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Abstract

Timely and accurate detection of anomalies in massive data streams have impor-
tant applications in preventing machine failures, intrusion detection, and dynamic
load balancing, etc. In this paper, we introduce a new anomaly detection algo-
rithm, which can detect anomalies in a streaming fashion by making only one
pass over the data while utilizing limited storage. The algorithm uses ideas from
matrix sketching and randomized low-rank matrix approximations to maintain an
approximate low-rank orthogonal basis of the data in a streaming model. Using
this constructed orthogonal basis, anomalies in new incoming data are detected
based on a simple reconstruction error test. We theoretically prove that our algo-
rithm compares favorably with an offline approach based on global singular value
decomposition updates. The experimental results show the effectiveness and effi-
ciency of our approach over other popular fast anomaly detection methods.

1 Introduction

Detecting anomalies in huge volumes of data have many important real-life applications in areas
such as machine health monitoring, intrusion detection systems, and novel pattern discovery in
biological data [2]. However, it is also a challenging problem because in many modern applications
the data arrives in a streaming fashion. The streaming data could be infinite, so offline algorithms
that attempt to store the entire stream for analysis will not scale. Also in many situations, there is
usually a lack of a complete (labeled) training set as new anomalous and non-anomalous patterns
arise over time.

Although a lot of recent research has been focused on streaming anomaly detection [2], there is still
lack of theoretically sound and practically effective algorithms that operate efficiently in a streaming
model by making just one pass over the data. In practice, however, because of inherent correlations
in the data, it is possible to reduce a large sized numerical stream into just a handful of hidden bases
that can compactly describe the key patterns [10], and therefore dramatically reduce the complexity
of further analysis. We exploit this observation in our proposed algorithm by maintaining a set of
few orthogonal vectors that conceptually constitute previously seen normal patterns.

In this paper, we introduce a novel approach to anomaly detection in an unsupervised setting based
on ideas from matrix sketching. We use matrix sketching to maintain (over time) a low-rank matrix
with orthogonal columns that can (linearly) represent well all the identified non-anomalous data-
points previously-seen. We utilize this for anomaly detection as follows: let U be a low-rank matrix
representing all non-anomalous datapoints till time ¢ — 1, for a new datapoint y arriving at time ¢,
if there does not exist a good representation of y using U, then y does not lie close to the space
of non-anomalous datapoints, and therefore y could be an anomaly. At the end of timestep ¢, the
low-rank matrix is updated to capture all the non-anomalous points introduced at ¢.

*Due to space constraints some details are omitted in this extended abstract.



For efficient sketching, we adapt a recent deterministic sketching algorithm (called Frequent Direc-
tions) proposed by Liberty [7] and combine it with ideas from the theory of randomized low-rank
matrix approximations. Our theoretical analysis is built upon the study of Frequent Directions by
Liberty [7] and Ghashami e? al. [4], and the recent results in matrix perturbation theory to prove that
our randomized sketching-based algorithm has a similar performance to that of a global algorith-
m based on costly singular value decomposition updates. Our experimental results corroborate the
performance and scalability of our approach on datasets drawn from gene sequencing, employee-
activity logs, and broadcast news domains.

1.1 Preliminaries

Notation. We denote [n] = 1 : n. Vectors are denoted by boldface letters. For a vector z =
(#1,.-+,2m) € R™, diag(z1,...,2m) € R™*™ denotes a diagonal matrix with 21, ..., z,, as its
diagonal entries. Given a matrix Z, we abuse notation and use y € Z to represent that y is a column
in Z. Given a set of matrices, Z1, . .., Z;, we use the notation Z|; to denote the matrix obtained by
horizontally concatenating Z1, ..., Z3, i.e., Zy = [Z1] ... | Z4].

We use SVD(Z) to denote the singular value decomposition of Z, i.e., SVD(Z) = ULV . We
follow the common convention to list the singular values in non-increasing order. For a symmetric
matrix S € R™*™, we use EIG(S9) to denote its eigenvalue decomposition, i.e., UAU " = EIG(S).
The best rank-k approximation (in both the spectral and Frobenius norm) to a matrix Z € R™*™ is
Zy = Zle oiuiv;r , where o1 > 09 > - -- > oy, are the top-k singular values of Z, with associated
left and right singular vectors u; € R™ and v, € R", respectively. We use SVD;(Z) to denote the
the singular value decomposition of Zy, i.e., Z = SVDy(Z) = UkEkaT.

2 Streaming Anomaly Detection

Streaming Anomaly Detection Task. We assume that the data arrives in streams. Let {Y; €
R™*™ ¢ =1,2,...} denote a sequence of streaming data matrices, where Y; represents the dat-
apoints introduced at timestep . Here m is the size of the feature space, and n; is the number of
datapoints arriving at time ¢. We typically assume that there are more datapoints than number of
features (n; > m). We normalize Y; such that each column (point) in Y; has a unit Lo-norm. Under
this setup, the goal of streaming anomaly detection is to identify “anomalous datapoints” in Y; at
every timestep t.

Our Anomaly Detection Framework. Our idea is based on maintaining, at every timestep ¢, an
approximate low-rank matrix with orthogonal columns that can reconstruct “well” all the prior (till
time ¢t — 1) non-anomalous datapoints that the algorithm has identified. To develop an intuition for
our approach, let us first consider a simpler setting where we assume that we know all the anoma-
lies in Yj;_y) = [Y1]...|Y;—1], ie,, we know a partition of Y};_1} = [Vi_1),, . Y[t—1}..)> With
the interpretation here being that the columns in Y};_y), , are the anomalous points and Y};_qj,,,,
contains the non-anomalous (normal) points. Consider the rank-k approximation of Y}, _y)_,, (for

an appropriately chosen parameter' k): Y[t—l]goodk = SVDL(Y[t-1)p00a) = Ut—lkzt—lkVt—Lk- First
observation is that U;_1, is a rank-k matrix that can “well” represent all the points in Y]
This follows from the observation that by setting X = Zt_lk\/ilk:

2
t_l]good'

: 2 2 2
) min [|ly; — Up—1, %41 = min [V 13,000 = U1, X5 < 1Y 1)0000 = Yie-11a00a, [ 7-
Vi€t 1]g,0a !
In situations, where rank-k approximation is interesting, most of the mass from Y, would be in

its top k singular values (components), resulting in ||[Y,_11 — Yi_q1. 2 being small.
p g p g [t—1]gooa [t—1]gooa, I F g

We can now use U;_1, to detect anomalies in Y; by following a simple approach. Since U;_, is a
good basis to linearly reconstruct all the observed non-anomalous points in Y};_1j, we can use it to
test whether a point y; € Y; is “close” to space of non-anomalous points or not. This can be easily
achieved by solving the following simple least-squares problem:

m)in lyi = U1, x||- (D

'Readers could think of k as a small number, much smaller than m or n¢.

21t is possible to use other (non-SVD) approaches to construct a matrix to linearly represent Yii-1),,,q> however, using a low-rank SVD

goo
is attractive because it naturally comes with strong guarantees on approximation error.
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As the columns of U;_y, are orthogonal to each other, this least-squares problem has a simple
closed-form solution x* = (Ut—r_lkUt,lk)*lUtT_lkyi = Ut—ilkyi. The objective value of (1) at
x* is used as the anomaly score to decide if y; is anomalous or not, with larger objective values
denoting anomalies. An alternate way of stating this is that a point y; in Y; is labeled anomalous if

the length of the orthogonal projection of y; onto the orthogonal complement U;_;, is “big”.

In Algorithm ANOMDETECT, we present a simple prototype procedure for constructing Yj; 1.,
and Y[;_1), ., based on maintaining the left singular vectors (corresponding to the top-k singular
values) of the streaming data. The algorithm alternates between an anomaly detection and singular
vector updating step.

Algorithm 1: ANOMDETECT (prototype algorithm for detecting anomalies at time t)

Input: Y; € R™*™ (new observance), U;_1, € R™*% (low-rank matrix with orthogonal
columns), and ¢ € R (threshold parameter)
Anomaly score construction step:
Yiooa < [1 Yopau < [
for each point (column) y; € Y; do
Solve the least-squares problem: x} = argmin,_ |ly; — U;—1,X|| (= x} + UtT—lkYU
Anomaly score: a; < ||(Ly, — Us—1, UL )yill
if a; < ( then
‘ }/—tgood — [ngood|yi]
end
else
‘ Ytbad — [Ytbadb’i]
end

end

Updating the singular vectors:

Generate Uy, € R™** a matrix with orthogonal columns which is (or approximates) the left
singular vectors corresponding to top-k singular values of Y
Return Y; Yirow and Uy,

good

good’

The simplest way of updating the singular vectors (without any errors) is to simply (re)generate them
from the globally collected sample set Y, . We call this approach global updating. However, this
approach is not scalable as both the computational and memory requirements will increase with time.
There are faster techniques for updating the singular vectors, based on a line of work commonly
referred to as Incremental Principal Component Analysis (PCA) (see [1] and references therein),
that attempts to maintain a low-rank approximation of a matrix Z (using SVD and a small amount
of bookkeeping) as rows/columns of Z arrive in a stream. However, as noted in [4], these approaches
can have arbitrarily bad matrix approximation error on adversarial data. In Section 4, we also present
experimental evidence demonstrating that for anomaly detection, our approach outperforms a recent
incremental PCA technique proposed by Baker et al. [1].

3 Streaming Anomaly Detection using Matrix Sketching

In this section, we propose an anomaly detection scheme for streaming data based on matrix sketch-
ing, and also provide theoretical guarantees for its efficacy.

In his recent paper Liberty [7] showed that by adapting the Misra-Gries approach for approximat-
ing frequency counts in a stream [9], one could obtain additive error bounds for matrix sketching.
Recently, Ghashami and Philips [4], reanalyzed the Frequent Directions algorithm of Liberty [7], to
show that it provides relative error bounds for low-rank matrix approximation.

Our approach for updating the singular vectors (outlined in Algorithm RANDSKETCH) is based on
extending the Frequent Directions algorithm of Liberty [7] to a more general setting. In contrast
to [7, 4], where one new row (or column) is added at every timestep ¢, we add n; > 1 new columns.
With this generality, for computational efficiency, at each timestep, we perform a low-rank SVD,
instead of the full SVD as in [7, 4]. For constructing a low-rank SVD, we utilize a randomized
low-rank matrix approximation technique suggested by Halko et al. [5] that is based on combining
a randomized pre-processing step (multiplying by a random matrix and QR decomposition) along
with a simple post-processing step (eigenvalue decomposition of a small matrix).

3
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Algorithm 2: RANDSKETCH (randomized streaming update of the singular vectors at time t)

Input: ; , € R™*™ and By € R™** the randomized matrix sketch computed at time ¢ — 1

My < [Er1]Yy,,04)

r < 100/

Generate an m x r random Gaussian matrix {2

Y «— MM, Q

QR + Qr(Y) (QR factorization of Y, computing orthogonal column basis for Y")
AX2A] « E16(QT MM, Q) (with X7 = diag(57 ,...,52))

U, QA; (= QQTM;M,”QQT is the produced approximation of MtMtT)
lv]tz «— [ug,...,up] (where (u]tr =[uy,...,u]and ¢ <r)

o (trunc . o v o v o o

S diag (\[52, = 0\ [5h — 8-\ [32, — 92,0)

Fy = U, 5
Return E; and Uy,

At time ¢, the running time of the Algorithm RANDSKETCH is O({Tui¢ + (m + ny)¢?), where
Timuit denotes the cost of a matrix-vector multiplication with the input matrix M. The matrix-vector
multiplication is a well-studied topic with numerous known efficient sequential/parallel algorithm-
s. Between iterations the algorithm only needs to store the E; (the up-to-date randomized matrix
sketch) matrices which take O(m/) storage. We discuss the setting of ¢ in the next section.

3.1 Bounding the Performance of Algorithm RANDSKETCH

In this section, we would show that the anomaly detection results obtained by using U’tk (output
of Algorithm RANDSKETCH) in Algorithm ANOMDETECT is similar to using the (true) singular
vectors based on a global update. Due to space limitations all proofs and detailed discussions are
omitted in this extended abstract.

Our first aim will be to bound the Frobenius norm of the difference between Y[ and

YT
goody, ~ [tlgood),
EtkE;lz, for which we will use the following result from Halko ez al. [5] that bounds the error due
to randomized SVD.

Theorem 1 (Restated from Corollary 10.9 [5]). In Algorithm RANDSKETCH, let
diag(dy,,...,04, ) be the eigenvalues of MyM,", then with probability at least 1 — 6e=%%,
MM, = U304 | < 3854, + 20321, 07)'/2/VE
Similar to the above theorem, we can bound || M; M’ — U fi Xulf U;
need few additional notations: '

, for every timestep j. We will

Nt = QQTMt7
P, = QAtit = (v]tit(note that by construction in Algorithm RANDSKETCH, NN, = P.P,"),
E, =U, iﬁzrunc) (rank-k approximation of E}),
( m _2 )1/2

A t w92
At - Zj:l sz’
i=0+19;;

v; = 3805,,, + 2T(error bound from Theorem 1, at timestep j) and T, = 5"

j=1"Y5>

K= 01(Yt)00a) /O, (Y1) 0oa)> Where o1 (Vg 1) = -+ = 0 (Y]y,..,) are the singular values of Y

good

As columns of @ are orthogonal to each other, QQ " is a projection matrix, and therefore by standard
properties of projection matrices and noting that (QQ )" = QQ',

M7 > 1QQT M| F = [|Nell7 = [ Pel|s
¥ unit vectors x € R™, | M, x||? > |QQT Myx||? = | N, x||? = | P, x])%.

Lemma 2. At timestep t, Algorithm RANDSKETCH maintains that: ||Yy,, . |3 — [ Bl > A,

The following lemma shows that for any direction x, Y[, and E} are w.h.p. not too far apart.

@

good "



Lemma 3. For any unit vector x € R™, at any timestep t, with probability at least 1 — 6e=%,

0< Yy, xI* = IE x| < A+ ..

good

Since for all unit vectors x € R™, ||V~ x>~ |E{ x|* > 0 = Y]y, [g = E,E, . Itcan
also be easily established that for all unit vectors x € R™, x|V} tleood, x|| > ||V} [tlood xX||. Therefore,

f }/—[] }/[t]goud}/[t]good t EtEt t EtkEt—l;

Y} -
goodyp, [t]goodk -
Lemmad. Let Y}, , 0 be the best rank-k approximation to Yy, Then with probability at least
1—6e7% Ay < ([IYi00s = Yitlgooa, |7+ 5Te) /(€ = K).

Lemma 5. Algorithm RANDSKETCH satisfies with probability at least 1 — 6e=9¢:
0 < 1Yit]y0a, 17 = 1Be T < KT+ k(1Yit4000 — Yiedgoos, I + KTe) /(€ = k).
Using this above lemma and the fact that %Y} Y[ =B, B

goodp, [t]goodk

good

..» we can prove the following

proposition.

Proposition 6. At timestep t, E; generated by Algorithm RANDSKETCH satisfies,

152 Y t) oo, Vielooa, — Bt LN E < K2V (000, [T = 1B [

We need couple of more definitions. Define @, as,

2 Y t)ooa, |17 = 1B I
Yt ooa, 7 = 1B llE

Note that ®, > 1 as |[Y{y,,,,, |2 > ||E¢,||% (from Lemma 5). In fact, for small ks (as in our set-

ting), typically « (the ratio between the largest and kth largest singular value of Y, _,) is bounded,
yielding ®, = O(1). Define P, as,

3)

a =

162100 YiAoow — BB |

ood
. . “4)
||/‘5 Y[t

oy =
- l;tk12;2|

}fT
guodk ]goodk

Claim 7. ®, satisfies: O, <1+ 2/(k* — | E|1*/||Yig,004 1)

Remember that || E;[|? < ||V Typically k is also bounded away from 1, yielding &, = O(1).

I
good °

We now use the theory of matrix perturbation to relate ﬁt . (from Algorithm RANDSKETCH) with
the (true) left singular vectors corresponding to top-k singular values of Y[y .. There is lot of prior
work in matrix perturbation theory that relates the eigenvalues, singular values, eigenspaces, and
singular subspaces, etc., of the matrix Z + Z’ to the corresponding quantity in Z, under various
conditions on the matrices Z and Z’. Here we use a recent result from Chen, Li, and Xu [3] that
studies behavior of the eigenvector matrix of a Hermitian (symmetric) matrix under perturbation.

Theorem 8 (Restated from Theorem 2.1 [3]). Let A € R™*™ be a symmetric matrix with distinct
eigenvalues with EIG(A) = UAU" where A = diag(A\1,...,Am). Let Aper = A+ ® be a
symmetric matrix. Let L = L(A) = min;z; |A; — Aj| > 0, § = ||<I>HF/L, and o = 2||A||/L,
with 3 satisfying: 8 < 1/(1 4 4a). Then E1G(Aper) = UperAperUp,,. such that |U — Uper || <
VIB/(1+ 4a2)/A

We now apply Proposition 6 and Theorem 8 to bound ||U;, — Uy, || 7. To do so we construct matrices:

A= 1Yy, Y, and Ape, = E(E;. Let £ be such that:
Ve Bk T VMm@ Pak(Yit),000 = Yitlaoos, | + BTt L 5)
L (£—k)L T L+ 4RVl

In the above equation both terms in the left-hand side are decreasing functions in ¢ (for the first term
note that Y'; decreases with /).

Claim 9. Let \; be the ith eigenvalue of Y}, ., [T] ,and L = min;z; [\ — N[ > 0. If 4
satisfies (5) for Yy, ®,, Py, defined in (2), (3), (4) respectively, then with probability at least 1 —
6e —99¢

>

10t = Ur e < V2L (/L4 852Vl {12 + 1664, 1) -



Neither the numerical constants nor the precise form of the bound on ¢ are optimal because of the
slackness in Theorem 8.

Remark: The assumption of L > 0 is something that is commonly satisfied in practice, especially
if m is reasonably smaller than the number of datapoints in Y;)_ .. The above bound on ¢ should
be treated as an existential result, as setting £ using the established bound is tricky. Practically, we
noticed that setting £ ~ \/m suffices to get good results. Another important point to remember is
that the Algorithm RANDSKETCH can be used with any value of ¢, the above bound on ¢ is only
to ensure that its performance is similar to using global singular value decomposition updates in
Algorithm ANOMDETECT as established in the following theorem.

LY
9,
= Wigoal - Vi) Let Yigy,.... = US4V, be the best rank-k approximation to

Then for any unit vectory € R™, U'tk_ (generated by the Algorithm RANDSKETCH), under
—99¢

s00a D€ G sequence of matrices with

Theorem 10 (Comparing Anomaly Scores). Let Y1
Yy
Yy
conditions from Claim 9, with probability at least 1 — 6e

< VIL/(/L + 882||Y,,...|12 /L2 + 1682V, |).

good? * *
good

good”
, satisfies:

i — U, x|| — mi .y
xrgglkﬂy 1 Xl xrrelglk\ly Xl

The above theorem shows that the anomaly scores (in Algorithm ANOMDETECT) constructed by
using either matrices Uy, or Uy, (true top-k singular vectors) are “almost” the same.

4 Experimental Results

We experimentally test our proposed approach in terms of effectiveness and efficiency. We use
datasets drawn from a diverse set of domains ranging from gene sequencing (Cod-RNA, Protein-
homology), to employee activity log (User-activity), to broadcast news (RCVIAD). We refer to Al-
gorithm ANOMDETECT with singular vectors updated using a global SVD approach as GLOBAL
and using Algorithm RANDSKETCH as RANDADEMS .

Baselines. We compare against some popular algorithms that were chosen for their scalability on
large datasets. 1SVM-linear and 1ISVM-RBF are one-class support vector machine classifiers with
linear/radial-basis as kernel function. IForest [8] and Mass [11] use modeling of attribute distribu-
tion to detect anomalies, which is known to be very efficient as they rely on simple data processing.
Unconstrained Least-Squares Importance Fitting (uULSIF) [6] uses density ratio estimation to
detect anomalies. IncPack uses incremental PCA to update the singular vectors.

(a) Cod-RNA (b) Cod-RNA (c) Protein-homology (d) Protein-homology

(e) User-activity (f) User-activity (g) RCVIAD (h) RCVIAD
Figure 1: ROC curves for compared approaches on various datasets.

From Figure 1, it is evident that RANDADEMS outperforms the other algorithms on all the datasets
(except for the experiments on User-activity dataset, Figure 1(e), which shows a partial overlap be-
tween RANDADEMS, 1SVM-RBEF, and uLSIF). Due to updates to the basis vectors, RANDADEMS
can successfully deal with the concept shift problem in the normal data (i.e., new patterns of normal
data appearing over time). RANDADEMS also has extremely similar performance to GLOBAL (Fig-
ures 1(b), 1(d), 1(f), and 1(h)). It once again confirms that the Algorithm RANDSKETCH produces
a desired approximation to the top-k singular vectors.

In terms of the running time, on average, RANDADEMS is over 100 times faster than 1SVM-linear,
1SVM-RBF, and uLSIF, and is over 5 times faster than IForest, Mass, IncPack, and GLOBAL.
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