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ABSTRACT

Coresets are compact representations of data sets such that models

trained on a coreset are provably competitive with models trained

on the full data set. As such, they have been successfully used to

scale up clustering models to massive data sets. While existing

approaches generally only allow for multiplicative approximation

errors, we propose a novel notion of lightweight coresets that allows
for both multiplicative and additive errors. We provide a single

algorithm to construct lightweight coresets for k-means cluster-

ing as well as soft and hard Bregman clustering. The algorithm

is substantially faster than existing constructions, embarrassingly

parallel, and the resulting coresets are smaller. We further show that

the proposed approach naturally generalizes to statistical k-means

clustering and that, compared to existing results, it can be used to

compute smaller summaries for empirical risk minimization. In ex-

tensive experiments, we demonstrate that the proposed algorithm

outperforms existing data summarization strategies in practice.
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1 INTRODUCTION

A recent, unprecedented increase in the size of data sets has led to

new challenges for machine learning asmany traditional algorithms

fail to scale to suchmassive data sets. For instance, many algorithms

that have a superlinear computational complexity in the input size

become computationally infeasible in the presence of millions or

billions of data points. Similarly, many algorithms assume that the

data can be accessed multiple times on a single machine. However,

in a practical big data setting, one may only be able to see each data
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point a few times and the whole data set may be distributed across

a cluster of machines. Traditional algorithms optimized for single

machines and small data set sizes are not suitable for this setting.

Coresets are a proven data summarization approach that can be

used to scale clustering problems to massive data sets. Coresets are

small, weighted subsets of the original data set such that models

trained on the coreset are provably competitive with models trained

on the full data set. As such, they can be used to speed up infer-

ence while retaining strong theoretical guarantees on the solution

quality. One first constructs a coreset — usually in linear time —

and then uses any algorithm that works on weighted data to solve

the clustering problem on the coreset. As the coreset size is usu-

ally sublinear in or even independent of the number of data points,

computationally intensive inference algorithms with superlinear

complexity may be applied on coresets.

Coresets have been successfully constructed for a wide variety

of clustering problems. Yet, even linear-time coreset constructions

can be hard to scale to massive data sets in a distributed setting.

For example, the state-of-the-art coreset construction for k-means

[21] requires k sequential passes through the full data set. While

there are approaches to construct coresets in a distributed fash-

ion (discussed in Section 2), they usually increase both the total

computational effort and the required coreset sizes substantially.

Consequently, existing coreset constructions are not suitable for

the practical setting where the data is distributed across a cluster

and can only be processed once or twice in parallel.

Our contributions. We propose a novel approach to coreset

construction for k-means clustering that retains the benefits of

previous coreset constructions at a fraction of the cost, that works

in the distributed setting and that can be applied naturally to the

statistical k-means clustering problem. In particular, we

(i) introduce and motivate the novel notion of lightweight core-
sets that allows for both multiplicative and additive errors,

(ii) provide a simple and embarrassingly parallel algorithm to

construct such lightweight coresets using only two full passes

through the data set,

(iii) prove a sufficient coreset size of O

(
dk logk+log 1

δ
ϵ 2

)
which is

only linear in the dimensionality d and near-linear in the

number of the clusters k ,
(iv) extend the results to hard and soft clustering with a large

class of Bregman divergences,

(v) show that the approach enables substantially smaller sum-

maries for statistical k-means clustering, and

(vi) confirm the practical utility of the proposed method by com-

paring it to existing data summarization strategies in exten-

sive experiments.

https://doi.org/10.1145/3219819.3219973
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2 BACKGROUND AND RELATEDWORK

k-means clustering. Let X denote a set of points in Rd . The k-
means clustering problem is to find a set Q of k cluster centers in

Rd such that the quantization error ϕX(Q) is minimized, where

ϕX(Q) =
∑
x ∈X

d(x ,Q)2 =
∑
x ∈X

min

q∈Q
∥x − q∥2

2
.

For general k-clustering the squared Euclidean distance is replaced

with the corresponding divergence measure d. For a weighted set C

with corresponding weightsw : C → R≥0, the quantization error

is defined as ϕC(Q) =
∑
x ∈C w(x) d(x ,Q)

2
. The quantization error

of the optimal solution of k centers is denoted by ϕkOPT (X).

Coresets.A coreset is a weighted subset of the data such that the

quality of any clustering evaluated on the coreset closely approxi-

mates the quality on the full data set. For the k-means clustering

problem, this property is usually formalized as follows [4, 14, 21]:

A weighted set C is a (ε,k)-coreset for X if for any Q ⊂ Rd of

cardinality at most k

|ϕX(Q) − ϕC(Q)| ≤ εϕX(Q). (1)

This is a strong theoretical guarantee as the cost evaluated on the

coresetϕC(Q) has to approximate the cost on the full data setϕX(Q)
up to a 1 ± ε multiplicative factor simultaneously for all possible

sets of cluster centers. As a direct consequence, solving on the

coreset yields provably competitive solutions when evaluated on

the full data set [21]. More formally, if C is a (ε,k)-coreset of X
with ε ∈ (0, 1/3), it is shown that

ϕX

(
Q∗
C

)
≤ (1 + 3ε)ϕX

(
Q∗
X

)
(2)

where Q∗
C
denotes the optimal solution of k centers on C and Q∗

X
denotes the optimal solution on X. Any α-approximation can be

used on the (ε,k)-coreset to produce a (1 + 3ε)α-approximation on

the original data. As a result, any solver that works on weighted

data may be used to solve the clustering problem on the coreset

while retaining strong theoretical guarantees.

Coresets are usually small, i.e., their size is logarithmic in or even

independent of the number of data points. Hence, one may obtain a

fast approximation of the optimal solution, even if the solver used

on the coreset has superlinear complexity in the data set size.

Coresets for k-means. There is a rich history of coreset con-

structions for k-means [4, 7, 10, 13, 14, 19, 21]. The coreset construc-

tion by Lucic et al. [21] with both state-of-the-art theoretical and

experimental results works as follows: In a first step, a rough approx-

imation of the optimal solution is obtained using the seeding step

of the well known k-means++ algorithm [1]. In a second step, this

rough solution is used to bound the worst-case impact of each point

on the objective function. In a third step, this is used to derive an

importance sampling scheme that provides (ϵ,k)-coresets if enough
points are sampled. Bachem et al. [4] show that the sufficient coreset

size is bounded by O

(
k logk(dk logk + log 1

δ )ε
−2

)
. However, there

is a drawback to this approach: The coreset construction requires k
sequential passes through the data set. Constructing coresets for

massive data sets can hence become prohibitively expensive even

for moderate k despite the linearity complexity in the data set size.

Balcan et al. [5] provide a low-communication distributed algo-

rithm for k-means and k-median clustering on general network

topologies and provide coresets for k-means of size O
(
dk logk/ε4

)
.

In contrast, our algorithm computes coresets of size O
(
dk logk/ε2

)
.

Other related work. Previous constructions for k-means are

based upon exponential grids [14] and building coresets along lines

[13]. These geometrically inspired constructions suffer from core-

set sizes exponential in the number of dimensions and are rarely

practical. The use of sampling-based approaches was investigated

by Chen [7] and Feldman et al. [11]. A general framework for con-

structing coresets was proposed by Langberg and Schulman [19]

and Feldman and Langberg [10]. Feldman et al. [9] and Lucic et al.

[22] applied this framework to construct coresets for the estimation

of Gaussian mixture models. Recently, Bachem et al. [3] proposed a

coreset construction for nonparametric clustering, Reddi et al. [24]

for empirical risk minimization in supervised learning and Huggins

et al. [16] for Bayesian logistic regression.

3 LIGHTWEIGHT CORESETS FOR k-MEANS

In this section, we propose and motivate lightweight coresets — a

novel notion of coresets for k-means. In Section 6, we will then

show how to extend the results to other divergence measures.

Definition 1 (Lightweight coreset for k-means). Let ε > 0

and k ∈ N. Let X ⊂ Rd be a set of points with mean µ(X). The
weighted set C is an (ε,k)-lightweight coreset of X if for any set
Q ⊂ Rd of cardinality at most k

|ϕX(Q) − ϕC(Q)| ≤
ε

2

ϕX(Q) +
ε

2

ϕX({µ(X)}). (3)

The notion of lightweight coresets may be interpreted as a re-

laxation of “traditional” coresets as defined in (1) that permits both

an additive and multiplicative error. The ε
2
ϕX(Q) term allows the

approximation error to scale with the quantization error and consti-

tutes the “traditional” multiplicative part. The
ε
2
ϕX({µ(X)}) term

scales with the variance of the data and corresponds to an additive

approximation error that is invariant of the scale of the data.

We argue that the “additive”
ε
2
ϕX({µ(X)}) term is adequate for

the following reason: In machine learning, one often tries to mini-

mize the generalization error by performing empirical risk mini-

mization on a finite sample. Yet, state-of-the art deviation bounds

for finite samples only provide an additive error guarantee [2, 25].

Since one already incurs an additive error, one may thus accept

the same additive error when optimizing on the finite sample. In

fact, in Section 7, we will consider the statistical k-means clustering

problem and will show that lightweight coresets may be used to

generate small summaries suitable for empirical risk minimization.

The “multiplicative”
ε
2
ϕX(Q) term is required for the following

reason: Equation (3) needs to hold uniformly for all sets Q of k

centers inRd . As such, with only the ε
2
ϕX({µ(X)}) term, one would

be able to construct the following adverse solution: If the cluster

centers are placed arbitrarily far away from the data points, any

difference on the left hand side in (3) would be arbitrarily large

while the variance of the data would still bounded on the right hand

side. Hence, without the multiplicative error term, there would exist

no coreset C satisfying (3) for all possible sets Q .

The primary motivation behind coresets is that the optimal so-

lution obtained on the coreset is provably competitive with the

optimal solution of the full dataset. For “traditional” coresets, this



guarantee is multiplicative as defined in (2). In Theorem 1, we show

that lightweight coresets directly imply a corresponding additive

guarantee on the solution quality.

Theorem 1. Let ε ∈ (0, 1]. Let X be any data set and C be a
(ε,k)-lightweight coreset of X, Denote by Q∗

X
an optimal k-means

solution on X and by Q∗
C
an optimal solution on C. Then, it holds

that
ϕX

(
Q∗
C

)
≤ ϕX

(
Q∗
X

)
+ 4εϕX({µ(X)}).

Proof. By the lightweight coreset property, we have

ϕC

(
Q∗
X

)
≤

(
1 +

ε

2

)
ϕX

(
Q∗
X

)
+
ε

2

ϕX({µ(X)}),

as well as

ϕC

(
Q∗
C

)
≥

(
1 −

ε

2

)
ϕX

(
Q∗
C

)
−
ε

2

ϕX({µ(X)}).

Since by definition ϕC

(
Q∗
C

)
≤ ϕC

(
Q∗
X

)
and 1 − ε

2
≥ 1

2
, it then

holds that

ϕX

(
Q∗
C

)
≤

1 + ε
2

1 − ε
2

ϕX

(
Q∗
X

)
+

ε

1 − ε
2

ϕX({µ(X)})

≤ (1 + 2ε)ϕX

(
Q∗
X

)
+ 2εϕX({µ(X)}).

The claim then follows since

ϕX

(
Q∗
X

)
≤ ϕX({µ(X)}).

□

Theorem 1 implies that, as we decrease ε , the true cost of the
optimal solution obtained on the coreset approaches the true cost

of the optimal solution on the full data set in an additive manner.

In Section 4 we show that lightweight coresets allow us to obtain a

more efficient coreset construction while retaining the empirical

benefits of “traditional” coresets as evidenced in Section 8.

4 CONSTRUCTION OF LIGHTWEIGHT

CORESETS

Our coreset construction is based on importance sampling. Let q(x)
be any probability distribution on X and Q any set of k centers in

Rd . Then the quantization error may be rewritten as

ϕX(Q) =
∑
x ∈X

q(x)
d(x ,Q)2

q(x)
.

The quantization error can hence be approximated by sampling

m points from X using q(x) and assigning them weights inversely

proportional to q(x). For any number of samplesm and any distribu-

tion q(x), this yields an unbiased estimator of the quantization error.

However, unbiasedness is not sufficient to guarantee a lightweight

coreset as defined in Definition 1. In particular, (3) has to hold with

probability 1 − δ uniformly across all k-sized sets of centers Q . Ob-

taining such a stronger bound requires a suitable distribution q(x)
and a corresponding lower bound on the number of samplesm. We

suggest the following proposal distribution

q(x) =
1

2

1

|X|︸︷︷︸
(A)

+
1

2

d(x , µ(X))2∑
x ′∈X d(x ′, µ(X))2︸                    ︷︷                    ︸

(B)

Algorithm 1 Lightweight coreset construction

Require: Set of data points X, coreset sizem
1: µ ← mean of X

2: for x ∈ X do

3: q(x) ← 1

2

1

|X |
+ 1

2

d(x,µ)2∑
x ′∈X d(x ′,µ)2

4: end for

5: C ← samplem weighted points from X where each point x
has weight

1

m ·q(x ) and is sampled with probability q(x)

6: Return lightweight coreset C

that has a natural interpretation as a mixture of two components.

The first component (A) is the uniform distribution and ensures

that all points are sampled with nonzero probability. The second

component (B) samples points proportionally to their squared

distance to the mean of the data. The intuition is that the points

that are far from the mean of the data have a potentially large

impact on the quantization error of a clustering. The component

(B) ensures that these potentially important points are sampled

frequently enough.

Practical algorithm. The resulting coreset construction is pro-

vided as pseudo code in Algorithm 1 and is extremely simple and

practical: One calculates the mean of the data and then uses it

to compute the importance sampling distribution q(x). Finally,m
points are sampled with probability q(x) from X and assigned the

weight
1

m ·q(x ) . The algorithm only requires two full passes through

the data set resulting in a total computational complexity of O(nd).
There is no additional linear dependence on the number of clusters

k as in previous constructions [21] which is crucial in the setting

where k is even moderately large.

Distributed implementation. Algorithm 1 is embarrassingly

easy to parallelize and can be implemented in a two-round dis-

tributed procedure: Let X be partitioned across p machines and let

Xi denote the points on the i-th machine. For each x ∈ X, let x j de-
note the j-th coordinate of x . We first compute the mean as follows.

In the first round, each machine computes |Xi |, Ui j =
∑
x ∈Xi x j

andVi j =
∑
x ∈Xi (x j )

2
and sends them back to the central machine.

The central machine can then easily compute the global mean µ,
the quantization errors ϕXi ({µ}) and the total quantization error

ϕX({µ}). For each machine i , we further keep track of the number

of points ui to be sampled uniformly using (A) and the number of

points vi to be sampled nonuniformly using (B). The central ma-

chine distributes them points to be sampled iteratively as follows:

In each round, with probability 1/2, it samples the machine i with
probability proportional to |Xi | and increases the corresponding

ui by one. Otherwise, it samples the machine i with probability

proportional to ϕXi ({µ}) and increases vi by one. Each machine i
then obtains µ, ui , vi , ϕXi ({µ}) and ϕX({µ}) and samples ui points

uniformly at random and vi points proportionally to d(x , µ)2. For
each sampled point, it further computes its weight and outputs the

weight-point pair. Hence, there is no loss in approximation with

respect to the single-machine implementation.



5 ANALYSIS

Our main result guarantees that Algorithm 1 computes lightweight

coresets if sufficiently many points are sampled. The sufficient

coreset sizem is independent of the number of data points, linear in

the dimensionality and near-linear in the number of cluster centers.

Theorem 2. Let ε > 0,δ > 0 and k ∈ N. Let X be a set of points
in Rd and let C be the output of Algorithm 1 with

m ≥ c
dk logk + log 1

δ
ε2

where c is an absolute constant. Then, with probability at least 1 − δ ,
the set C is a (ε,k)-lightweight coreset of X.

Proof. We first derive an importance sampling distribution over

x ∈ X. Then, we show that by sampling a sufficient number of

points from this importance sampling distribution one obtains a

(ε,k)-lightweight coreset of X. We first bound the importance of

each data point x ∈ X. For this, we define

˜f (Q) =
1

2|X|
ϕX(Q) +

1

2|X|
ϕX({µ(X)}) (4)

where µ(X) denotes the mean ofX and prove the following Lemma.

Lemma 1. Let X be a set of points in Rd with mean µ(X). For all
x ∈ X and Q ⊂ Rd , it holds that

d(x ,Q)2

˜f (Q)
≤

16 d(x , µ(X))2

1

|X |

∑
x ′∈X d(x ′, µ(X))2

+ 16. (5)

Proof. By the triangle inequality and since

(|a | + |b |)2 ≤ 2a2 + 2b2,

we have for any x ∈ X and any Q ⊂ Rd that

d(µ(X),Q)2 ≤ 2 d(x , µ(X))2 + 2 d(x ,Q)2.

Averaging across all x ∈ X, we obtain

d(µ(X),Q)2 ≤
2

|X|

∑
x ∈X

d(x , µ(X))2 +
2

|X|

∑
x ∈X

d(x ,Q)2

=
2

|X|
ϕX({µ(X)}) +

2

|X|
ϕX(Q).

This implies that for all x ∈ X and Q ⊂ Rd

d(x ,Q)2 ≤2 d(x , µ(X))2 + 2 d(µ(X),Q)2

≤2 d(x , µ(X))2 +
4

|X|
ϕX({µ(X)}) +

4

|X|
ϕX(Q).

We divide by
˜f (Q) as defined in (4) and obtain that

d(x ,Q)2

˜f (Q)
≤

2 d(x , µ(X))2 + 4

|X |
ϕX({µ(X)}) +

4

|X |
ϕX(Q)

1

2 |X |
ϕX(Q) +

1

2 |X |
ϕX({µ(X)})

≤
2 d(x , µ(X))2 + 4

|X |
ϕX({µ(X)})

1

2 |X |
ϕX({µ(X)})

+

4

|X |
ϕX(Q)

1

2 |X |
ϕX(Q)

≤
16 d(x , µ(X))2

1

|X |

∑
x ′∈X d(x ′, µ(X))2

+ 16

for all x ∈ X and Q ⊂ Rd which proves the Lemma. □

Lemma 1 implies that the ratio between the cost contribution of

a single point x ∈ X and
˜f (Q) is bounded for all Q ⊂ Rd by

s(x) =
16 d(x , µ(X))2

1

|X |

∑
x ′∈X d(x ′, µ(X))2

+ 16.

We define S = 1

|X |

∑
x ′∈X s(x

′) and note that S = 32 for any data

set X. The importance sampling distribution q(x) in Algorithm 1

may hence be rewritten as

q(x) =
1

2

1

|X|
+
1

2

d(x , µ(X))2∑
x ′∈X d(x ′, µ(X))2

=
s(x)

S |X|

for all x ∈ X.
Consider the function

дQ (x) =
d(x ,Q)2

˜f (Q) s(x)

for all x ∈ X and Q ⊂ Rd . Then, it holds for any Q ⊂ Rd that

ϕX(Q) =
∑
x ∈X

d(x ,Q)2 = S |X| ˜f (Q)
∑
x ∈X

s(x)

S |X|︸︷︷︸
q(x )

d(x ,Q)2

˜f (Q) s(x)︸      ︷︷      ︸
дQ (x )

= S |X| ˜f (Q)
∑
x ∈X

q(x)дQ (x).

Defining the notation Eq
[
дQ (x)

]
=

∑
x ∈X q(x)дQ (x), we thus have

ϕX(Q) = 32|X| ˜f (Q)Eq
[
дQ (x)

]
. (6)

As is standard in recent coreset constructions [4, 5, 10, 21], we

apply the following seminal result of Li et al. [20] to estimate

Eq
[
дQ (x)

]
using a random sample drawn from the importance

sampling distribution q(x).

Definition 2 (Haussler [15], Li et al. [20]). Fix a countably
infinite domain X . The pseudo-dimension of a set F of functions
from X to [0, 1], denoted by Pdim (F ), is the largest d ′ such there is
a sequence x1, . . . ,xd ′ of domain elements from X and a sequence
r1, . . . , rd ′ of reals such that for each b1, . . . ,bd ′ ∈ {above, below},
there is an f ∈ F such that for all i = 1, . . . ,d ′, we have f (xi ) ≥
ri ⇐⇒ bi = above.

Theorem 3 (Li et al. [20]). Let α > 0, ν > 0 and δ > 0. Fix a
countably infinite domain X and let P be any probability distribution
over X . Let F be a set of functions from X to [0, 1] with Pdim (F ) =

d ′. Denote by C a sample ofm points from X independently drawn
according to P with

m ≥
c

α2ν

(
d ′ log

1

ν
+ log

1

δ

)
where c is an absolute constant. Then, it holds with probability at
least 1 − δ that

dν

(
EP [f ],

1

|C |

∑
x ∈C

f (x)

)
≤ α ∀f ∈ F

where dν (a,b) =
|a−b |
a+b+ν . Over all choices of F with Pdim (F ) = d ,

this bound onm is tight.



To obtain a uniform guarantee over all possible sets of clus-

ter centers Q , we would like to apply Theorem 3 to approximate

Eq
[
дQ (x)

]
uniformly for the function family

G =
{
дQ (x) : Q ⊂ R

d , |Q | ≤ k
}
.

For this, we require a bound on the pseudo-dimension ofG which

measures the richness of the function family andmay be viewed as a

generalization of the Vapnik-Chervonenkis (VC) dimension. Previous
work [5, 10, 21] has used the property that the pseudo-dimension

of k-means (or equivalently the function family G) is essentially

bounded by the VC dimension of k-fold intersections of half-spaces
in O(d)-dimensional Euclidean space.

1

However, Feldman and Langberg [10], Balcan et al. [5] as well as

Lucic et al. [21] all use a different definition of pseudo-dimension

than the underlying theorem by Li et al. [20]: they define it as the

smallest integer d that bounds the number of dichotomies induced

by G on a sample ofm points bymd
. Such a bound on the growth

function of the number of dichotomies may be regarded as a gener-

alization of the primal shattering dimension in classical VC theory

[12, 23]. Hence, the aforementioned papers bound the primal shat-
tering dimension and not the pseudo-dimension of k-means by O(dk),
for example in Theorem 6 of Lucic et al. [21], and then proceed to

(incorrectly) apply Theorem 3.

While both notions are closely related, one has to be careful: A

primal shattering dimension of d ′ only implies a VC dimension

of at most O(d ′ logd ′) [12]. For the function family G, this only

provides a bound on the pseudo-dimension of O(dk logdk) and not
O(dk). In fact, it not known whether for d > 3 k-fold intersections

of half-spaces are VC-linear, i.e., whether their VC dimension is

bounded by O(dk) [17].
In contrast, Lemma 1 of Bachem et al. [2] provides a sharper

bound on the pseudo-dimension of G than the O(dk logdk) bound
obtained via the primal shattering dimension. In particular, one

obtains

Pdim (G) ∈ O(dk logk).

by setting P in Lemma 1 of Bachem et al. [2] to be the empirical

distribution associated with X. Applying this bound to the coreset

constructions in Feldman and Langberg [10], Balcan et al. [5], and

Lucic et al. [21] leads to an additional logk (and not logdk) factor
in the coreset sizes presented in these papers.

We use Theorem 3 with this bound on the pseudo-dimension of

G to approximate Eq
[
дQ (x)

]
in (6). Choose α = ϵ/96 and ν = 1/2

and note that the function дQ (x) is bounded in [0, 1] for all x ∈ X

and Q ⊂ Rd of cardinality at most k . By assumption, we consider

the case

m ≥ c
dk logk + log 1

δ
ϵ2

,

where c is an absolute constant. Hence, Theorem 3 implies that

with probability at least 1 − δ

dν

(
Eq

[
дQ (x)

]
,
1

|C |

∑
x ∈C

дQ (x)

)
≤

ϵ

96

uniformly for all sets Q ⊂ Rd of cardinality at most k .

1
This can be shown by the use of a lifting map as in Theorem 6 of Lucic et al. [21].

The denominator in dν (·, ·) is bounded by 3 since both arguments

to dν (·, ·) are bounded in [0, 1]. Hence, we have that�����Eq [
дQ (x)

]
−

1

|C |

∑
x ∈C

дQ (x)

����� ≤ ϵ

32

for all sets Q ⊂ Rd of cardinality at most k . By multiplying both

sides by 32|X| ˜f (Q) we obtain�����32|X| ˜f (Q)Eq [
дQ (x)

]
−
32|X| ˜f (Q)

|C |

∑
x ∈C

дQ (x)

����� ≤ ϵ |X| ˜f (Q)

for all setsQ ⊂ Rd of cardinality at most k . Let (C,u) be a weighted
set that contains all x ∈ C with weight u(x) = 1

|C |q(x ) . From the

definition of дQ (x) we have

32|X| ˜f (Q)

|C |

∑
x ∈C

дQ (x) =
∑
x ∈C

1

|C |q(x)
d(x ,Q)2

=
∑
x ∈C

u(x) d(x ,Q)2 = ϕC(Q).

By (6) and the definition of
˜f (Q) in (4), we directly obtain the

desired lightweight coreset property, i.e., we have

|ϕX(Q) − ϕC(Q)| ≤
ε

2

ϕX(Q) +
ε

2

ϕX({µ(X)})

for all sets Q ⊂ Rd of cardinality at most k which concludes the

proof of Theorem 2. □

6 EXTENSION TO µ-SIMILAR BREGMAN

DIVERGENCES

Building on the results of Lucic et al. [21], our results can be ex-

tended to both hard and soft clustering with µ-similar Bregman di-

vergences. This broad class of divergence measures includes among

others the squared Mahalanobis distance, the KL-divergence and

the Itakura-Saito distance.

Let dϕ (·, ·) denote a µ-similar Bregman divergence and dA(·, ·)

the corresponding squared Mahalanobis distance implied by µ-
similarity. The lightweight coreset property of Definition 1 can

then be modified as follows. For hard clustering, we simply replace

all occurrences of the squared Euclidean distance d(·, ·)2 by the

Bregman divergence dϕ (·, ·). For soft clustering, the hard-min is fur-
ther replaced by a soft-min. In Algorithm 1, the squared Euclidean

distance between the points and the mean of the data set is re-

placed by the squared Mahalanobis distance dA(·, ·). The sufficient

coreset size is O

(
dk logk+log 1

δ
µ2ε2

)
for Bregman hard clustering and

O

(
d2k2+log 1

δ
µ2ε2

)
for Bregman soft clustering.

The analysis in Section 5 should be adapted as follows: For hard

clustering, an additional factor of
1

µ needs to be added to the right

hand side of Lemma 1 due to µ-similarity, and S should be scaled

accordingly. For soft clustering, one further needs to apply Lemma 3

of Lucic et al. [21] to account for the soft-min. The corresponding
pseudo dimension is bounded by O(dk logk) for Bregman hard and

by O
(
d2k2

)
for Bregman soft clustering [21].



7 SMALL SUMMARIES FOR STATISTICAL

k-MEANS CLUSTERING

In this section, we show how the notion of lightweight coresets

has a natural application in generating small summaries for the

statistical k-means problem. Up to now, we have considered the

empirical k-means clustering problem where the goal is to optimize

the quantization error

ϕX(Q) =
∑
x ∈X

d(x ,Q)2

on a fixed data set X. However, in many machine learning settings,

one is often interested in minimizing the loss on an unseen data

point x . The statistical k-means problem formalizes this setting

as follows: We assume that x is sampled from an underlying data

generating distribution P which we cannot observe directly, but

can only draw independent samples from. The goal of the statistical
k-means problem is to find to find k cluster centers in Rd such that

the expected quantization error

EP
[
d(x ,Q)2

]
=

∫
d(x ,Q)2dP

is minimized. In the 1-means case, the optimal quantizer is the mean

µ(P) =
∫
xdP and the optimal expected quantization error is equal

to the variance σ 2(P) = EP
[
d(x , µ(P))2

]
.

The standard approach to find good clusterings in the statistical

setting is the principle of empirical risk minimization. As the under-
lying distribution P cannot be observed, one draws n independent

samplesX from it instead. Then, one finds a solution that minimizes

the empirical quantization error on the sample X. The key intu-

ition is that by the law of large numbers the expected quantization

error EP
[
d(x ,Q)2

]
is well approximated by the (average) empirical

quantization error
1

nϕX(Q) as n →∞.
Finite sample bounds quantify how large the sample X needs to

be to achieve a fixed approximation error ε . Bachem et al. [2] show

that it is sufficient to sample

n ∈ O

(
K(P)

ε2δ

(
dk logk + log

1

δ

))
(7)

points to guarantee an approximation error similar to the one in-

troduced in Section 3 where the kurtosis K(P) is the normalized

fourth moment of P , i.e.,

K(P) =
EP

[
d(x , µ(P))4

]
EP

[
d(x , µ(P))2

]
2

.

With an additional factor of
K (P )
δ , the sufficient sample size in (7)

is substantially larger than the sufficient lightweight coreset size of

O

(
dk logk+log 1

δ
ε2

)
in Theorem 2. Crucially, however, the sufficient

sample size in (7) depends on the specific statistical clustering prob-

lem via the kurtosis K(P) which depends on P . In fact, Bachem et al.

[2] show that such a dependence on P is necessary as for anyn there
exists a distribution P such that with high probability the quantiza-

tion error on a sample of size n provides a bad approximation of

the expected quantization error.

The large sufficient sample size in (7) raises the question whether

our approach to generate lightweight coresets may be used to ob-

tain smaller summaries for the statistical k-means problem. We

affirmatively answer this question with the following theorem.

Theorem 4. Let ε ∈ (0, 1], δ ∈ (0, 1] and k ∈ N. Let P be a
distribution onRd withwith finite kurtosisK(P) < ∞. LetX be a set of

n ∈ Θ
(
K (P )
ε2δ

(
dk logk + log 1

δ

))
independent samples from P and C

be the output of Algorithm 1 applied toX withm ∈ Θ
(
dk logk+log 1

δ
ε2

)
.

Then, with probability at least 1 − δ , it holds for all Q ⊂ Rd of
cardinality at most k that����EP [

d(x ,Q)2
]
−

1

n
ϕC(Q)

���� ≤ ε

2

EP
[
d(x ,Q)2

]
+
ε

2

σ 2(P). (8)

The computational complexity is Θ
(
K (P )d
ε2δ

(
dk logk + log 1

δ

))
.

The key implication of Theorem 4 is that Algorithm 1 may be

used to further summarize any sampleX in the context of empirical

risk minimization.While the sampleX has to be sufficiently large to

guarantee a good approximation quality, the size of the lightweight

coreset C is independent of P and substantially smaller than the

uniform sample X.

The guarantee of the approximation quality in (8) is very similar

to the guarantee in Definition 1 with both a multiplicative and

additive error term based on the variance. The difference is that

the (average) empirical quantization error
1

nϕX(Q) is replaced by

the expected quantization error EP
[
d(x ,Q)2

]
while the empirical

variance
1

nϕX({µ(X )}) is replaced by the variance of the underlying

distribution P , i.e., σ 2(P). The implications of (8) follow analogously

to Theorem 1: The optimal solution on the lightweight coreset C is

provably competitive with the optimal quantizer of the underlying

data generating distribution P .
On a practical note, Theorem 4 provides a simple yet effective

strategy for empirical risk minimization for k-means clustering:

Firstly, we sample as many points from the underlying distribution

as possible, even if we cannot solve the full k-means clustering prob-

lem on this large sample. Secondly, we use Algorithm 1 to create a

smaller summary for which one can solve the k-means clustering

problem efficiently. In contrast to directly using a smaller sample

from P , this approach allows us to retain strong theoretical guaran-

tees as it may consider samples from P that are very important for

the clustering problem but are only infrequently sampled according

to P and hence would be missed by a small uniform sample.

Proof of Theorem 4. We instantiate Theorem 1 of Bachem et al.

[2] with ε ′ = ε
3
and δ ′ = δ

2
. Then, with probability at least 1 − δ

2
,

it holds for all Q ⊂ Rd of cardinality at most k that����EP [
d(x ,Q)2

]
−

1

n
ϕX(Q)

���� ≤ ε

6

EP
[
d(x ,Q)2

]
+
ε

6

σ 2(P). (9)

Similarly, we consider Theorem 2 with ε ′ = ε
3
and δ ′ = δ

2
. Together

with Definition 1, this implies that with probability at least 1 − δ
2
,

we have for all Q ⊂ Rd of cardinality at most k that

|ϕX(Q) − ϕC(Q)| ≤
ε

6

ϕX(Q) +
ε

6

ϕX({µ(X)}). (10)



By the union bound, this implies that both (9) and (10) hold with

probability at least 1 − δ . As we only need to show that (8) in

Theorem 4 holds with probability at least 1 − δ , we assume both (9)

and (10) to hold for the remainder of the proof and show that this

implies (8) in Theorem 4.

Since ε ≤ 1, (9) implies that for allQ ⊂ Rd of cardinality atmostk

1

n
ϕX(Q) ≤

(
1 +

ε

6

)
EP

[
d(x ,Q)2

]
+
ε

6

σ 2(P)

≤
7

6

EP
[
d(x ,Q)2

]
+
1

6

σ 2(P).
(11)

Similarly, since the mean is the optimal 1-quantizer, we have

1

n
ϕX({µ(X)}) ≤

1

n
ϕX({µ(P)}) ≤

4

3

σ 2(P). (12)

For all Q ⊂ Rd of cardinality at most k , let

∆(Q) =

����EP [
d(x ,Q)2

]
−

1

n
ϕC(Q)

���� .
It holds that

∆(Q) ≤

����EP [
d(x ,Q)2

]
−

1

n
ϕX(Q)

����︸                           ︷︷                           ︸
(∗)

+

���� 1nϕX(Q) − 1

n
ϕC(Q)

����︸                     ︷︷                     ︸
(∗∗)

. (13)

Using (9), we have that

(∗) ≤
ε

6

EP
[
d(x ,Q)2

]
+
ε

6

σ 2(P). (14)

Similarly, (9), (11) and (12) imply that

(∗∗) ≤
ε

6

1

n
ϕX(Q) +

ε

6

1

n
ϕX({µ(X)})

≤
ε

6

7

6

EP
[
d(x ,Q)2

]
+
ε

6

1

6

σ 2(P) +
ε

6

4

3

σ 2(P)

=
7ε

36

EP
[
d(x ,Q)2

]
+

9ε

36

σ 2(P).

(15)

Combining (13), (14) and (15) yields

∆(Q) ≤
13ε

36

EP
[
d(x ,Q)2

]
+
15ε

36

σ 2(P)

≤
ε

2

EP
[
d(x ,Q)2

]
+
ε

2

σ 2(P)
(16)

which proves (8). The computational complexity follows directly

from Theorem 2. □

8 EXPERIMENTAL RESULTS

Experimental setup. We compare the lightweight coresets con-

structed with Algorithm 1 (denoted by LWCS) with two different

subsampling methods: Uniform, the “naive” strategy of uniformly

subsampling the data points, and CS, the state-of-the-art coreset

construction by Lucic et al. [21].

For each of these methods, we generate subsamples of sizem ∈
{1000, 2000, 5000, 10 000, 20 000}. We then use the state-of-the-art

algorithm k-means++ [1] to solve the clustering problem on the

subsample. We measure the elapsed time and then evaluate the

clustering by computing the quantization error on the full data

set. In addition, we run k-means++ on the full data set (denoted

by Full) and again measure the time and the solution quality as

evaluated on the full data set.

We then compute the relative error η for each method and sub-

sample size compared to the full solution. We further report the

relative speedup compared to Full. Since the algorithms are ran-

domized, we run them 50 times with different random seeds and

compute sample averages with corresponding 95% confidence in-

tervals based on the standard error of the mean. All experiments

were run on an Intel Xeon machine with 36× 2.3GHz processors

and 1.5TB memory.

Data sets. We consider the k-means clustering problem on four

different data sets for both k = 100 and k = 500:

(1) KDD — 145’751 samples with 74 features measuring the match

between a protein and a native sequence [18].

(2) CSN — 7GB of cellphone accelerometer data processed into

80’000 observations and 17 features [8].

(3) SONG — 90 features from 515’345 songs of the Million Song

datasets used for predicting the year of songs [6].

(4) RNA — 8 features from 488’565 RNA input sequence pairs [26].

Discussion of the results. Figure 1 shows the relative error

of Uniform, LWCS and CS for different subsample sizes m. The

approximation error decreases for all methods as the sample size

is decreased. CS provides substantial improvements compared to

Uniform on all the data sets considered and for both k = 100 and

k = 500. LWCS retains most of these improvements as it performs

roughly as good as CS (on KDD and SONG) or slightly worse (on

CSN and RNA). Figure 2 displays the relative error in relation to the

time required to construct the coreset and to then solve on the core-

set. As lightweight coresets (LWCS) are much cheaper to construct,

they strongly outperform the “traditional” construction (CS) across

all data sets. Furthermore, they also produce better solutions than

Uniform except for the smaller sample sizes on SONG and RNA.

The practical impact is evident from Table 1. For KDD with

k = 100 and m = 1000, Uniform leads to a speedup of 2244×

compared to solving on the full data set but also incurs a high

relative error of 195.1%. CS reduces the relative error to 16.0% but

only obtains a speedup of 125×. Lightweight coresets capture the

best of both worlds — a speedup of 828× at a relative error of only

18.5%. In absolute terms, one may compute 100 cluster centers on a

145 751 point data set in 0.42 seconds compared to 345 seconds if

one naively uses the full data set.

9 CONCLUSION

We introduced and motivated lightweight coresets — a novel notion

of coresets that allows for both multiplicative and additive errors.

We proposed a simple and practical algorithm for lightweight core-

set construction with corresponding theoretical guarantees on the

solution quality. Empirically, the computed coresets match the qual-

ity of traditional constructions while they are computed at a fraction

of the cost. Furthermore, the approach naturally generalizes to the

statistical setting and allows for the construction of substantially

smaller summaries for empirical risk minimization than existing

state-of-the-art results from learning theory.
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Figure 1: Relative error in relation to subsample size for Uniform, LWCS and CS. LWCS captures most of the benefits of CS

over Uniform. Results are averaged across 50 iterations and shaded areas denote 95% confidence intervals.
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Figure 2: Relative error vs. time for Uniform, LWCS and CS. LWCS outperforms CS substantially. Results are averaged across

50 iterations and shaded areas denote 95% confidence intervals. Note that computing the solution on the full data set takes up

to 8604 seconds (SONG, k = 500).



Table 1: Relative error and speedup of different methods vs. Full for k = 100

Relative error vs. Full Speedup vs. Full

k Data Method m = 1000 m = 2000 m = 5000 m = 1000 m = 2000 m = 5000

100 kdd Uniform 195.1% ± 20.7 105.9% ± 12.9 33.8% ± 3.4 2244.0× 809.1× 183.0×

LWCS 18.5% ± 0.2 12.1% ± 0.2 6.8% ± 0.2 828.1× 506.0× 190.2×

CS 16.0% ± 0.3 10.1% ± 0.2 5.1% ± 0.1 124.8× 113.3× 81.1×

csn Uniform 190.5% ± 6.2 123.8% ± 4.2 75.2% ± 4.0 557.7× 210.9× 48.7×

LWCS 24.6% ± 0.5 16.2% ± 0.3 8.4% ± 0.3 293.5× 174.0× 62.2×

CS 18.0% ± 0.4 10.5% ± 0.3 5.0% ± 0.3 61.4× 55.6× 35.2×

song Uniform 22.4% ± 0.3 16.0% ± 0.2 10.0% ± 0.1 8027.1× 2912.1× 639.8×

LWCS 14.9% ± 0.1 9.9% ± 0.1 5.2% ± 0.0 1168.2× 957.5× 509.3×

CS 14.6% ± 0.1 9.3% ± 0.1 4.9% ± 0.0 144.9× 139.1× 127.0×

rna Uniform 98.5% ± 9.8 46.8% ± 4.3 23.5% ± 1.6 773.9× 414.2× 161.3×

LWCS 29.5% ± 1.0 18.3% ± 0.8 8.4% ± 0.6 114.7× 101.9× 71.8×

CS 20.7% ± 0.7 12.4% ± 0.5 5.3% ± 0.5 11.2× 11.2× 10.4×

500 kdd Uniform 231.0% ± 26.6 200.2% ± 27.2 64.5% ± 6.1 979.8× 648.8× 240.6×

LWCS 33.1% ± 0.2 24.6% ± 0.2 15.9% ± 0.1 820.0× 655.5× 260.7×

CS 32.9% ± 0.4 23.4% ± 0.2 14.3% ± 0.1 101.7× 97.1× 83.3×

csn Uniform 521.5% ± 18.3 361.7% ± 9.7 212.3% ± 8.0 79.3× 60.9× 35.9×

LWCS 77.5% ± 0.9 46.5% ± 0.4 24.5% ± 0.2 74.6× 69.1× 39.8×

CS 57.8% ± 0.8 32.4% ± 0.3 15.8% ± 0.2 31.8× 31.2× 26.7×

song Uniform 43.0% ± 0.2 32.3% ± 0.2 21.4% ± 0.1 4951.6× 2866.3× 992.2×

LWCS 31.4% ± 0.1 22.7% ± 0.1 14.2% ± 0.0 2740.6× 2051.8× 914.1×

CS 33.0% ± 0.1 23.9% ± 0.1 14.7% ± 0.0 137.8× 134.1× 128.4×

rna Uniform 786.5% ± 75.3 312.1% ± 19.3 163.4% ± 9.2 58.2× 52.4× 48.4×

LWCS 189.2% ± 8.7 88.0% ± 2.7 39.5% ± 2.0 49.8× 48.7× 39.0×

CS 68.8% ± 1.0 36.4% ± 0.4 17.8% ± 0.2 8.0× 7.8× 7.5×
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