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Naive method
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Belief propagation, a better method.
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Belief propagation, a better method.
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Before we compute P(X
5
 = x

5
), let’s observe three 

useful insights about belief propagation in trees.
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First insight

The messages needed to compute another 
message form a tree*

* This only holds for factor trees!
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First insight

The messages needed to compute another 
message form a tree*

* This only holds for trees!
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Second insight

Let h be the height of 
the tree rooted at one 
message.

● At iteration h of BP, 
the message reaches 
its final value.
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Second insight

Let h be the height of 
the tree rooted at one 
message.

● At iteration h, the 
message reaches its 
final value.
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Third insight
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Computing expected loss from a 
burglary

What is the expected total value of 
items stolen?



29

Computing expected loss from a 
burglary
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Given…

● Col, a collection of objects.
● Cap, the capacity of the bag.

● Let 

● Let B ~ Unif(FIT). That is, 

P(B = A) = 1/|FIT|

Estimate
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How about rejection sampling?
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Let’s implement it
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Generating samples from Q using 
MCMC

● Ingredients:
– A prob. algo. T that transforms one sample into 

another.

– A proof that T is “good” for Q.

● Recipe:
– Take any sample x (not necessarily random).

– For N sufficiently large, let x’ = TN(x) = T(...(T(x))…).

– Return x’
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What makes T “good” for Q?
● Let Ω = {0,1,2,3} and Q = Unif(Ω).

Tn

(n - 1) % |Ω|

n

(n + 1) % |Ω|

0.25

0.5
0.25
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What makes T “good” for Q?
● Let Ω = {0,1,2,3} and Q = Unif(Ω).
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What makes T “good” for Q?
● Let Ω = {0,1,2,3} and Q = Unif(Ω).
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What makes T “good” for Q?
● Let Ω = {0,1,2,3} and Q = Unif(Ω).
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T induces an ergodic Markov chain!
Any state can reach any other state 

In 2,000,000 steps.
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What makes T “good” for Q?
● Let Ω = {0,1,2,3} and Q = Unif(Ω).
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Markov graph of T
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In 2,000,000 steps.
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What makes T “good” for Q?
● Let Ω = {0,…, 9999} and Q = Unif(Ω).
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Markov graph of T
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What makes T “good” for Q?
● Let M be the Markov chain induced by T and let 

R be M’s transition probability.
● T is “good” for Q if

– M is ergodic.

– Q(x)R(x’|x) = Q(x’)R(x’|x), for all x, x’.
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What makes T “good” for Q?
● Let M be the Markov chain induced by T and let 

R be M’s transition probability.
● T is “good” for Q if

– M is ergodic.

– Q(x)R(x’|x) = Q(x’)R(x’|x), for all x, x’.

Warning, these are sufficiency conditions! 
There may be other algorithms that are 
“good” for Q, but do not satisfy these 

conditions.
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Computing expected loss from a 
burglary

0.5 0.1

1

10 500

340

25



51

Generating samples from a complex 
distribution Q using MCMC

● Ingredients:
– A prob. algo. T that transforms one sample into 

another.

– A proof that T is “good” for Q.

● Recipe:
– Take any sample x (not necessarily random).

– For N sufficiently large, let x’ = TN(x) = T(...(T(x))…).

– Return x’
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A “good” T for 
the uniform distr. on 2Col

● Let B in FIT.
– Flip a coin. If heads, then return B.

– Pick an object b in Col uniformly at random.

– If b in B:
● return B \ {b}

– If b not in B:
● If the total weight of B U {b} <= Cap:

– return B U {b}
● Else:

– return B
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Proving T is “good” for Q
● Part 1 of 2. Show T induces an ergodic Markov 

chain.
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Proving T is “good” for Q
● Part 1 of 2. Show T induces an ergodic Markov 

chain.
– Insight 1: The Markov graph of T is connected.

● If you are lucky enough, T transforms any B into the 
empty set after some steps. If you are even luckier, then 
T transforms the empty set into B’ after some steps.
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Proving T is “good” for Q
● Part 1 of 2. Show T induces an ergodic Markov 

chain.
– Insight 1: The Markov graph of T is connected.

● If you are lucky enough, T transforms any B into the 
empty set after some steps. If you are even luckier, then 
T transforms the empty set into B’ after some steps.

– Insight 2: If L >> |2Col|, then T can reach any B’ from 
any B in at most L steps.
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Proving T is “good” for Q
● Part 1 of 2. Show T induces an ergodic Markov 

chain.
– Insight 1: The Markov graph of T is connected.

● If you are lucky enough, T transforms any B into the 
empty set after some steps. If you are even luckier, then 
T transforms the empty set into B’ after some steps.

– Insight 2: If L >> |2Col|, then T can reach any B’ from 
any B in at most L steps.

– Insight 3: There is a self-loop for every B’ in the 
Markov graph.

● If you happen to arrive to B’ before t steps, just use the 
extra steps on the self-loop to arrive in exactly t steps.
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Proving T is “good” for Q
● Part 2 of 2. Q(x) R(x | x’) = Q(x’) R(x’ | x), for 

any x, x’.
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Proving T is “good” for Q
● Part 2 of 2. Q(x) R(x | x’) = Q(x’) R(x’ | x), for 

any x, x’.
– Hint 1: Q(x) = Q(x’).
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Proving T is “good” for Q
● Part 2 of 2. Q(x) R(x | x’) = Q(x’) R(x’ | x), for 

any x, x’.
– Hint 1: Q(x) = Q(x’).

– Hint 2: R(x’ | x) = R(x’ | x).
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