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Inference

Tree-structured:
e Variable elimination

e Belief propagation

Loopy networks:
e Loopy belief propagation
e Variational inference

e Gibbs sampling (Monte Carlo Sampling)



Stochastic Approximate Inference

Algorithms that “randomize” to compute marginals as
expectations

In contrast to the deterministic methods, guaranteed to
converge to right answer (if wait looong enough..)

More exact, but slower than deterministic variants

Also work for continuous distributions



Monte Carlo

Monte Carlo methods aim to find the expectation of some
function f(x) with respect to a probability distribution p(x):

e Draw samples xq,...,xyn

e Compute f = % ZlNzl f(x)
For i.i.d from p(x) : f is unbiased with variance ~E[(f — E(f))?]
Basic samplings:

e Uniform Sampling

e Rejection Sampling

e Importance Sampling

Problem: can be very ineffective, particularly in high dimensions



Problem with Rejection sampling

If proposal distribution g(x) poorly matches our target distribution
p(x) — almost always rejects

kq(xy) _—K4®)

¥o p(x)

X, B
Example: d-dimensional target p(x) = N(x; u,ai/d) and the
proposal g(x) = N(x; u,a(z,/d). Optimal acceptance rate can be
accomplished with k = Z—Z. With d = 1000 and o4 = 1.010,

k = 1/20000 resulting in a large waste in samples.



MC

Markov chains: random variables {xi,.,xy} n€{1,...,N —1}:

p(x"xt, . x") = p(x T |x™)

Transitional kernel: T(x", x"*1) = p(x"*1|x")

Stationary distribution 7°°: 7°T = 7>

A given Markov chain may have many stationary distributions.
Example: T(x',x) =1(x" = x): any distribution is invariant.
Detailed balance: sufficient condition for ensuring 7 is
stationary: choose T such that

7°(x)T(x,x") = 7°(X)T(X, x)



MCMC: Metropolis-Hastings

e Aim to sample from p(x) (possibly unnormalized)

e Use easier distribution g(x*|x) (opposed to q(x) and given as
a stochastic matrix) and acceptance test to sample

@ Initialize x°

® Burn-in: for t € {1,.,t}:
x =xt
t=t+1
sample u ~ Unif(0,1)
sample x* ~ g(x*|x):
if u<A(x*|x) = min{1, %}: xt = x* (transition)
else: x* = x (stay in current state)

© Draw samples

e This induces a transition matrix T(x*|x) = q(x*|x)A(x*|x)
that satisfies detailed balance — after ty sampling will lead to
sampling from stationary p(x)



Gibbs sampling: acceptance probability is 1

@ Initializing starting values for xi, ..., x,
® Do until convergence:

e randomly pick x;

® X~ P(XJ'|X17'7XJ'—1’XJ'+17 s Xn)

e Xj =X

Note: given Markov Blanket of x;:

bl(x;) = pa(j) U ch(j) e pa(v)

P(xj|x1, - Xji—1, Xj+1, -» Xn) = P(x|bl(x;))




Computing Expectations via GS

One of the MCMC goals - compute the mean of f(x) with respect
to p(x) :

©® Use Gibbs Sampling to obtain T samples: {Xt}i=]

® Note: ty samples for burn-in

3]

1 T
E[f(x)[xg] ¥ =—— > f(X)
T tO t=to+1



Exam 2016. HMM




Exam 2016. Sampling




Questions



Extra: why MH works

When we draw a sample 2’ given Q(z’|z), the transition kernel is T'(z'|z) = Q(z'|z)A(z’ |m) In Metropolis—
Hastings Algorithm, we compute the ratio of importance weight where A(z'|z) = min(1, P(E)Q w/\z ) Sup-

pose A(z'|z) < 1 and A(z|z") = 1, we have:
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