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Abstract

We consider the problem of learning sparse
representations of data sets, where the goal
is to reduce a data set in manner that opti-
mizes multiple objectives. Motivated by ap-
plications of data summarization, we develop
a new model which we refer to as the two-
stage submodular maximization problem. This
task can be viewed as a combinatorial ana-
logue of representation learning problems such
as dictionary learning and sparse regression.
The two-stage problem strictly generalizes the
problem of cardinality constrained submodu-
lar maximization, though the objective func-
tion is not submodular and the techniques for
submodular maximization cannot be applied.
We describe a continuous optimization method
which achieves an approximation ratio which
asymptotically approaches 1 − 1/e. For in-
stances where the asymptotics do not kick in,
we design a local-search algorithm whose ap-
proximation ratio is arbitrarily close to 1/2.
We empirically demonstrate the effectiveness
of our methods on two multi-objective data
summarization tasks, where the goal is to con-
struct summaries via sparse representative sub-
sets w.r.t. to predefined objectives.
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1. Introduction

In this paper, we consider the task of learning combina-
torial representations of data. We are motivated by the
following genre of multi-objective summarization tasks:
Given a collection of articles (say all articles about ML
on Wikipedia), as well as a set of subcategories (kernel
methods, neural networks, etc.), pick a set of articles that
are representative with respect to the whole corpus (field
of ML). We study such problems through a novel model
we call two-stage submodular maximization.

Submodularity is a natural diminishing returns condi-
tion which serves as a rich abstraction of combinato-
rial information measures such as entropy (Rényi, 1961),
mutual information (Guiasu, 1977), coverage (Wolsey,
1982) etc. Much recent work in machine learning has
explored submodular maximization as a natural abstrac-
tion for data summarization tasks (e.g., extractive sum-
marization of documents, image collections, videos etc.
(Lin and Bilmes, 2011; 2012; Tschiatschek et al., 2014)).
In these applications, one typically designs (or learns) a
submodular utility function f , which quantifies the rep-
resentativeness f(S) of a subset S of items (e.g, pictures,
sentences) w.r.t. a large data set (image collection, docu-
ment). Given a constraint on the size of the desired sum-
mary, the combinatorial problem of finding a summary
S of maximum utility reduces to constrained submodular
optimization, for which a wealth of efficient algorithms
with strong theoretical guarantees have been developed.

In order to model the task of learning data representa-
tions, we depart from the classical (single-stage) setup,
and consider a more general, two-stage task: We are
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given multiple submodular objectives f1, . . . , fm, and
aim to select a set S of size at most l that can serve as
a ground set that yields a high value for all objectives.
That is, we aim to select S s.t. for each fi, when the
optimal subset Si ⊆ S of size at most k is selected, the
sum over all fi(Si) is maximized. Clearly, if m = 1,
or if l = k, this problem reduces to standard cardinality
constrained submodular maximization. The restrictions
k < l and m > 1 however allows modeling a much
richer class of problems. In our multi-objective sum-
marization task for example, for each subcategory i, we
use a different submodular objective which quantifies the
representativeness of a set of articles w.r.t. all articles in
the subcategory. Here, the two-stage setup ensures that
no single category dominates the overall summary.

Two-stage submodular maximization can also be viewed
as a combinatorial analogue of representation learning
tasks such as dictionary learning (Mairal et al., 2009;
Zhou et al., 2009), (convolutional) auto encoders (Vin-
cent et al., 2010), topic modeling (Maas et al., 2011) etc.
Concretely, in dictionary learning, we are given a collec-
tion of signals (say images represented as vectors), and
seek to select a basis, which allows to sparsely recon-
struct each signal. Here, the task of sparse reconstruction
is analogous to single-stage submodular maximization;
dictionary learning is analogous to two-stage submodu-
lar maximization, where in the first stage the dictionary
is selected, and in the second stage, it is used for multiple
sparse reconstruction tasks (one for each signal).

Single-stage submodular maximization can be near-
optimally solved using greedy techniques (Nemhauser
et al., 1978), however the two-stage objective is not sub-
modular (see Appendix A). In this paper we consider two
approaches that yield provable guarantees for the two-
stage submodular optimization problem:

• Continuous optimization. We begin by describ-
ing a general framework for solving two-stage sub-
modular maximization problems via continuous op-
timization. This approach provides an approxima-
tion arbitrarily close to 1−1/e for sufficiently large
values of k. At a high level, we relax the prob-
lem to a continuous program whose integral solu-
tions identify with the discrete two-stage problem,
solve the relaxation, and then round the solutions.
Unlike standard relaxation methods for submodular
optimization, constructing the relaxations involves
interpreting fractional solutions as correlated distri-
butions, and we design a dependent rounding tech-
nique s.t. variables corresponding to elements in the
second stage are rounded in a manner that depends
on elements rounded in the first stage.

• Local-search. For cases in which k is small, we
develop a framework based on local-search which
guarantees an approximation arbitrarily close to
1/2. This guarantee dominates that of the contin-
uous approach for small k. At a high level, we
perform a local search by initializing a suboptimal
solution and iteratively replacing elements that im-
prove a potential function.

2. Two-Stage Submodular Maximization

To formally describe the two-stage problem, let F =
{f1(·), · · · , fm(·)} denote a class of m functions, each
defined over N = {a1, . . . , an}, i.e., fj : 2N → R. The
goal is to find a subset of size l whose subsets of size k
maximize the sum over F :

max
S:|S|≤l

m∑
j=1

max
T :T⊆S
|T |≤k

fj(T ).

We denote the objective value by F (S), i.e., F (S) :=∑m
j=1 maxT⊆S,|T |≤k fj(T ). The crucial underlying as-

sumption is that the functions {fj}mj=1 are all submod-
ular, normalized (f(∅) = 0) and monotone (S ⊆ T
implies f(S) ≤ f(T )). A function f : 2N → R+ is
submodular if f(S ∪ T ) ≤ f(S) + f(T ) − f(S ∩ T ).
Equivalently, a function is submodular if it has a natural
diminishing returns property: for any S ⊆ T ⊆ N and
a ∈ N \ T a function is submodular if fS(a) ≥ fT (a),
where fS(a) = f(S∪{a})−f(S). We also note that our
results extend to the case where the cardinality constraint
in the second stage is a different ki for each fi. Fig. 1
depicts the two-stage problem.

2.1. Warm up: two-stage modular optimization

To gain some intuition about the problem, we can con-
sider the case in which the underlying functions {fi}mi=1

are modular. Recall that f : 2N → R is modular if
the value of a set equals the sum of the values of its sin-
gletons, i.e., f(S) =

∑
a∈S f(a). In the case the func-

tions fi are modular it is not difficult to show that the
objective function of the two stage problem is actually
monotone submodular. This implies that we can apply
the seminal greedy algorithm, which at every step se-
lects the element with the largest marginal contribution,
and obtain a 1− 1/e approximation to the optimal solu-
tion (Nemhauser et al., 1978).

Are constant factor approximation guarantees
achievable for two-stage optimization of general

monotone submodular functions?
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Figure 1. Example of the optimization problem with N =
{a1, a2, a3}, m = 3, l = 2, and k = 1.

2.2. General monotone submodular functions

When the underlying functions are not modular, the two-
stage objective ceases to be submodular (see example
in Appendix A) and we no longer have the approxima-
tion guarantees of the greedy algorithm. Slight relax-
ations of submodularity lead to strong inapproximability
results, even for maximization under a cardinality con-
straint which is a degenerate case of our problem (Mir-
rokni et al., 2008). The main contribution of this paper
is the general optimization frameworks we develop for
the case in which the underlying functions are general
monotone submodular.

3. Continuous Optimization

In this section, we describe a general technique which
leads to an approximation that is arbitrarily close to the
optimal 1 − 1/e approximation ratio (unless P=NP) for
sufficiently large k. At a high level, we show that the
two-level optimization problem can be solved through
continuous optimization methods and a novel dependent
rounding technique that may be of independent interest.
In Appendix E, we extend this technique to obtain an
approximation arbitrarily close to 1/e for non-monotone
submodular functions.

A new ground set. Our formulation involves a ground
set of size n × (m + 1) which includes the elements
from the original ground set as well as an element for
each possible (element, function) pair. That is, our
new ground set is N ′ = N ∪ {aij}i∈[n],j∈[m]. The un-
constrained objective for the two stage problem over this
new ground set is:

g(S) :=

m∑
j=1

fj({ai : aij ∈ S}).

The continuous problem. We associate each element
from N ′ with a continuous variable xi ∈ [0, 1] for all ai
and xij ∈ [0, 1] for all aij . We then aim to optimize:

max G(x) (1)

s.t.
∑
i

xi ≤ l (2)∑
i

xij ≤ k ∀j ∈ [m] (3)

xij ≤ xi ∀(i, j) ∈ [n]× [m] (4)
xi ≤ 1 (5)

Constraints (2) and (3) correspond to the cardinality con-
straints for the first and second stages; (4) ensures that an
element can only be picked in the second stage if it is
picked in the first stage. The objective function G(x)
is the expected value of the integral solution when each
element is picked with probability according to x:

G(x) := ES∼D(x)[g(S)]

where D(x) is a distribution with marginal probabilities
x that we now define. To satisfy constraint (4), given
x ∈ [0, 1]n+nm we construct a correlated distribution
D(x) with the following key properties1:

1. ai ∈ S ∼ D(x) for each i independently with prob-
ability xi,

2. aij ∈ S ∼ D(x) for each i and for each j indepen-
dently with probability xij/xi if ai ∈ S and with
probability 0 otherwise.

We now discuss how we solve this continuous problem,
which will return a fractional solution that results in the
cardinality constraints only holding in expectation. We
will later discuss the dependent randomized rounding
scheme we develop, which ensures the constraints on ev-
ery instance (albeit loses a fraction of the approximation
guarantee that depends on k).

Optimiziation via continuous greedy. A seminal re-
sult by Vondrak shows that for any monotone submod-
ular function, a polynomial-time continuous greedy al-
gorithm can obtain an approximation arbitrarily close to
1 − 1/e of the optimal solution of the multilinear ex-
tension (ME). This guarantee holds when the solution
x is constrained by a downward-closed solvable poly-
tope (i.e. there is a poly-time separation oracle for the

1Note that if we pick elements independently, the constraint
for the discrete problem that an element can only be picked
in the second stage if it is picked in the first stage might be
violated.
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polytope) (Vondrák, 2008). The multilinear extension
GME(x) of a submodular function g(·) is the expected
value of g(S) when each element is picked indepen-
dently with probability according to x, i.e., GME(x) =
ES∼x[g(S)]. The crucial difference between the multi-
linear extension of the objective function of (1) is that
the distribution is correlated. Despite this difference, we
will use the continuous greedy algorithm to optimize pro-
gram (1) and obtain a 1− 1/e approximation, justified in
two steps:

1. We show that the ME of g(S) equals G(x);

2. we observe that the constraints of the program (1)
can be expressed as a downward-closed polytope.

With the distribution D(x) we constructed, the elements
are picked dependently across functions and indepen-
dently for a given function, so since g(S) is additive over
functions, the multilinear extension of g(S) equalsG(x).
The proof is deferred to Appendix B.

Lemma 3.1. For any solution x ∈ [0, 1]n+nm:

G(x) = GME(x).

Now observe that program (1) can be equivalently refor-
mulated over the same space of variables xi and xij , but
without any dependence on variables xi, so that the fea-
sible region is downward-closed.

max G(x) (6)

s.t.
∑
i

max
j
xij ≤ l∑

i

xij ≤ k ∀j ∈ [m]

xij ≤ 1 ∀(i, j) ∈ [n]× [m]

Combining our previous observations, we can use con-
tinuous greedy to optimize program (6) and obtain a frac-
tional solution that is a 1− 1/e approximation to the op-
timal solution to the discrete problem.

Theorem 3.2. Let x be the solution returned by the con-
tinuous greedy algorithm with program (6), and S? be
the optimal solution to the two stage problem. Then, for
any δ ≥ poly(1/n),

G(x) ≥ (1− 1/e− δ)F (S?)

Proof. We know that continuous greedy returns a solu-
tion x that is a 1−1/e−δ approximation toG(x?) where
x? is the optimal solution for maximizing the multilinear
extension of a submodular function under a downward-
closed solvable polytope, for any δ that is not smaller

than polynomial in 1/n.2 By Lemma 3.1, the objective
of program (6) is the multilinear extension of g(·). The
feasible region to program (6) is downward closed and
solvable since there are polynomially many constraints.

It remains to show that G(x?) ≥ F (S?), which we do
by showing that the integral point xS? corresponding
to S? is feasible. We formally define xS? as xS?,i =
1 if i ∈ S? and 0 otherwise, and xS?,ij = 1 if
i ∈ arg maxT⊆S?,|T |≤k fj(T ) and 0 otherwise. Since
maxj xS?,ij = 1 only if xS?,i = 1, the satisfiability of
the constraints of program (6) then follow from S? being
feasible to the discrete two stage problem.

Dependent rounding. We wish to ensure that the car-
dinality constraints not only hold in expectation but on
every instance. At a high level, this is achieved by first
solving the continuous problem for smaller values of l
and k. We then construct a rounding scheme where each
element is picked for each function with probability cor-
responding to the fractional solution and in a dependent
way across functions for a fixed element. The solution
obtained for this over-constrained problem satisfies the
original constraints with high probability, and discard-
ing instances where the original constraints do not hold
only causes a small loss in the objective value. The
formal construction and the analysis of this dependent
rounding scheme use the framework of contention reso-
lution schemes (Calinescu et al., 2011) discussed in Ap-
pendix C.

Theorem 3.3. For any 0 < ε < 1/2 and δ ≥
poly(1/n), the continuous optimization method results in
a polynomial-time algorithm whose approximation ratio
is 1− 1/e− 1/k1/2−ε − 2e−Ω(k2ε) − δ.

3.1. Optimization via LPs

The continuous greedy algorithm may be slow in prac-
tice. In Appendix D, we consider the case of cover-
age functions and formulate the continuous problem as a
linear program, which can be solved substantially faster
than continuous greedy. A function f : 2N → R is called
coverage if there exists a family of sets {T1, . . . , Tn} that
are subsets of a universe U s.t. f(S) = |∪i∈STi|. Cover-
age functions are a special class of monotone submodular
functions and often model diversity and representation
objectives. In our case, selecting the most representative
articles of a corpus is a special cases of two-stage max-
imization with coverage functions. The approximation
ratio obtained with this linear programming approach is
1−1/e as well and the rounding is solved via the depen-
dent rounding technique.

2Since G(·) cannot be evaluated in polynomial time, it is
estimated by sampling, which causes an additional δ loss.
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4. Local Search

We now describe the LOCAL-SEARCH algorithm, which
provides an approximation arbitrarily close to (e−1)/2e
for coverage functions and 1/2 for cases in which k is
constant. For general k and general submodular func-
tions, we slightly modify the algorithm in experiments
with a heuristic which performs very well empirically.

The potential function. The main idea behind the al-
gorithm is to (approximately) optimize a potential func-
tion through local search. The potential function is not
submodular, yet has desirable properties amendable to
provable guarantees. We begin by describing the ap-
proach for coverage functions with general parameter
k and later define the approach for general submodular
functions. For F = {fj}mj=1 the potential function is:

Φ(S) =
m∑
j=1

max
support(x)⊆S∑

i xi≤k

Lj(x)

where Lj denotes the piecewise-linear relaxation of fj :

Lj(x) =
∑
u∈Uj

min{1,
∑

a∈Cj(u)

xa}

where Cj(u) denotes the set of elements in the ground
set that cover u from the universe Uj in coverage func-
tion fj . Note that the piecewise linearity of Lj enables
computing the optimal solution efficiently.

The local search algorithm. Algorithm 1 simply ini-
tializes a set S that includes the singleton with the largest
contribution to the potential function together with l − 1
arbitrary elements. For a given (fixed) precision parame-
ter ε > 0, the algorithm then iteratively replaces a single
element in its current solution S if there is an element
whose marginal contribution to the potential function is
at least 1 + ε of the minimal marginal contribution in the
current solution.

Algorithm 1 LOCAL-SEARCH

1: input constraints l, k, precision ε > 0
2: S ← arg maxi∈N Φ(ai) ∪ arbitrary l − 1 elements
3: while ∃i ∈ S, j /∈ S : (1 − ε)ΦS(aj) > ΦS\ai(ai)

do
4: S ← (S \ {ai}) ∪ {aj}
5: end while
6: return S

Analysis of the algorithm. We first claim that the
number of function evaluations is polynomial in the size
of the problem (proof in Appendix F). We then bound the
performance in terms of the potential function, which al-
most immediately gives the approximation guarantee.

Claim 4.1. For any fixed ε > 0 the LOCAL-SEARCH al-
gorithm makesO(k ·m ·l ·n2 log n) function evaluations.

The following lemma shows that the marginal con-
tribution of increasing some xji to Lj(·) decreases
as other xji′ increase. We use the following no-
tation: xj = arg maxsupport(x)⊆S,

∑
i xi≤k Lj(x),

xj,i := {xj1, . . . ,x
j
i , 0, . . . , 0}, and xj−i :=

{xj1, . . . ,x
j
i−1, 0,x

j
i+1 . . . ,x

j
n}. The proof is deferred

to Appendix F.

Lemma 4.2. The concave relaxation satisfies the follow-
ing diminishing returns property:

Lj(x
j,i)− Lj(xj,i−1) ≥ Lj(xj)− Lj(xj−i).

Lemma 4.3. Let S be the set returned by LOCAL-
SEARCH, initialized with ε > 0. Then:

Φ(S) ≥
(

1

2
−O(ε)

)
max
T :|T |≤`

Φ(T ).

Proof. We first show that the potential is lower bounded
by its marginals:

Φ(S) =

m∑
j=1

Lj(x
j)

≥
m∑
j=1

n∑
i=1

Lj(x
j)− Lj(xj−i)

≥
m∑
j=1

n∑
i=1

max
support(x)⊆S∑

i xi≤k

Lj(x)− max
support(x)⊆S\ai∑

i xi≤k

Lj(x)

=
∑
ai∈S

ΦS\ai(ai)

Now note that if S is the solution returned by LOCAL-
SEARCH, this implies that no element aj /∈ S can im-
prove the solution. That is: ΦS(aj) ≤ (1 + ε)ΦS\ai(ai)
for all ai ∈ S and aj /∈ S. Therefore, using S? to denote
the optimal solution to maxT :|T |≤` Φ(T ) and combining
with the previous observations, we get:

Φ(S) ≥
∑
ai∈S

ΦS\ai(ai)

≥
∑
aj∈S?

(1 + ε)ΦS(aj)

≥ (1− ε)ΦS(S?)

= (1− ε)(Φ(S ∪ S?)− Φ(S))

≥ (1− ε)(Φ(S?)− Φ(S))

which concludes the proof.
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Theorem 4.4. For any fixed ε > 0 the LOCAL-SEARCH
algorithm makes O(k ·m · ` · n2 log n) function evalua-
tions and returns a set S that respects:

F (S) ≥
(

1

2

(
1− 1

e

)
−O(ε)

)
OPT

Proof. Let O be the optimal solution to the two-stage
submodular maximization problem. It is well known
that the concave relaxation of a coverage function upper
bounds the cover function and is no more than a 1− 1/e
factor away from it, thus:

F (O) ≤ Φ(O)

≤ max
T :|T |≤l

Φ(T )

≤
(

1

2
− ε
)−1

Φ(S)

≤
((

1− 1

e

)(
1

2
−O(ε)

))−1

F (S)

where the third inequality follows from Lemma 4.3.

General submodular functions. For general submod-
ular functions we apply the local search method for small
constant k when the approximation ratio from the previ-
ous section is strictly worse than 1/2. We replace the
potential function with the true objective F (·). For con-
stant k, we can compute F (S) by enumerating over all
sets of size k for each function. We defer details and
proofs to Appendix F. For large k one can compute a
heuristic by computing the greedy solution instead of the
optimal solution, as discussed in the following section.

5. Experiments

We conduct data summarization experiments using two
datasets: one of Wikipedia pages and one of images. The
functions fi(·) that we consider are coverage functions
for the Wikipedia pages and more general submodular
functions for the collection of images.

5.1. Datasets

Wikipedia pages. We apply our methods on the prob-
lem of picking a collection of articles that are most rel-
evant for a set of diverse topics. We study the instance
of such a problem where the articles are Wikipedia pages
in a certain category and the different topics are subcate-
gories of this category. The function fi(S) for each sub-
category measures how relevant set S of Wikipedia pages
is to subcategory i. More precisely, fi(S) is the number
of Wikipedia pages that belong to subcategory i with a
link to at least one page in S. Clearly, fi(S) is a cover
function. For our experiments, the category of interest

is machine learning, which contains n = 575 Wikipedia
pages and has m = 23 subcategories. Fig. 2a shows
an example of subcategories of machine learning, along
with a solution of five pages for l = 5 and k = 3. Each
subcategory points to its three most relevant pages.

Image collection summarization. In the image col-
lection summarization problem, the goal is to select a
small subset of images that best represents different cat-
egories. For example, one may have a collection of im-
ages taken on a holiday trip, and want to select a small
subset that concisely represents all the diversity from the
trip. Our experimental dataset is a collection of 100 im-
ages from Tschiatschek et al. (2014). We assigned each
image to a subset of the following eight categories: hu-
man, building, tree, ocean, sky, mountain, road, and vehi-
cle. Submodular function fi(S) indicates to what extent
category i is represented by the summary set S. For-
mally, each fi(S) is a weighted linear combination of
multiple submodular functions that capture different no-
tions of representativeness. These functions are Facility
Location, which measures the similarity of each image
in category i to the closest image in S, Sum Coverage
which measures the average similarity of each image in i
to all images in S, Truncated Graph Cut which is similar
to Sum Coverage but with some thresholding, as well as
two functions rewarding diversity, Clustered Facility Lo-
cation, which measures the similarity of each image in
category i to the closest image from the same category
in S, and Clustered Diversity that rewards selecting im-
ages from different categories. Details of all these func-
tions can be found in (Tschiatschek et al., 2014). Fig.
2b shows three categories of images from an image col-
lection, along with their most representative images from
the collection.

(a) Wikipedia

(b) Images

Figure 2. Example of the most representative elements found
by local search for constraints l = 5 and k = 3. The ovals
show (sub)categories and below are their most relevant pages
for (a) and their most representative images for (b).
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5.2. Algorithms and baselines

LOCAL-SEARCH. We initialize LOCAL-SEARCH
with the solution obtained by the greedy algorithm on
the potential function F̂ (S) =

∑
i∈[m] fi(Gi(S, k)),

where Gi(S, k) is the greedy solution with k elements
for the second stage (i.e. not the optimal solution)
w.r.t. fi. To avoid enumerating over all subsets of
size k, we executed a variant of the LOCAL-SEARCH
algorithm for general submodular function where the
potential function is evaluated with F̂ (S) as above. In
theory, substituting the optimal solution with the greedy
algorithm in the evaluation of the potential function
breaks the approximation guarantees. However, as we
will see, this approach nonetheless is nearly optimal
in practice. For the Wikipedia articles, we also run
LOCAL-SEARCH with potential function φ(S) and
initialized as above. We obtain near identical results as
with the above approach.

CONTINUOUS-OPT. For CONTINUOUS-OPT we low-
ered the constraints k and l by a factor 1 − ε = 4/5 for
the rounding, which is an approximation of the optimal ε
for these experiments.

Baselines. We compare our two algorithms, LOCAL-
SEARCH and CONTINUOUS-OPT, to several natural
baselines. Since continuous greedy is slow in practice,
we applied CONTINUOUS-OPT only in the Wikipedia
experiments with the linear programming approach for
coverage functions. The baselines are natural variants of
the greedy algorithm applied on various modifications of
the objective functions that are submodular.

GREEDY-SUM first runs the greedy algorithm as if the
cardinality constraint in the second stage was l, so it runs
greedy on F (S) =

∑
j∈[m] fj(S) (which is a mono-

tone submodular function) with cardinality constraint l.
After a set S of l elements has been picked, we run
the greedy algorithm over ground set S with cardinal-
ity constraint k for each function to obtain a feasible
solution. MODULAR-APPROX. approximates the sub-
modular functions in the second stage as if they were
modular with each element having value fj(a). We then
run the greedy algorithm on this approximation F (S) =∑m
j=1 maxT⊆S:|T |≤k

∑
a∈T fj(a). Recall from our ear-

lier discussion that if the functions fj(T ) are modular,
the two-stage problem is a special case of monotone
submodular maximization under cardinality constraint.
CONCAVE-RELAXATION (upper bound) is the value
of the fractional solution with the concave relaxation ob-
jective for cover functions. This is an upper bound since
we are able to compute the optimal solution to this con-
cave relaxation which upper bounds the true objective.
GREEDY-MERGE (upper bound) runs the greedy algo-
rithm on each function in the second stage with a con-

straint of k. The solution may violate the constraint in
the first stage. This upper bound can be applied to the
images data set where the functions are not coverage.

5.3. Results

Fig. 3b and 3a show the performance of LOCAL-
SEARCH and CONTINUOUS-OPT compared to the base-
lines for the Wikipedia dataset for varying l and k re-
spectively. Fig. 3c and 3d are the results from the image
dataset for varying l and k, where at most two categories
from the categories listed previously are assigned to each
image. Fig. 3e, and 3f show the same quantity when at
most four categories are assigned to each image.

LOCAL-SEARCH is near optimal for the Wikipedia pages
since there is very small gap compared to the upper
bound CONCAVE-RELAXATION. It therefore performs
much better in our experiments than its theoretical guar-
antee. It also outperforms all the baselines in each ex-
periment. We also observed in the experiments that
LOCAL-SEARCH with GREEDY initialization is fast: it
requires fewer iterations than the theoretical upper bound
given in Section 4. In fact, in most experiments, the
solution returned by the GREEDY initialization is lo-
cally optimal and LOCAL-SEARCH does not perform
any swaps. The performance of CONTINUOUS-OPT
is dominated by that of LOCAL-SEARCH, and in most
cases even dominated by the baselines. The theoret-
ical guarantees for CONTINUOUS-OPT asymptotically
improve as k and l grow large, the small values for l
and k in our experiments cause a significant loss due
to the rounding. The algorithms ranked in decreasing
order of performance are LOCAL-SEARCH, GREEDY-
SUM, MODULAR-APPROX., and CONTINUOUS-OPT. A
further discussion of these experiments is in Appendix G.

6. Related Work
Submodular optimization has found numerous applica-
tions in machine learning and related fields, ranging from
optimal sensor placement and variable selection in prob-
abilistic models (Krause and Guestrin, 2005) to structure
learning (Pernkopf and Bilmes, 2005) to approximate in-
ference in probabilistic models (Djolonga and Krause,
2014). In particular, submodular maximization has been
found to be a natural abstraction of data summarization
tasks (Lin and Bilmes, 2011; 2012; Tschiatschek et al.,
2014; El-Arini et al., 2009). These approaches can be
viewed as single-stage submodular maximization, which
is strictly generalized by our approach.

Submodularity has been recently discovered to be rele-
vant in tasks related to sparse reconstruction. For exam-
ple, Bach (2010) shows how submodular functions can
be used to define structured-sparse regularizers. Perhaps
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Figure 3. Performance of LOCAL-SEARCH compared to the baselines. (a) shows the solution value for vertex cover on the
Wikipedia dataset, for k = 5 and varying the solution size l, (b) shows the same quantity for l = 30, and varying k, (c) shows the
solution value for summarizing a collection of 100 images according to the eight listed categories with l = 20 and varying k, (d)
shows the same quantity for varying l and k = 5, (e) and (f) shows the same quantity for having additional categories per image for
l = 20 and varying k, and for varying l and k = 5 respectively.

closest to our work is an approach of Cevher and Krause
(2011); Das and Kempe (2011) on dictionary selection.
Here, the goal is to select a collection of atoms (vectors
in Rd), which allow to sparsely represent a collection of
signals. This problem is closely related to our two-stage
maximization task, with the crucial difference that their
individual objectives f1, . . . , fm quantifying reconstruc-
tion performance for the m signals are (approximately)
modular. Hence their setting can be solved using classi-
cal submodular maximization (see Section 2.1).

There has also been recent significant interest in scal-
ing submodular optimization to massive problems. For
example, Mirzasoleiman et al. (2013) provided a sim-
ple two-stage distributed algorithm for submodular max-
imization under cardinality constraints. There have also
been recent efforts to make use of stochastic methods to
accelerate the running time of the centralized greedy al-
gorithms (Mirzasoleiman et al., 2015). Streaming algo-
rithms have also been proposed as another natural ap-
proach to scale up submodular optimization (Badani-
diyuru et al., 2014). Wei et al. (2014); Kumar et al.
(2013) have introduced multi-stage approaches. How-
ever, their goal is to accelerate performance, not to

jointly optimize the performance over multiple stages as
we do in this paper. Scaling our approach to massive
problems using distributed/streaming computation is an
exciting direction for future work.

7. Conclusions
In this paper, we have introduced a novel two-stage sub-
modular optimization problem. This problem has natural
applications in multi-objective summarization tasks, as
we demonstrate in our experiments, and can be viewed
as a novel combinatorial variant of representation learn-
ing tasks such as dictionary learning. We have presented
two approaches: One based on continuous optimization,
which handles general submodular functions, but is slow
in practice, and another local search approach, which
provides strong guarantees for special cases of the prob-
lem. Our experiments demonstrate the effectiveness and
near-optimality of our approach.
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