_6).$$

Belief propagation, a better method.

$$\mu_{X \to f}^{(t)}(\hat{x}) = \prod_{f' \in \mathcal{N}(X) \setminus \{f\}} \mu_{f' \to X}^{(t-1)}(\hat{x})$$
$$\mu_{f \to X}^{(t)}(\hat{x}) = \sum_{\mathbf{x}} f(\hat{\hat{\mathbf{x}}}, \hat{x}) \prod_{X' \in \mathcal{N}(f) \setminus \{X\}} \mu_{X' \to f}^{(t-1)}(\hat{x'})$$

- X: a node (i.e., a random variable).
- f: a factor.
- \hat{x} : a value in the range of X.
- N(X): X's neighbors.
- N(f): f's neighbors.
- x

 x
 x
 a sequence of values in f's domain.

Initially,
$$\begin{split} \mu_{X \to f}^{(0)}(\hat{x}) &= 1 \text{ and } \\ \mu_{f \to X}^{(0)}(\hat{x}) &= 1. \end{split}$$

Before we compute $P(X_5 = x_5)$, let's observe three useful insights about belief propagation in trees.

First insight

The messages needed to compute another message form a tree*

* This only holds for factor trees!

First insight

The messages needed to compute another message form a tree*

* This only holds for trees!

Second insight

Let h be the height of the tree rooted at one message.

• At iteration h of BP, the message reaches its final value.

Second insight

Let h be the height of the tree rooted at one message.

• At iteration h, the message reaches its final value.

Let t_0 be the time at which all messages have reached their true value. For any $t \ge t_0$, $P(X = \hat{x}) = \frac{1}{Z} \prod_{f \in N(X)} \mu_{f \to X}^{(t)}(\hat{x})$.

$$P(X_5 = X_5)$$

$$P(X_4 = X_4)$$

$$\mathsf{P}(\mathsf{X}_4 = \mathsf{X}_4)$$

Rejection sampling and MCMC

Carlos Cotrini November 3, 2017

Probabilistic foundations of artificial intelligence

ETH zürich

Computing expected loss from a burglary

What is the expected total value of items stolen?

ETH zürich

Computing expected loss from a burglary

Given...

- Col, a collection of objects.
- Cap, the capacity of the bag.

• Let
$$FIT := \{A \subseteq Col \mid \sum_{b \in A} weight(b) \leq Cap\}$$

٠

• Let B ~ Unif(FIT). That is,

$$P(B = A) = 1/|F|T|$$

Estimate

$$\mathbb{E}\left[\sum_{b\in B} value(b)\right]$$

How about rejection sampling?

ETHzürich

ETH zürich

EHzürich

Let's implement it

Generating samples from Q using MCMC

- Ingredients:
 - A prob. algo. T that transforms one sample into another.
 - A proof that T is "good" for Q.
- Recipe:
 - Take any sample x (not necessarily random).
 - For N sufficiently large, let $x' = T^{N}(x) = T(...(T(x))...)$.
 - Return x'

What makes T "good" for Q? • Let $\Omega = \{0, ..., 9999\}$ and $Q = Unif(\Omega)$.

- Let M be the Markov chain induced by T and let R be M's transition probability.
- T is "good" for Q if
 - M is ergodic.
 - Q(x)R(x'|x) = Q(x')R(x'|x), for all x, x'.

- Let M be the Markov chain induced by T and let R be M's transition probability.
- T is "good" for Q if
 - M is ergodic.
 - Q(x)R(x'|x) = Q(x')R(x'|x), for all x, x'.

Warning, these are sufficiency conditions! There may be other algorithms that are "good" for Q, but do not satisfy these conditions.

ETH zürich

Computing expected loss from a burglary

Generating samples from a complex distribution Q using MCMC

- Ingredients:
 - A prob. algo. T that transforms one sample into another.
 - A proof that T is "good" for Q.
- Recipe:
 - Take any sample x (not necessarily random).
 - For N sufficiently large, let $x' = T^{N}(x) = T(...(T(x))...)$.
 - Return x'

A "good" T for the uniform distr. on 2^{Col}

- Let B in FIT.
 - Flip a coin. If heads, then return B.
 - Pick an object b in Col uniformly at random.
 - If b in B:
 - return B \ {b}
 - If b not in B:
 - If the total weight of B U {b} <= Cap:
 - return B U {b}
 - Else:
 - return B

• Part 1 of 2. Show T induces an ergodic Markov chain.

- Part 1 of 2. Show T induces an ergodic Markov chain.
 - Insight 1: The Markov graph of T is connected.
 - If you are lucky enough, T transforms any B into the empty set after some steps. If you are even luckier, then T transforms the empty set into B' after some steps.

- Part 1 of 2. Show T induces an ergodic Markov chain.
 - Insight 1: The Markov graph of T is connected.
 - If you are lucky enough, T transforms any B into the empty set after some steps. If you are even luckier, then T transforms the empty set into B' after some steps.
 - Insight 2: If L >> |2^{Col}|, then T can reach any B' from any B in at most L steps.

- Part 1 of 2. Show T induces an ergodic Markov chain.
 - Insight 1: The Markov graph of T is connected.
 - If you are lucky enough, T transforms any B into the empty set after some steps. If you are even luckier, then T transforms the empty set into B' after some steps.
 - Insight 2: If L >> |2^{Col}|, then T can reach any B' from any B in at most L steps.
 - Insight 3: There is a self-loop for every B' in the Markov graph.
 - If you happen to arrive to B' before t steps, just use the extra steps on the self-loop to arrive in exactly t steps.

 Part 2 of 2. Q(x) R(x | x') = Q(x') R(x' | x), for any x, x'.

- Part 2 of 2. Q(x) R(x | x') = Q(x') R(x' | x), for any x, x'.
 - Hint 1: Q(x) = Q(x').

- Part 2 of 2. Q(x) R(x | x') = Q(x') R(x' | x), for any x, x'.
 - Hint 1: Q(x) = Q(x').
 - Hint 2: R(x' | x) = R(x' | x).