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Abstract

Modern stochastic optimization methods often rely on uniform sampling which is
agnostic to the underlying characteristics of the data. This might degrade the conver-
gence by yielding estimates that suffer from a high variance. A possible remedy is to
employ non-uniform importance sampling techniques, which take the structure of the
dataset into account. In this work, we investigate a recently proposed setting which
poses variance reduction as an online optimization problem with bandit feedback. We
devise a novel and efficient algorithm for this setting that finds a sequence of impor-
tance sampling distributions competitive with the best fixed distribution in hindsight,
the first result of this kind. While we present our method for sampling datapoints, it
naturally extends to selecting coordinates or even blocks of thereof. Empirical valida-
tions underline the benefits of our method in several settings.

1 Introduction
Empirical risk minimization (ERM) is among the most important paradigms in machine
learning, and is often the strategy of choice due to its generality and statistical efficiency. In
ERM, we draw a set of samples D = {x1, . . . , xn} ⊂ X from the underlying data distribution
and we aim to find a solution w ∈ W that minimizes the empirical risk,

min
w∈W

L(w) :=
1

n

n∑
i=1

`(xi, w), (1)

where ` : X ×W → R is a given loss function, and W ⊆ Rd is usually a compact domain.
In this work we are interested in sequential procedures for minimizing the ERM objective,

and relate to such methods as ERM solvers. More concretely, we focus on the regime where
the number of samples n is very large, and it is therefore desirable to employ ERM solvers
that only require few passes over the dataset. There exists a rich arsenal of such efficient
solvers which have been investigated throughout the years, with the canonical example from
this category being Stochastic Gradient Descent (SGD).

Typically, such methods require an unbiased estimate of the loss function at each round,
which is usually generated by sampling a few points uniformly at random from the dataset.
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However, by employing uniform sampling, these methods are insensitive to the intrinsic
structure of the data. In case of SGD, for example, some data points might produce large
gradients, but they are nevertheless assigned the same probability of being sampled as any
other point. This ignorance often results in high-variance estimates, which is likely to degrade
the performance.

The above issue can be mended by employing non-uniform importance sampling. And
indeed, we have recently witnessed several techniques to do so: Zhao and Zhang (2015)
and similarly Needell et al. (2014), suggest using prior knowledge on the gradients of each
datapoint in order to devise predefined importance sampling distributions. Stich et al. (2017)
devise adaptive sampling techniques guided by a robust optimization approach. These are
only a few examples of a larger body of work (Bouchard et al., 2015; Alain et al., 2015; Csiba
and Richtárik, 2016).

Interestingly, the recent works of Namkoong et al. (2017) and Salehi et al. (2017) formu-
late the task of devising importance sampling distributions as an online learning problem
with bandit feedback. In this context, they think of the algorithm, which adaptively chooses
the distribution, as a player that competes against the ERM solver. The goal of the player
is to minimize the cumulative variance of the resulting (gradient) estimates. Curiously, both
methods rely on some form of the “linearization trick”1 to resort to the analysis of the EXP3
(Auer et al., 2002).

On the other hand, the theoretical guarantees of the above methods are somewhat limited.
Strictly speaking, none of them provides regret guarantees with respect to the best fixed
distribution in hindsight: Namkoong et al. (2017) only compete with the best distribution
among a subset of the simplex (around the uniform distribution). Conversely, Salehi et al.
(2017) compete against a solution which might perform worse than the best in hindsight up
to a multiplicative factor of 3.

In this work, we adopt the above mentioned online learning formulation, and design novel
importance sampling techniques. Our adaptive sampling procedure is simple and efficient,
and in contrast to previous work, we are able to provide regret guarantees with respect to
the best fixed point among the simplex. As our contribution, we

• motivate theoretically why regret minimization is meaningful in this setting,

• propose a novel bandit algorithm for variance reduction ensuring regret of Õ(n1/3T 2/3),

• empirically validate our method and provide an efficient implementation2.

On the technical side, we do not rely on a “linearization trick” but rather directly employ a
scheme based on the classical Follow-the-Regularized-Leader approach. Our analysis entails
several technical challenges, most notably handling unbounded cost functions while only re-
ceiving partial (bandit) feedback. Our design and analysis draws inspiration from the seminal
works of Auer et al. (2002) and Abernethy et al. (2008). Although we present our method
for choosing datapoints, it naturally applies to choosing coordinates in coordinate descent or

1 By “linearization trick” we mean that these methods update according to a first order approximation of
the costs rather than the costs themselves.

2The source code is available at https://github.com/zalanborsos/online-variance-reduction
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even blocks of thereof (Allen-Zhu et al., 2016; Perekrestenko et al., 2017; Nesterov, 2012;
Necoara et al., 2011). More broadly, the proposed algorithm can be incorporated in any
sequential algorithm that relies on an unbiased estimation of the loss. A prominent appli-
cation of our method is variance reduction for SGD, which can be achieved by considering
gradient norms as losses, i.e., replacing `(w, xi)↔ ‖∇`(w, xi)‖. With this modification, our
method is minimizing the cumulative variance of the gradients throughout the optimization
process. The latter quantity directly affects the quality of optimization (we elaborate on this
in Appendix A).

The paper is organized as follows. In Section 2, we formalize the online learning setup of
variance reduction and motivate why regret is a suitable performance measure. As the first
step of our analysis, we investigate the full information setting in Section 3, which serves
as a mean for studying the bandit setting in Section 4. Finally, we validate our method
empirically and provide the detailed discussion of the results in Section 5.

2 Motivation and Problem Definition
Typical sequential solvers for ERM usually require a fresh unbiased estimate L̃t of the loss
Lt at each round, which is obtained by repeatedly sampling from the dataset. The template
of Figure 1 captures a rich family of such solvers such as SGD, SAGA (Defazio et al., 2014),
SVRG (Johnson and Zhang, 2013), and online k-Means (Bottou and Bengio, 1995).

Sequential Optimization Procedure for ERM

Input: Dataset D = {x1, . . . , xn}
Initialize: w1 ∈ W
for t = 1, . . . , T do
Draw samples from D using pt ∈ ∆ to generate L̃t(·), an unbiased estimate for L(·).
Update solution: wt+1 ← A(wt, L̃t(·)).

end for

Figure 1: Template of a sequential procedure for minimizing the ERM objective. At each
round, we devise a fresh unbiased estimate L̃t(·) of the empirical loss, then we update the
solution based on the previous solution wt and L̃t(·).

A natural way to devise the unbiased estimates L̃t is to sample it ∈ {1, . . . , n} uniformly
at random and return L̃t(w) = `(xit , w). Indeed, uniform sampling is the common practice
when applying SGD, SAGA, SVRG and online k-Means. Nevertheless, any distribution p
in the probability simplex ∆ induces an unbiased estimate. Concretely, sampling an index
i ∼ p induces the estimate

L̃(w) :=
1

n · p(i)
· `(xi, w) (2)
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and it is immediate to show that Exi∼p[L̃(w)] = L(w). This work is concerned with efficient
ways of choosing a “good” sequence of sampling distributions {p1(·), . . . , pT (·)}.

It is well known that the performance of typical solvers (e.g. SGD, SAGA, SVRG)
improves as the variance of the estimates L̃t(wt) is becoming smaller. Thus, a natural
criterion for measuring the performance of a sampling distribution p is the variance of the
induced estimate

Varp(L̃(w)) =
1

n2

n∑
i=1

`2(xi, w)

p(i)
− L2(w).

Denoting `t(i) := `(xi, wt) and noting that the second term is independent of p, we may now
cast the task of sequentially choosing the sampling distributions as the online optimization
problem shown in Figure 2. In this protocol, we treat the sequential solver as an adversary
that chooses a sequence of loss vectors {`t}t∈[T ] ⊂ Rn, where t ∈ [T ] denotes t ∈ {1, . . . , T}.
Each loss vector is a function of wt, the solution chosen by the solver in the corresponding
round (note that we abstract out this dependence of `t in wt). The cost3 1

n2ft(pt) that the
player incurs at round t is the second moment of the loss estimate, which is induced by the
distribution chosen by the player at round t.

Online Variance Reduction Protocol

Input: Dataset D = {x1, . . . , xn}
for t = 1, . . . , T do

Player chooses pt ∈ ∆.
Adversary chooses `t ∈ Rn, which induces a cost function ft(p) :=

∑n
i=1

`2t (i)

p(i)
.

Player draws a sample It ∼ pt.
Player incurs a cost 1

n2ft(pt), and receives `t(It) as (bandit) feedback.
end for

Figure 2: Online variance reduction protocol with bandit feedback

Next, we define the regret, which is our performance measure for the player,

RegretT =
1

n2

(
T∑
t=1

ft(pt)−min
p∈∆

T∑
t=1

ft(p)

)
.

Our goal is to devise a no-regret algorithm such that limT→∞RegretT/T = 0, which in
turn guarantees that we recover asymptotically the best fixed sampling distribution. In
the bandit feedback setting, the player aims to minimize its expected regret E [RegretT ],
where the expectation is taken with respect to the randomized choices of the player and the
adversary. Note that we allow the choices of the adversary to depend on the past choices of
the player.

3We use the term “cost function” to refer to f in order to distinguish it from the loss `.
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There are few noteworthy comments regarding the above setup. First, it is immediate to
verify that the cost functions f1, . . . , fT are convex in ∆, therefore this is an online convex
optimization problem. Secondly, the cost functions are unbounded in ∆, which poses a
challenge in ensuring no-regret. Finally, notice that the player receives a bandit feedback,
i.e., he is allowed to inspect the losses only at the coordinate It chosen at time t. To the
best of our knowledge, this is the first natural setting where, as we will show, it is possible
to provide no regret guarantees despite bandit feedback and unbounded costs.

Throughout this work, we assume that the losses are bounded, l2t (i) ≤ L for all i ∈ [n] and
t ∈ [T ]. Note that our analysis may be extended to the case where the bounds are instance-
dependent, i.e., l2t (i) ≤ Li for all i ∈ [n] and t ∈ [T ]. In practice, it can be beneficial to take
into account the different Li’s, as we demonstrate in our experiments.

2.1 Is Regret a Meaningful Performance Measure?

Let us focus on the family of ERM solvers depicted in Figure 1. As discussed above, devising
loss estimates such that L̃t(wt) has low variance is beneficial for such solvers — in case of
SGD, this is due to strong connection between the cumulative variance of gradients and the
quality of optimization that we discuss in more detail in Appendix A. Translating this ob-
servation into the online variance reduction setting suggests a natural performance measure:
rather than competing with the best fixed distribution in hindsight, we would like to com-
pete against the sequence of best distributions per-round {p∗t ← arg min

∑n
i=1 `

2
t (i)/p(i)}t∈[T ].

This optimal sequence ensures zero variance in every round, and is therefore the ideal baseline
to compete against. This also raises the question whether regret guarantees, which compare
against the best fixed distribution in hindsight, are at all meaningful in this context. Note
that regret minimization is meaningful in stochastic optimization, when we assume that the
losses are generated i.i.d. from some fixed distribution (Cesa-Bianchi et al., 2004). Yet, this
certainly does not apply in our case since losses are non-stationary and non-oblivious.

Unfortunately, ensuring guarantees compared to the sequence of best distributions per-
round seems generally hard. However, as we show next, regret is still a meaningful measure
for sequential ERM solvers. Concretely, recall that our ultimate goal is to minimize the
ERM objective. Thus, we are only interested in ERM solvers that actually converge to a
(hopefully good) solution for the ERM problem. More formally, let us define `∗(i) as follows,

`∗(i) := lim
t→∞

`t(i),

where we recall that `t(i) := `(xi, wt), and assume the above limit to exist for every i ∈ [n].
We will also denote L∗ := 1

n

∑n
i=1 `∗(i). Moreover, let us assume that the asymptotic solution

is better on average than any of the sequential solutions in the following sense,

1

T

T∑
t=1

L(wt) ≥ L∗ , ∀T ≥ 1

where L(wt) := 1
n

∑n
i=1 `(xi, wt). This assumption naturally holds when the ERM solver

converges to the optimal solution for the problem, which applies for SGD in the convex case.
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The next lemma shows that under these mild assumptions, competing against the best
fixed distribution in hindsight is not far from competing against the ideal baseline.

Lemma 1. Consider the online variance reduction setting, and for any i ∈ [n] denote
VT (i) =

∑T
t=1(`t(i)− `∗(i))2. Assuming that the losses, lt(i), are non-negative for all i ∈ [n],

t ∈ [T ], the following holds for any T ≥ 1,

1

n2
min
p∈∆

T∑
t=1

ft(p) ≤
1

n2

T∑
t=1

min
p∈∆

ft(p) + 2
√
TL∗ ·

1

n

n∑
i=1

√
VT (i) +

(
1

n

n∑
i=1

√
VT (i)

)2

.

Thus, the above lemma connects the convergence rate of the ERM solver to the benefit
that we get by regret minimization. It shows that the benefit is larger if the ERM solver
converges faster. As an example, let us assume that |`t(i)− `∗(i)| ≤ O(1/

√
t), which loosely

speaking holds for SGD. This assumption implies VT (i) ≤ O(log(T )), hence by Lemma 1
the regret guarantees translate into guarantees with respect to the ideal baseline, with an
additional cost of Õ(

√
T ).

3 Full Information Setting
In this section, we analyze variance reduction with full-information feedback. We henceforth
consider the same setting as in Figure 2, with the difference that in each round the player
receives as a feedback the loss vector at all points (lt(1), lt(2), . . . , lt(n)) instead of only lt(It).
We introduce a new algorithm based on the FTRL approach, and establish an O(

√
T ) regret

bound for our method in Theorem 3. While this setup in itself has little practical relevance,
it later serves as a mean for investigating the bandit setting.

Follow-the-Regularized-Leader (FTRL) is a powerful approach to online learning prob-
lems. According to FTRL, in each round, one selects a point that minimizes the cost functions
over past rounds plus a regularization term, i.e., pt ← arg minp∈∆

∑t−1
τ=1 fτ (p)+R(p). The reg-

ularizerR usually assures that the choices do not change abruptly over the rounds. We choose
R(p) = γ

∑n
i=1

1
p(i)

which allows to write FTRL as

pt ← arg min
p∈∆

t−1∑
τ=1

fτ (p) + γ
n∑
i=1

1

p(i)
. (3)

The regularizer R(p) = γ
∑n

i=1 1/p(i) is a natural candidate in our setting, since it has the
same structural form as the cost functions. It also prevents FTRL from assigning vanishing
probability mass to any component, thus ensuring that the incurred costs never explode.
Moreover, R assures a closed form solution to the FTRL as the following lemma shows.

Lemma 2. Denote l21:t(i) :=
∑t

τ=1 `
2
τ (i). The solution to Eq. (3) is pt(i) ∝

√
`2

1:t−1(i) + γ.

Proof sketch. Recalling ft(p) =
∑n

i=1
`2t (i)

p(i)
, allows to write the FTRL objective as follows,

t−1∑
τ=1

fτ (p) + γ

n∑
i=1

1/p(i) =
n∑
i=1

(`2
1:t−1(i) + γ)/p(i) .
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It is immediate to validate that the offered solution satisfies the first order optimality con-
ditions in ∆. Global optimality follows since the FTRL objective is convex in the simplex.

We are interested in the regret incurred by our method. The following theorem shows
that, despite the non-standard form of the cost functions, we can obtain O(

√
T ) regret.

Theorem 3. Setting γ = L, the regret of the FTRL scheme proposed in Equation (3) is:

RegretT ≤
27
√
L

n

(
n∑
i=1

√
`2

1:T (i)

)
+ 44L.

Furthermore, since `2
t (i) ≤ L we have RegretT ≤ 27L

√
T + 44L.

Before presenting the proof, we briefly describe it. Trying to apply the classical FTRL
regret bounds, we encounter a difficulty, namely that the regularizer in Equation (3) can be
unbounded. To overcome this issue, we first consider competing with the optimal distribution
on a restricted simplex where R(·) is bounded. Then we investigate the cost of considering
the restricted simplex instead of the full simplex.

Along the lines described above, consider the simplex ∆ and the restricted simplex
∆′ = {p ∈ ∆| p(i) ≥ pmin, ∀i ∈ [n]} where pmin ≤ 1/n is to be defined later. We can
now decompose the regret as follows,

n2 · RegretT =
T∑
t=1

ft(pt)−min
p∈∆′

T∑
t=1

ft(p)︸ ︷︷ ︸
(A)

+ min
p∈∆′

T∑
t=1

ft(p)−min
p∈∆

T∑
t=1

ft(p)︸ ︷︷ ︸
(B)

. (4)

We continue by separately bounding the above terms. To bound (A), we will use standard
tools which relate the regret to the stability of the FTRL decision sequence (FTL-BTL
lemma). Term (B) is bounded by a direct calculation of the minimal values in ∆ and ∆′.

The following lemma bounds term (A).

Lemma 4. Setting γ = L, we have:
T∑
t=1

ft(pt)−min
p∈∆′

T∑
t=1

ft(p) ≤ 22n
√
L ·

(
n∑
i=1

√
`2

1:T (i)

)
+ 22n2L+

nL

pmin
.

Proof sketch of Lemma 4 . The regret of FTRL may be related to the stability of the online
decision sequence as shown in the following lemma due to Kalai and Vempala (2005) (proof
can also be found in Hazan (2011) or in Shalev-Shwartz et al. (2012)):

Lemma 5. Let K be a convex set and R : K 7→ R be a regularizer. Given a sequence of cost
functions {ft}t∈[T ] defined over K, then setting pt = arg minp∈∆

∑t−1
τ=1 fτ (p) +R(p) ensures,

T∑
t=1

ft(pt)−
T∑
t=1

ft(p) ≤
T∑
t=1

(ft(pt)− ft(pt+1)) + (R(p)−R(p1)), ∀p ∈ K
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Notice that R(p) = L
∑n

i=1 1/p(i) is non-negative and bounded by nL/pmin over ∆′.
Thus, applying the above lemma implies that ∀ p ∈ ∆′,

T∑
t=1

ft(pt)−
T∑
t=1

ft(p) ≤
T∑
t=1

(ft(pt)− ft(pt+1))+
nL

pmin
≤

T∑
t=1

n∑
i=1

`2
t (i)

(
1

pt(i)
− 1

pt+1(i)

)
+
nL

pmin
.

Using the closed form solution for the pt’s (see Lemma. 2) enables us to upper bound the
last term as follows,

T∑
t=1

n∑
i=1

`2
t (i)

(
1

pt(i)
− 1

pt+1(i)

)
≤ 22n

√
L

n∑
i=1

√
`2

1:T (i) + L . (5)

Combining the above with
√
a+ b ≤

√
a+
√
b completes the proof.

The next lemma bounds term (B).

Lemma 6.

min
p∈∆′

T∑
t=1

ft(p)−min
p∈∆

T∑
t=1

ft(p) ≤ 6n · pmin ·

(
n∑
i=1

√
`2

1:T (i)

)2

Proof sketch of Lemma 6. Using first order optimality conditions we are able show that the

minimal value of the
∑T

t=1 ft(p) over ∆ is exactly
(∑n

i=1

√
`2

1:t(i)
)2

. Similar analysis allows
to extract a closed form solution to the best in hindsight over ∆′. This in turn enables to

upper bound the minimal value over ∆′ by
(∑n

i=1

√
`2

1:t(i)
)2

/ (1− n · pmin)2. Combining
these bounds together with pmin ≤ 1/2n we are able to prove the lemma.

Proof of Theorem 3. Combining Lemma 4 and 6, we have after dividing by n2,

RegretT ≤
22
√
L

n
·

(
n∑
i=1

√
`2

1:T (i)

)
+ 22L+

L

n · pmin
+

6 · pmin

n
·

(
n∑
i=1

√
`2

1:T (i)

)2

Since the choice of pmin is arbitrary and is relevant only for the theoretical analysis, we can
set it to pmin = min

{
1/(2n),

√
L/
(√

6
∑n

i=1

√
`2

1:T (i)
)}

that yields the final result.
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4 The Bandit Setting
In this section, we investigate the bandit setting (see Figure 2) which is of great practical
appeal as we described in Section 2. Our method for the bandit setting is depicted in
Algorithm 1, and it ensures a bound of Õ(n1/3T 2/3) on the expected regret (see Theorem 8).
Importantly, this bound holds even for non-oblivious adversaries. The design and analysis
of our method builds on some of the ideas that appeared in the seminal work of Auer et al.
(2002).

Algorithm 1 is using the bandit feedback in order to design an unbiased estimate of the
true loss (`t(1), . . . , `t(n)) in each round. These estimates are then used instead of the true
losses by the full information FTRL algorithm that was analyzed in the previous section. We
do not directly play according to the FTRL predictions but rather mix them with a uniform
distribution. Mixing is necessary in order to ensure that the loss estimates are bounded,
which is a crucial condition used in the analysis. Next we elaborate on our method and its
analysis.

The algorithm samples4 an arm It ∼ p̃t at every round and receives a bandit feedback
`t(It). This may be used in order to construct an estimate of the true (squared) loss as
follows,

˜̀2
t (i) :=

`2
t (i)

p̃t(i)
· 1It=i ,

and it is immediate to validate that the above is unbiased in the following sense,

E[˜̀2
t (i)|p̃t, `t] = `2

t (i), ∀i ∈ [n].

Analogously to the previous section it is natural to define modified cost functions as

f̃t(p) =
n∑
i=1

˜̀2
t (i)/p(i) .

Clearly, f̃t is an unbiased estimate of the true cost, E[f̃t(p)|p̃t, `t] = ft(p). From now on we
omit the conditioning on p̃t, `t for notational brevity.

Having devised an unbiased estimate, we could return to the full information analysis of
FTRL with the modified losses. However, this poses a difficulty, since the modified losses can
possibly be unbounded. We remedy this by mixing the FTRL output, pt, with a uniform
distribution. Mixing encourages exploration, and in turn gives a handle on the possibly
unbounded modified losses. Let θ ∈ [0, 1], and define

p̃t(i) = (1− θ) · pt(i) + θ/n.

Indeed, since p̃t(i) ≥ θ/n, we have ˜̀2
t (i) ≤ nL/θ.

4The sampling and update in the presented form have a complexity of O(n). There is a standard way to
improve this based on segment trees that gives O(log n) for sampling and update. A detailed description of
this idea can be found in section A.4. of Salehi et al. (2017). The efficient implementation of the sampler is
available at https://github.com/zalanborsos/online-variance-reduction
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Algorithm 1 Variance Reducer Bandit (VRB)
Input: θ, L, n
Initialize w(i) = 0 for all i ∈ [n].
for t = 1 to T do

pt(i) ∝
√
w(i) + L · n/θ

p̃t(i) = (1− θ) · pt(i) + θ/n, for all i ∈ [n]
Draw It ∼ p̃t and play It.
Receive feedback lt(It), and update w(It)← w(It) + l2t (It)/p̃t(It).

end for

We start with analyzing the pseudo-regret of our algorithm, where we compare the cost
incurred by the algorithm to the cost incurred by the optimal distribution in expectation.
The pseudo-regret is defined below,

1

n2
min
p∈∆

E

[
T∑
t=1

ft(p̃t)−
T∑
t=1

ft(p)

]
, (6)

where the expectation is taken with respect to both the player’s choices and the loss realiza-
tions. The pseudo-regret is only a lower bound for the expected regret, with an equality when
the adversary is oblivious, i.e., does not take the past choices of the player into account.

Theorem 7. Let θ = (n/T )1/3. Assuming T ≥ n, Algorithm 1 ensures the following bound,

1

n2
min
p∈∆

E

[
T∑
t=1

ft(p̃t)−
T∑
t=1

ft(p)

]
≤ 74Ln

1
3T

2
3 .

Proof sketch of Theorem 7. Using the unbiasedness of the modified costs we have

min
p∈∆

E

[
T∑
t=1

ft(p̃t)−
T∑
t=1

ft(p)

]
= min

p∈∆
E

[
T∑
t=1

f̃t(p̃t)−
T∑
t=1

f̃t(p)

]
.

We can decompose 1
n2 minp∈∆ E

[∑T
t=1 f̃t(p̃t)−

∑T
t=1 f̃t(p)

]
into the following terms:

1

n2
E

[
T∑
t=1

f̃t(p̃t)−
T∑
t=1

f̃t(pt)

]
︸ ︷︷ ︸

(A)

+
1

n2
min
p∈∆

E

[
T∑
t=1

f̃t(pt)−
T∑
t=1

f̃t(p)

]
︸ ︷︷ ︸

(B)

where (A) is the cost we incur by mixing, and (B) is upper bounded by the regret of playing
FTRL with the modified losses. Now we inspect each term separately.

An upper bound of θLT on (A) results from the following simple observation:

1

p̃t(i)
− 1

pt(i)
≤ nθ.
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For bounding (B), notice that pt is performing FTRL over the modified cost sequence.
Combining this together the bound ˜̀2

t (i) ≤ nL/θ allows us to apply Theorem 3 and get,

1

n2

(
T∑
t=1

f̃t(pt)−min
p∈∆

T∑
t=1

f̃t(p)

)
≤ 27

√
L

nθ

(
n∑
i=1

√
˜̀2
1:T (i)

)
+

44nL

θ
. (7)

Due to Jensen’s inequality we have

E

[
n∑
i=1

√
˜̀2
1:T (i)

]
≤

n∑
i=1

√
E
[
˜̀2
1:T (i)

]
=

n∑
i=1

√
`2

1:T (i) .

Putting these results together, we get an upper bound on the pseudo-regret which we can
optimize in terms of θ:

1

n2
min
p∈∆

E

[
T∑
t=1

ft(p̃t)−
T∑
t=1

ft(p)

]
≤ θLT + 27

√
L

nθ

(
n∑
i=1

√
`2

1:T (i)

)
+

44nL

θ
.

Using the bound
∑n

i=1

√
`2

1:T (i) ≤ n
√
LT and since we assumed T ≥ n, we can set

θ = (n/T )1/3 to get the result. Note that θ is dependent on knowing T in advance. If
we do not assume that this is possible, we can use the “doubling trick” starting from T = n
and incur an additional constant multiplier in the regret.

Ultimately, we are interested in the expected regret, where we allow the adversary to make
decisions by taking into account the player’s past choices, i.e., to be non-oblivious. Next we
present the main result of this paper, which establishes a Õ(n1/3T 2/3) regret bound, where
the Õ notation hides the logarithmic factors.

Theorem 8. Assuming T ≥ n, the following holds for the expected regret,

1

n2
E

[
T∑
t=1

ft(p̃t)−min
p∈∆

T∑
t=1

ft(p)

]
≤ Õ

(
Ln

1
3T

2
3

)
.

Proof sketch of Theorem 8. Using the unbiasedness of the modified costs allows to decom-
pose the regret as follows,

n2E [RegretT ] = E

[
T∑
t=1

ft(p̃t)−min
p∈∆

T∑
t=1

ft(p)

]

= E

[
T∑
t=1

f̃t(p̃t)−min
p∈∆

T∑
t=1

f̃t(p)

]
+ E

[
min
p∈∆

T∑
t=1

f̃t(p)−min
p∈∆

T∑
t=1

ft(p)

]

≤ n2O(Ln1/3T 2/3) + E


(

n∑
i=1

√
˜̀2
1:T (i)

)2

−

(
n∑
i=1

√
`2

1:T (i)

)2

︸ ︷︷ ︸
(A)

 , (8)
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where the last line uses Equation (7) together with Jensen’s inequality (similarly to the proof
of Theorem 7). We have also used the closed form solution for the minimal values of

∑
t ft(p)

and
∑

t f̃t(p) over the simplex.
Our approach to bounding the remaining term is to establish high probability bound for

(A). In order to do so we shall bound the following differences ˜̀2
1:T (i)− `2

1:T (i). This can be
done by applying the appropriate concentration results described below.

Bounding ˜̀2
1:T (i) − `2

1:T (i). Fix i ∈ [n] and define Zt,i := ˜̀2
t (i) − `2

t (i). Recalling that
E[˜̀2

t (i)|p̃t, `t] = `2
t (i), we have that {Zt,i}t∈[T ] is a martingale difference sequence with respect

to the filtration {Ft}t∈[T ] associated with the history of the strategy. This allows us to apply a
version of Freedman’s inequality (Freedman, 1975), which bounds the sum of differences with
respect to their cumulative conditional variance. Loosely speaking, Freedman’s inequality
implies that w.p. ≥ 1− δ,

˜̀2
1:T (i)− `2

1:T (i) ≤ Õ


√√√√ T∑

t=1

Var(Zt,i|Ft−1)

 .

Importantly, the sum of conditional variances can be related to the regret. Indeed let p∗ be
the best distribution in hindsight, i.e., p∗ = arg min

∑T
t=1 ft(p), and define

n2RegretT (i) =
T∑
t=1

`2
t (i)

p̃t(i)
−

T∑
t=1

`2
t (i)

p∗(i)

Then the following can be shown,
T∑
t=1

Var(Zt,i|Ft−1) = Õ
(
n2L · RegretT (i) +

`2
1:T (i)

p∗(i)

)
.

To simplify the proof sketch, ignore the second term. Plugging this back into Freedman’s
inequality we get,

˜̀2
1:T (i)− `2

1:T (i) ≤ Õ
(√

n2L · RegretT (i)
)
. (9)

Final bound. Combining the above with the definition of (A) one can to show that w.p.
≥ 1− δ,

(A) ≤ Õ

(
n
√
LT

n∑
i=1

(
n2L · RegretT (i)

) 1
4

)
.

Since (A) is bounded by poly(n, T ), we can take a small enough δ = 1/poly(n, T ) such that,

E [(A)] ≤ Õ

(
n3/2L3/4T 1/2 · E

[
n∑
i=1

(RegretT (i))1/4

])

≤ Õ

(
n3/2L3/4T 1/2 ·

n∑
i=1

(E [RegretT (i)])1/4

)
≤ Õ

(
n9/4L3/4T 1/2 · (E [RegretT ])1/4

)
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where the second line uses Jensen’s inequality with respect to the concave function
h(u) = u1/4, and the last line uses

∑n
i=1 RegretT (i) = RegretT together with the fact

that
∑n

i=1 x
1/4
i ≤ n3/4 (

∑n
i=1 xi)

1/4, which is also a consequence of Jensen’s inequality since
1
n

∑n
i=1 x

1/4
i ≤

(
1
n

∑n
i=1

)1/4. Plugging the above bound back into Eq. (8) we are able to
establish the proof. The full proof is deferred to Appendix E. Note that in the full proof
we do not explicitly relate the conditional variances to the regret, but this is rather more
implicit in the analysis.

5 Experiments

5.1 Image Classification

Training a binary classifier with imbalanced data is a challenging task in machine learning.
Practices for dealing with imbalance include optimizing class weight hyperparameters, hard
negative mining (Shrivastava et al., 2016) and synthetic minority oversampling (Chawla
et al., 2002). Without accounting for imbalance, the minority samples are often misclassified
in early stages of the iterative training procedures, resulting in high loss and high gradient
norms associated with these points. Importance sampling schemes for reducing the variance
of the gradient norms will sample these instances more often at the early phases, offering a
way of tackling imbalance.

For verifying this intuition, we perform the image classification experiment of Bouchard
et al. (2015). We train one-vs-all logistic regression Pascal VOC 2007 dataset (Everingham
et al., 2010) with image features extracted from the last layer of the VGG16 (Simonyan and
Zisserman, 2015) pretrained on Imagenet. We measure the average precision by reporting
its mean over the 20 classes of the test data. The optimization is performed with AdaGrad
(Duchi et al., 2011), where the learning rate is initialized to 0.1. The losses received by
the bandit methods are the norms of the logistic loss gradient. We compare our method,
Variance Reducer Bandit (VRB), to:
• uniform sampling for SGD,

• Adaptive Weighted SGD (AW) (Bouchard et al., 2015) — variance reduction by sam-
pling from a chosen distribution whose parameters are optimized alternatingly with
the model parameters,

• MABS (Salehi et al., 2017) — bandit algorithm for variance reduction that relies on
EXP3 through employing modifies losses.

The hyperparameters of the methods are chosen based on cross-validation on the vali-
dation portion of the dataset. The results can be seen in Figure 3, where the shaded areas
represent confidence 95% intervals over 10 runs. The best performing method is AW, but
its disadvantage compared to the bandit algorithms is that it requires choosing a family
of sampling distributions, which usually incorporates prior knowledge, and calculating the
derivative of the log-density. VRB and AW both outperform uniform subsampling with re-
spect to the training time. VRB performs similarly to AW at convergence, and speeds up
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Figure 3: Mean Average Precision scores
achieved on the test part of VOC 2007.
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Figure 4: The effect of different hyperparam-
eters on VRB.

training 10 times compared to uniform sampling, by attaining a certain score level 10 times
faster. We have also experimented with the variance reduction method of Namkoong et al.
(2017), but it did not outperform uniform sampling significantly. Since cross-validation is
costly, in Figure 4 we show the effect of the hyperparameters of our method. More specifi-
cally, we compare the performance of VRB with misspecified regularizer L = 1 to the best
L = 108 chosen by cross-validation, and we compensate by using higher mixing coefficient
θ = 0.4. The fact that only the early-stage performance is affected is a sign of method’s
robustness against regularizer misspecification.

5.2 k-Means

In this experiment, we show that in some applications it is beneficial to work with per-sample
upper bound estimates Li instead of a single global bound. As an illustrative example, we
choose mini-batch k-Means clustering (Sculley, 2010). This is a slight deviation from the
presented theory, since we sample multiple points for the batch and update the sampler only
once, upon observing the loss for the batch.

In the case of k-Means, the parameters consist of the coordinates of the k centers
Q = {q1, q2, . . . , qk}. As the cost function for a point xi ∈ {x1, x2, . . . , xn} is the squared
Euclidean distance to the closest center, the loss received by VRB is the norm of the gradient
minq∈Q 2·||xi−q||2. This lends itself to a natural estimation of Li: choose a point u randomly
from the dataset and define Li = 4 · ||xi − u||22. For this experiment, we set θ = 0.5.

We solve mini-batch k-Means for k = 100 and batch size b = 100 with uniform sampling
and VRB. The initial centers are chosen with k-Means++ (Arthur and Vassilvitskii, 2007)
from a random subsample of 1000 points from the training data and they are shared between
the methods. We generate 10 different sets of initial centers and run both algorithms 10 times
on each set of centers, with different random seeds for the samplers. We train the algorithm
on 80% of the data, and measure the cost of the 20% test portion for the following datasets:

• CSN (Faulkner et al., 2011) — cellphone accelerometer with 80,000 observations and 17
features,
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• KDD (KDD Cup 2004) — data set used for Protein Homology Prediction KDD compe-
tition containing 145,751 observations with 74 features,

• MNIST (LeCun et al., 1998) — 70,000 low resolution images of handwritten characters
transformed using PCA with whitening and retaining 10 dimensions.
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Figure 5: The evolution of the loss of k-Means on the test set. The shaded areas represent
95% confidence intervals over 100 runs.

The evolution of the cost function on the test set with respect to the elapsed training
time is shown in Figure 5. The chosen datasets illustrate three observed behaviors of our
algorithm. In the case of CSN, our method significantly outperforms uniform subsampling.
In the case of KDD, the advantage of our method can be seen in the reduced variance of the
cost over multiple runs, whereas on MNIST we observe no advantage. This behavior is highly
dependent on intrinsic dataset characteristics: for MNIST, we note that the entropy of the
best-in-hindsight sampling distribution is close the entropy of the uniform distribution. We
have also compared VRB with the bandit algorithms mentioned in the previous section. Since
mini-batch k-Means converges in 1-2 epochs, these methods with uniform initialization do not
outperform uniform subsampling significantly. Thus, for this setting, careful initialization is
necessary, which is naturally supported by our method.

6 Conclusion and Future Work
We presented a novel importance sampling technique for variance reduction in an online
learning formulation. First, we motivated why regret is a sensible measure of performance in
this setting. Despite the bandit feedback and the unbounded costs, we provided an expected
regret guarantee of Õ(n1/3T 2/3), where we reference is the best fixed sampling distribution
in hindsight. We confirmed the theoretical findings with empirical validation.

Among the many possible future directions stands the question of the tightness of the
expected regret bound of the algorithm. Another naturally arising idea is theoretical analysis
of the method when employed in conjunction with advanced stochastic solvers such as SVRG
and SAGA.
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A Cumulative Variance of the Gradients and Quality of
Optimization

The relationship between cumulative second moment of the gradients and quality of opti-
mization has been demonstrated in several works. Since the difference between the second
moment and the variance is independent of the sampling distribution pt, the guarantees of
our method also translate to guarantees with respect to the cumulative second moments of
the gradient estimates. Here we provide two concrete references.

For the following, assume that we would like to minimize a convex objective,

min
w∈W

F (w) := Ez∼D[f(w; z)]

and we assume that we are able to draw i.i.d. samples from the unknown distribution D.
Thus, given a point w ∈ W we are able to design an unbiased estimate for ∇F (w) by
sampling z ∼ D and taking g := ∇f(w; z) (clearly, E [g|w] = ∇F (w)). Now assume a
gradient-based update rule, i.e.,

wt+1 = ΠW(wt − ηtgt), where E [gt|wt] = ∇F (wt) (10)

and ΠW(u) := arg minw∈W ‖u−w‖. Next we show that for two very popular gradient based-
methods — AdaGrad and SGD for strongly-convex functions, the performance is directly
related to the cumulative second moment of the gradient estimates,

∑T
t=1 E‖gt‖2. The latter

is exactly the objective of our online variance reduction method.
The AdaGrad algorithm employs the same rule as in Eq. (10) using ηt = D/

√
2
∑t

τ=1 ‖gt‖2.
The next theorem substantiates its guarantees.

Theorem 9 (Duchi et al. (2011)). Assume that the diameter of W is bounded by D. Then:

E

[
F

(
1

T

T∑
t=1

wt

)]
− min

w∈W
F (w) ≤ 2D

T

√√√√ T∑
t=1

E‖gt‖2

The SGD algorithm for µ-strongly-convex objectives employs the same rule as in Eq. (10)
using ηt = 2

µt
. The next theorem substantiates its guarantees.

Theorem 10 (Salehi et al. (2017)). Assume that F is µ-strongly convex, then:

E

[
F

(
2

T (T + 1)

T∑
t=1

t · wt

)]
− min

w∈W
F (w) ≤ 2

µT (T + 1)

T∑
t=1

E‖gt‖2
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B Proof of Lemma 1
Proof. Denote `2

1:t(i) =
∑t

τ=1 `
2
τ (i). Next, we bound the cumulative loss per point i ∈ [n],

`2
1:T (i) =

T∑
t=1

`2
t (i) =

T∑
t=1

(`∗(i) + (`t(i)− `∗(i)))2

≤ T · `2
∗(i) + 2`∗(i)

T∑
t=1

|`t(i)− `∗(i)|+
T∑
t=1

(`t(i)− `∗(i))2

≤ T · `2
∗(i) + 2`∗(i)

√
T · VT (i) + VT (i)

= T

(
`∗(i) +

√
VT (i)

T

)2

(11)

where the second line uses `∗(i) ≥ 0 and the third line uses the definition of VT (i) together
with the inequality ‖u‖1 ≤

√
T‖u‖2, ∀u ∈ RT .

We require the following lemma:

Lemma 11. Let a1, . . . , an ≥ 0. Then the following holds,

min
p∈∆

n∑
i=1

ai
p(i)

=

(
n∑
i=1

√
ai

)2

.

The proof of the lemma is analogous to the proof of Lemma 2, which is given in the next
section. Notice that according to this lemma and using the non-negativity of losses we have,

1

n2
min
p∈∆

n∑
i=1

`2
t (i)

p(i)
=

(
1

n

n∑
i=1

`t(i)

)2

:= L2(wt) . (12)

We are now ready to bound the value of best fixed point in hindsight,

min
p

1

n2

T∑
t=1

n∑
i=1

`2
t (i)

p(i)
= min

p

1

n2

n∑
i=1

`2
1:T (i)

p(i)

=
1

n2

(
n∑
i=1

√
`2

1:t(i)

)2

= T

(
1

n

n∑
i=1

`∗(i) +
1

n

n∑
i=1

√
VT (i)

T

)2

= T · L2
∗ + 2

√
TL∗ ·

1

n

n∑
i=1

√
VT (i) +

(
1

n

n∑
i=1

√
VT (i)

)2

,

where in the second line we use Lemma 11, and the third line uses Eq. (11).
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We are now left to prove that T · L2
∗ ≤

∑T
t=1

1
n2 minp∈∆

∑n
i=1 `

2
t (i)/p(i). Indeed,

L2
∗ ≤

(
1

T

T∑
t=1

L(wt)

)2

≤ 1

T

T∑
t=1

L2(wt)

=
1

T

T∑
t=1

1

n2
min
p∈∆

n∑
i=1

`2
t (i)/p(i) .

where the first line uses the asuumption about the average optimality of L∗, the second line
uses Jensen’s inequality, and the last line uses Eq. (12). This concludes the proof.

C Proofs for the Full Information Setting

C.1 Proof of Lemma 2

Proof . We formulate the Lagrangian of the optimization problem in Equation (3):

minimize
p

n∑
i=1

`2
1:t−1(i)

p(i)
+ γ

n∑
i=1

1

p(i)

subject to
n∑
i=1

p(i) = 1

p(i) ≥ 0, i = 1, . . . , n

and get:

L(p, λ) =
n∑
i=1

`2
1:t−1(i)

p(i)
+ γ

n∑
i=1

1

p(i)
+ α ·

(
n∑
i=1

p(i)− 1

)
−

n∑
i=1

βi · p(i)

From setting ∂L(p,λ)
∂p(i)

= 0 we have:

p(i) =

√
`2

1:t−1(i) + γ
√
α− βi

(13)

Note that setting p(i) = 0 implies an objective value of infinity due to the regularizer. Thus,
at the optimum p(i) > 0, ∀i ∈ [n]; which in turn implies that βi = 0, ∀i ∈ [n] (due to comple-
mentary slackness). Combining this with

∑n
i=1 p(i) = 1, we get

√
α =

∑n
i=1

√
`2

1:t−1(i) + γ
which gives:

p(i) =

√
`2

1:t−1(i) + γ∑n
j=1

√
`2

1:t−1(j) + γ
(14)

Since the minimization problem is convex for p ∈ ∆, we obtained a global minimum.
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C.2 Proof of Lemma 4

Proof . The regret of FTRL may be related to the stability of the online decision sequence
as shown in the following lemma due to Kalai and Vempala (2005) (proof can be found in
Hazan (2011) or in Shalev-Shwartz et al. (2012)):

Lemma 12. Let K be a convex set and R : K 7→ R be a regularizer. Given a sequence of cost
functions {ft}t∈[T ] defined over K, then setting pt = arg minp∈∆

∑t−1
τ=1 fτ (p) +R(p) ensures

T∑
t=1

ft(pt)−
T∑
t=1

ft(p) ≤
T∑
t=1

(ft(pt)− ft(pt+1)) + (R(p)−R(p1)), ∀p ∈ K.

Notice that our regularizerR(p) = L
∑n

i=1 1/p(i) is non-negative and bounded by nL/pmin

over ∆′. Thus, applying the above lemma to the FTRL rule of Eq. (3) implies that ∀p ∈ ∆′,

T∑
t=1

ft(pt)−
T∑
t=1

ft(p) ≤
T∑
t=1

(ft(pt)− ft(pt+1)) +
nL

pmin
. (15)

We are left to bound the remaining term. Let us first recall the closed from solution for the
pt’s as stated in Lemma 2,

pt(i) =

√
`2

1:t−1(i) + L

ct
,

where ct =
∑n

i=1

√
`2

1:t−1(i) + L is the normalization factor. Noticing that {ct}t∈[T ] is a
non-decreasing sequence we, are now ready to bound the remaining term,

T∑
t=1

(ft(pt)− ft(pt+1)) =
T∑
t=1

n∑
i=1

`2
t (i) ·

(
ct√

`2
1:t−1(i) + L

− ct+1√
`2

1:t(i) + L

)

≤
T∑
t=1

n∑
i=1

`2
t (i) ·

(
ct√

`2
1:t−1(i) + L

− ct√
`2

1:t(i) + L

)

=
T∑
t=1

n∑
i=1

`2
t (i) · ct√
`2

1:t(i) + L
·

(√
1 +

`2
t (i)

`2
1:t−1(i) + L

− 1

)

≤ cT
2

T∑
t=1

n∑
i=1

`4
t (i)√

`2
1:t(i) + L ·

(
`2

1:t−1(i) + L
)

where in the first inequality we used the fact that ct ≤ ct+1 and in the last inequality
we relied on the fact that

√
1 + x ≤ 1 + x

2
for all x ≥ 0. Furthermore, we observe that√

`2
1:t(i) + L ≥

√
`2

1:t(i) and `2
1:t−1(i) + L ≥ `2

1:t(i) in order to get:

T∑
t=1

(ft(pt)− ft(pt+1)) ≤ cT
2
·

T∑
t=1

n∑
i=1

`4
t (i)

(`2
1:t(i))

3/2
=
√
L · cT

2
·

n∑
i=1

T∑
t=1

`4t (i)

L2(
`21:t(i)

L

)3/2
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For a fixed index i, denote at := `t(i)/
√
L and note that at ∈ [0, 1], ∀t ∈ [T ]. The innermost

sum can be therefore written as
∑T

t=1
a4t

(a21:t)
3/2 , which is upper bounded by 44 as stated in

lemma below.

Lemma 13. For any sequence of numbers a1, . . . , aT ∈ [0, 1] the following holds:
T∑
t=1

a4
t

(a2
1:t)

3/2
≤ 44 .

The proof of the lemma is provided in section C.3. As a consequence,
T∑
t=1

(ft(pt)− ft(pt+1)) ≤
√
L · cT

2
·

n∑
i=1

T∑
t=1

`4t (i)

L2(
`21:t(i)

L

)3/2

≤ 22n
√
L ·

n∑
i=1

√
`2

1:T−1(i) + L , (16)

where we have used the expression for cT .
We get our final result once we plug Equation (16) into Equation (15) and observe that√
`2

1:T−1(i) + L ≤
√
`2

1:T (i) +
√
L.

C.3 Proof of Lemma 13

Proof. Without loss of generality assume that a1 > 0 (otherwise we can always start the
analysis from the first t such that at > 0). Let us define the following index sets,

Pk = {t ∈ [T ] : 4k−1a2
1 < a2

1:t ≤ 4ka2
1}, ∀k ∈ {1, 2, . . . dlog2(1/a1)e}

Qk = {t ∈ [T ] : k < a2
1:t ≤ k + 1}, ∀k ∈ {1, 2, . . . }

The definitions of Pk implies, ∑
t∈Pk

a4
t ≤

(∑
t∈Pk

a2
t

)2

≤ 42ka4
1 (17)

The definition of Qk implies, ∑
t∈Qk

a4
t ≤

(∑
t∈Qk

a2
t

)2

≤ 22 = 4 (18)

where the second inequality uses
∑

t∈Qk
a2
t ≤ 2 which follows from the fact that if a set Qk

is non-empty then so is Qk−1 (since at ∈ [0, 1]), and thus,∑
t∈Qk

a2
t =

Tk∑
t=1

a2
t −

Tk−1∑
t=1

a2
t

≤ (k + 1)− (k − 1)

= 2 .
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where we have defined Tk := max{t ∈ [T ] : t ∈ Qk}.
Using the definitions of Pk and Qk together with Equations (17), (18), we get,

T∑
t=1

a4
t

(a2
1:t)

3/2
≤ a1 +

dlog2(1/a1)e∑
k=1

∑
t∈Pk

a4
t

(a2
1:t)

3/2
+
∞∑
k=1

∑
t∈Qk

a4
t

(a2
1:t)

3/2

≤ a1 +

dlog2(1/a1)e∑
k=1

∑
t∈Pk

a4
t

43(k−1)/2a3
1

+
∞∑
k=1

∑
t∈Qk

a4
t

k3/2

≤ a1 +

dlog2(1/a1)e∑
k=1

42ka4
1

43(k−1)/2a3
1

+
∞∑
k=1

4

k3/2

≤ a1 ·

1 +

dlog2(1/a1)e∑
k=1

42k

43(k−1)/2

+
∞∑
k=1

4

k3/2

≤ a1 ·
dlog2(1/a1)e∑

k=0

2k+3 + 4 ·
∞∑
k=1

1

k3/2

≤ 16a1 · 2dlog2(1/a1)e + 4 + 4 ·
∞∑
k=2

1

k3/2

≤ 36 + 4 ·
∞∑
k=2

1

k3/2

≤ 36 + 4 ·
∫ ∞
x=1

1

x3/2
dx

≤ 44

which concludes the proof.

C.4 Proof of Lemma 6

Proof . We first look at the loss of the best distribution in hindsight:

minimize
p

T∑
t=1

n∑
i=1

`2
t (i)

p(i)

subject to
n∑
i=1

p(i) = 1

p(i) ≥ 0, i = 1, . . . , n.
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Analogous reasoning to the proof of Lemma 2 we get p(i) ∝
√
`2

1:T (i) and as a consequence,
the loss of the best distribution in hindsight over the unrestricted simplex is:

min
p∈∆

T∑
t=1

n∑
i=1

`2
t (i)

p(i)
=

(
n∑
i=1

√
`2

1:T (i)

)2

(19)

The next step is to solve the optimization problem over the restricted simplex ∆′:

minimize
p

T∑
t=1

n∑
i=1

`2
t (i)

p(i)

subject to
n∑
i=1

p(i) = 1

p(i) ≥ pmin, i = 1, . . . , n.

We start our proof similarly to the proof of Proposition 5 of Namkoong et al. (2017).
First, we formulate the Lagrangian:

L(p, λ, θ) =
n∑
i=1

`2
1:T (i)

p(i)
+ α ·

(
n∑
i=1

p(i)− 1

)
−

n∑
i=1

βi · (p(i)− pmin) (20)

Setting ∂L
∂p(i)

= 0 and using complementary slackness we get:

p(i) =

√
`2

1:T (i)√
α− βi

=

{√
`21:T (i)
√
α

if
√
`2

1:T (i) >
√
α · pmin

pmin else
(21)

Next we determine the value of α. Denoting I = {i |
√
`2

1:T (i) >
√
α · pmin}, and using∑n

i=1 p(i) = 1 implies,

n∑
i=1

p(i) =
∑
i∈I

p(i) +
∑
i∈IC

p(i) =
1√
α

∑
i∈I

√
`2

1:T (i) + (n− |I|) · pmin = 1

From this we get,
√
α =

∑
i∈I

√
`2

1:T (i)

1− (n− |I|) · pmin
. (22)
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Now we can plug this into the original problem to get the optimal value:

n∑
i=1

`2
1:T (i)

p(i)
=
∑
i∈I

`2
1:T (i)

p(i)
+
∑
i∈IC

`2
1:T (i)

p(i)

=
√
α ·

(∑
i∈I

√
`2

1:T (i)

)
+

1

pmin

∑
i∈IC

`2
1:T (i) . Eq. 21, def. of p(i)

= α · (1− (n− |I|) · pmin) +
1

pmin

∑
i∈IC

`2
1:T (i) . Eq. 22, replacing

∑
i∈I

√
`2

1:T (i)

≤ α · (1− (n− |I|) · pmin) + α · pmin · (n− |I|) . Eq. 21, `2
1:T (i) ≤ αp2

min,∀i ∈ IC

= α

=

(∑
i∈I

√
`2

1:T (i)
)2

(1− (n− |I|)pmin)2 . Eq. 22

≤

(∑
i∈I

√
`2

1:T (i)
)2

(1− n · pmin)2

≤

(∑n
i=1

√
`2

1:T (i)
)2

(1− n · pmin)2

Combining this result with Equation (19) we obtain,

min
p∈∆′

n∑
i=1

`2
1:T (i)

p(i)
−min

p∈∆

n∑
i=1

`2
1:T (i)

p(i)
≤
(

1

(1− n · pmin)2 − 1

)
·

(
n∑
i=1

√
`2

1:T (i)

)2

Using the fact that 1
(1−x)2

− 1 ≤ 6x for x ∈ [0, 1/2], with which we are assuming that
pmin ≤ 1/(2n), we finally get the claim of the lemma. Note that in the sections following
this lemma, all choices of pmin respect pmin ≤ 1/(2n).

D Proofs for the Pseudo-Regret

D.1 Proofs of Theorem 7

Proof. What remains from the proof sketch is to bound the term (A), which we do here. Due
to the mixing we always have p̃t(i) ≥ θ/n for all t ∈ [T ], i ∈ [n]. Moreover pt(i) ≥ 1/n implies
p̃t(i) ≥ 1/n. Next we upper bound 1/p̃t(i) − 1/pt(i). If pt(i) ≤ 1/n, then the difference is
negative, otherwise,

1

p̃t(i)
− 1

pt(i)
= θ ·

pt(i)− 1
n

p̃t(i)pt(i)
< θ · pt(i)

p̃t(i)pt(i)
=

θ

p̃t(i)
≤ nθ.
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As an immediate consequence we obtain a bound on (A),

n2 · (A) : = E

[
T∑
t=1

f̃t(p̃t)−
T∑
t=1

f̃t(pt)

]

= E

[
T∑
t=1

n∑
i=1

˜̀2
t (i)

(
1

p̃t(i)
− 1

pt(i)

)]

≤ nθ · E

[
n∑
i=1

˜̀2
1:T (i)

]
≤ n2θLT ,

where we used `2
t (i) ≤ L. The rest of the proof is completed in the proof sketch.

E Proofs for the Expected Regret
Throughout the proofs we assume n ≤ T .

E.1 Proof of Theorem 8

Proof. Using the unbiasedness of the modified costs allows to decompose the regret as follows,

n2E [RegretT ] = E

[
T∑
t=1

ft(p̃t)−min
p∈∆

T∑
t=1

ft(p)

]

= E

[
T∑
t=1

f̃t(p̃t)−min
p∈∆

T∑
t=1

f̃t(p)

]
+ E

[
min
p∈∆

T∑
t=1

f̃t(p)−min
p∈∆

T∑
t=1

ft(p)

]

≤ n2O(Ln1/3T 2/3) + E


(

n∑
i=1

√
˜̀2
1:T (i)

)2

−

(
n∑
i=1

√
`2

1:T (i)

)2

︸ ︷︷ ︸
(A)

 , (23)

where the last line uses Equation (7) together with Jensen’s inequality (similarly to the proof
of Theorem 7). We have also used the closed form solution for the minimal values of the
cumulative true/modified costs, i.e,

min
p∈∆

T∑
t=1

ft(p) =

(
n∑
i=1

√
`2

1:T (i)

)2

and min
p∈∆

T∑
t=1

f̃t(p) =

(
n∑
i=1

√
˜̀2
1:T (i)

)2

,

the above is established in the proof of Lemma 6.
Thus, in order to establish the theorem, we bound the expectation of (A). The high level

idea of the proof is to show that for any small enough δ ∈ [0, 1] then w.p. ≥ 1− δ the term
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(A) is bounded by n2O(n1/3T 2/3 log(nT/δ)). Then, by showing that (A) is bounded almost
surely, we are able to choose a small enough δ such that E [(A)] = n2Õ(Ln1/3T 2/3). Let us
first establish a trivial bound on (A),

(A) ≤

(
n∑
i=1

√
˜̀2
1:T (i)

)2

≤

(
n∑
i=1

√
`2

1:T (i)

θ/n

)2

= Ln8/3T 4/3 ,

where we used `2
1:T (i) ≤ LT , and θ = (n/T )1/3. Thus, choosing 1/δ ≥ Ln8/3T 4/3 ensures

that δ · (A) ≤ 1 with probability 1. It now remains to establish a high probability bound for
(A). To do so, we shall bound the differences ˜̀2

1:t(i) − `2
1:t(i) using a version of Freedman’s

concentration inequality (Freedman, 1975). Later, this will enable us to bound (A). Next
we proceed according to these two steps.

Step 1: bounding ˜̀2
1:t(i)− `2

1:t(i).
Fix i ∈ [n] and define the following sequence {Zt,i := ˜̀2

t (i) − `2
t (i)}t∈[T ]. Recalling that

E[˜̀2
t (i)|p̃t, `t] = `2

t (i), we have that {Zt,i}t∈[T ] is a martingale difference sequence with respect
to the filtration {Ft}t∈[T ] associated with the history of the strategy. Also notice that due
to the mixing |Zt,i| ≤ 2|˜̀2

t (i)| ≤ 2nL/θ. We may bound the conditional variance of the Zt,i
as follows,

Var(Zt,i|Ft−1) = E

[(
`2
t (i)

p̃t(i)
1It=i − `2

t (i)

)2

|Ft−1

]

= E
[
`4
t (i)

p̃2
t (i)

1It=i − 2
`4
t (i)

p̃t(i)
1It=i + `4

t (i)|Ft−1

]
=
`4
t (i)

p̃t(i)
− `4

t (i)

≤ L
`2
t (i)

p̃t(i)
(24)

The above characterization of the sequence {Zt,i}t∈[T ] allows us to apply Freedman’s concen-
tration inequality that we state below,

Lemma 14 (Freedman’s Inequality (Freedman, 1975; Kakade and Tewari, 2009)). Suppose
{Zt}t∈[T ] is a martingale difference sequence with respect to a filtration {Ft}t∈[T ], such that

|Zt| ≤ b. Define, VartZt = Var (Zt|Ft−1) and let σ =
√∑T

t=1 VartZt be the sum of condi-
tional variances of Zt’s. Then for any δ ≤ 1/e and T ≥ 3 we have,

P

(
T∑
t=1

Zt ≥ max
{

2σ, 3b
√

log(1/δ)
}√

log(1/δ)

)
≤ 4δ log(T )

28



Since Z1,i, . . . , ZT,i is a martingale difference sequence with |Zt,i| ≤ 2nL/θ, we can apply-
ing the two-sided extension of Lemma 14 to this sequence. Combined with union bound over
all
i ∈ [n], t ∈ [T ] we have that ∀i ∈ [n], t ∈ [T ], then w.p.≥ 1− 8nTδ log(T ),

|˜̀2
1:t(i)− `2

1:t(i)| =

∣∣∣∣∣
t∑

τ=1

Zτ,i

∣∣∣∣∣
≤ max

2

√√√√ t∑
τ=1

Var(Zτ,i|Fτ−1),
6nL

θ

√
log(1/δ)

√log(1/δ)

≤ max

{
2σi,

6nL

θ

√
log(1/δ)

}√
log(1/δ). (25)

where we have defined σi :=
√∑T

t=1 Var(Zt,i|Ft−1). Notice that the last line above uses the
fact that ∀t ∈ [T ] :

∑t
τ=1 Var(Zτ,i|Fτ−1) ≤ σ2

i , which holds since the conditional variance is
non-negative.

A few remarks are in place before we go on with the proof:

1. Define B to be the event that the bound stated in Equation (25) holds. Note that
P (B) ≥ 1 − 8nTδ log(T ). From this point on, all of the statements in the proof are
conditioned on the event B.

2. For ease of notation we shall ignore the log(1/δ) terms appearing in Equation (25).
Note that these only affect the final guarantees by a factor of O(log(nT )) for the choice
of δ = 1/poly(n, T ).

3. We denote Mi := max{2σi, 6nL/θ}. Ignoring log(1/δ) factors, Equation (25) can be
now restated as follows, ∀i ∈ [n], t ∈ [T ] w.p.≥ 1− 8nTδ log(T ),

|˜̀2
1:t(i)− `2

1:t(i)| ≤Mi (26)

We are now ready to go on with the proof. Notice that combining Equations (26) and
(24) provides us with a bound on |˜̀2

1:t(i)−`2
1:t(i)| which depends on the p̃t’s. The next lemma

provides us with a cleaner bound which gets rid of this dependence. The proof of is provided
in Section E.2.

Lemma 15. Conditioning on the event B, the following bound holds,

Mi ≤ 10n
2
3LT

1
3 + 4

√
L
(
`2

1:T (i)
) 1

4

(
n∑
i=1

√
`2

1:T (i)

) 1
2

, (27)

and also

Mi ≤ 14n
1
2LT

1
2 . (28)
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Step 2: bounding (A). First, we formulate a helper lemma, with its proof provided in
Section E.3.

Lemma 16. Let x, a > 0 then
√
x+ a−

√
x ≤ min{

√
a, a/
√
x}.

Equation (26) enables us to bound (A) as follows,

(A) =

(
n∑
i=1

√
˜̀2
1:T (i)

)2

−

(
n∑
i=1

√
`2

1:T (i)

)2

=

(
n∑
i=1

√
`2

1:T (i) + (˜̀2
1:T (i)− `2

1:T (i))

)2

−

(
n∑
i=1

√
`2

1:T (i)

)2

≤

(
n∑
i=1

√
`2

1:T (i) +Mi

)2

−

(
n∑
i=1

√
`2

1:T (i)

)2

=

(
n∑
i=1

√
`2

1:T (i) +Mi +
n∑
i=1

√
`2

1:T (i)

)
·

(
n∑
i=1

√
`2

1:T (i) +Mi −
n∑
i=1

√
`2

1:T (i)

)

≤ 2
n∑
i=1

√
`2

1:T (i) +Mi ·

(
n∑
i=1

√
`2

1:T (i) +Mi −
n∑
i=1

√
`2

1:T (i)

)

≤ 2
n∑
i=1

√
`2

1:T (i) ·
n∑
i=1

min

{√
Mi,

Mi√
`2

1:T (i)

}
+ 2

n∑
i=1

√
Mi ·

n∑
i=1

min

{√
Mi,

Mi√
`2

1:T (i)

}

≤ 2
n∑
i=1

√
`2

1:T (i) ·
n∑
i=1

min

{√
Mi,

Mi√
`2

1:T (i)

}
︸ ︷︷ ︸

(∗)

+ 2

(
n∑
i=1

√
Mi

)2

︸ ︷︷ ︸
(∗∗)

, (29)

where the second-to-last line uses
√
a+ b ≤

√
a+
√
b, together with Lemma 16.

Let us start with bounding (∗∗),(
n∑
i=1

√
Mi

)2

≤ n2 max
i
Mi ≤ 14Ln2+ 1

2T
1
2

≤ 14Ln2+ 1
3T

2
3 (30)

where we have used the second part of Lemma 15; the second line uses T ≥ n leading to
(nT )1/2 ≤ n1/3T 2/3.

The last step of the proof is to bound (∗). From Lemma 15, we have the immediate
corollary that,

Mi ≤ max

16n
2
3LT

1
3 , 16

√
L
(
`2

1:T (i)
) 1

4

(
n∑
i=1

√
`2

1:T (i)

) 1
2

 . (31)
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Denote i∗ = arg maxi∈[n] min

{√
Mi,

Mi√
`21:T (i)

}
. We divide the remainder of the proof into

two cases depending on the argument returned by max of Eq. (31) for the index i∗. If the
max returns the first argument for i∗, i.e. Mi∗ = 16n

2
3LT

1
3 , then

(∗) =
n∑
i=1

√
`2

1:T (i) ·
n∑
i=1

min

{√
Mi,

Mi√
`2

1:T (i)

}

≤
n∑
i=1

√
`2

1:T (i) · nmin

{√
Mi∗ ,

Mi∗√
`2

1:T (i∗)

}

= n

n∑
i=1

√
`2

1:T (i) ·
√
Mi∗

≤ n2
√
LT ·

√
16n2/3T 1/3

≤ 4n2+ 1
3LT

2
3 . (32)

In the other case, we have Mi∗ = 16
√
L (`2

1:T (i∗))
1
4

(∑n
i=1

√
`2

1:T (i∗)
) 1

2 . We will need the
following lemma, with its proof given Section E.4:

Lemma 17. Fix w > 0; Let x ∈ [0, w] and a, b : R+ → R+ functions of x, then

max
x∈[0,w]

min
{
a(x) · x1/8, b(x) · x−1/4

}
≤ max

x∈[0,w]
a(x)2/3b(x)1/3.

Now we can upper bound (∗),

(∗) =
n∑
i=1

√
`2

1:T (i) ·
n∑
i=1

min

{√
Mi,

Mi√
`2

1:T (i)

}

≤ n
n∑
i=1

√
`2

1:T (i) ·min

{√
Mi∗ ,

Mi∗√
`2

1:T (i∗)

}

≤ n2L
1
2T

1
2 ·min

{√
Mi∗ ,

Mi∗√
`2

1:T (i∗)

}

= n2L
1
2T

1
2 ·min

4L
1
4

(
`2

1:T (i∗)
) 1

8

(
n∑
i=1

√
`2

1:T (i∗)

) 1
4

,
16
√
L
(∑n

i=1

√
`2

1:T (i∗)
) 1

2

(`2
1:T (i∗))

1
4


(�)
≤ n2L

1
2T

1
2 · 16L

1
2n

1
3T

1
6

≤ 16n2+ 1
3LT

2
3 , (33)

where for (�) we used Lemma 17 with x = `2
1:T (i∗), a(x) = 4L

1
4

(∑n
i=1

√
`2

1:T (i∗)
) 1

4 ,

b(x) = 16
√
L
(∑n

i=1

√
`2

1:T (i∗)
) 1

2 , and therefore maxx a(x)2/3b(x)1/3 ≤ 16L1/2n1/3T 1/6. Com-
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bining Equation (29) together with Equations (30),(32), and (33), we may establish the final
bound for (A), conditioned on the event B:

(A) ≤ 64n2+ 1
3LT

2
3 (34)

Concluding: Combining Equation (23) with (34) and taking an sufficiently small δ =
1/poly(n,T) we have proven the theorem.

E.2 Proof of Lemma 15

Proof. Recalling that Mi = max{2σi, 6nL/θ}, it is natural to divide the proof into two cases
depending on the value of Mi. Since θ = (n/T )1/3, it is immediate to show that the lemma
holds for the case where 2σi ≤ 6nL/θ, since in this case Mi = 6nL/θ = 6Ln2/3T 1/3. The
rest of the proof regards the other case where 2σi > 6nL/θ, and therefore Mi = 2σi.

Step (1): Decomposing M2
i .

1

4L
M2

i =
1

L
σ2
i

≤
T∑
t=1

`2
t (i)

p̃t(i)

=
∑

t:`21:t(i)≤2Mi

`2
t (i)

p̃t(i)
+

∑
t:`21:t(i)≥2Mi

`2
t (i)

(
1

p̃t(i)
− 1

pt(i)

)
+

∑
t:`21:t(i)≥2Mi

`2
t (i)

pt(i)

≤ n

θ
·

∑
t:`21:t(i)≤2Mi

`2
t (i) + nθ`2

1:T (i) +
∑

t:`21:t(i)≥2Mi

`2
t (i)

pt(i)

≤ 2nMi

θ
+ nθLT +

∑
t:`21:t(i)≥2Mi

`2
t (i)

pt(i)︸ ︷︷ ︸
(?)

, (35)

where in the second line we use the definition of σi together with the bound of Eq. (24),
implying σ2

i ≤ L
∑T

t=1 `
2
t (i)/p̃t(i); in the fourth line we use p̃t(i) ≥ θ

n
(due to mixing), and

we also use 1
p̃t(i)
− 1

pt(i)
≤ nθ (see proof of Theorem 7). The last line uses `2

1:T (i) ≤ LT . Next
we bound the last term, (?).

Step (2): Bounding (?). We shall first bound 1/pt(i) and later use this in order to
bound (?). Notice that the following hold ∀t ∈ [T ] such that `2

1:t(i) ≥ 2Mi,

˜̀2
1:t(i) ≥ `2

1:t(i)−Mi ≥
1

2
`2

1:t(i) (36)

˜̀2
1:t(i) ≤ `2

1:t(i) +Mi ≤
3

2
`2

1:t(i), ∀i ∈ [n] (37)
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where we have used |˜̀2
1:t(i) − `2

1:t(i)| ≤ Mi (see Eq (26)), which follows since we condition
on the event B. Combining the above with the definition of pt (see Lemma 2) and denoting
L′ := Ln/θ, yields,

1

pt(i)
=

∑n
i=1

√
˜̀2
1:t−1(i) + L′√

˜̀2
1:t−1(i) + L′

≤
∑n

i=1

√
˜̀2
1:t(i) + L′√

˜̀2
1:t(i)

≤
√

2

∑n
i=1

√
3
2
`2

1:t(i) + L′√
`2

1:t(i)

≤ 2

∑n
i=1

√
`2

1:T (i)√
`2

1:t(i)

where in the second line we use ˜̀2
t (i) ≤ L′, in the third we employ Equations (36), (37); and

the fourth follows by noticing L′ = Ln/θ ≤Mi ≤ `2
1:t(i)/2, and also `2

1:t(i) ≤ `2
1:T (i), ∀t ∈ [T ].

Using the above inequality we may now bound (?),

(?) =
∑

t:`21:t(i)≥2Mi

`2
t (i)

pt(i)

≤ 2

(
n∑
i=1

√
`2

1:T (i)

) ∑
t:`21:t(i)≥2Mi

`2
t (i)√
`2

1:t(i)

≤ 2

(
n∑
i=1

√
`2

1:T (i)

)
T∑
t=1

`2
t (i)√
`2

1:t(i)

≤ 4

(
n∑
i=1

√
`2

1:T (i)

)√
`2

1:T (i) (38)

where the last inequality uses the following lemma from (McMahan and Streeter, 2010):

Lemma 18. (McMahan and Streeter, 2010) For any non-negative numbers a1, . . . , aT the
following holds:

T∑
t=1

at√∑t
τ=1 aτ

≤ 2

√√√√ T∑
t=1

at

Step (3): Final bound. Plugging the bound of Equation (38) back into Equation (35)
implies,
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1

4L
M2

i ≤
2nMi

θ
+ nθLT + 4

√
`2

1:T (i)

(
n∑
i=1

√
`2

1:T (i)

)

Denote a = 1/(4L), b = 2n/θ, c1 = nθLT, c2 = 4
√
`2

1:T (i)
(∑n

i=1

√
`2

1:T (i)
)
. Then, the

above inequality can be reformulated as:

aM2
i − bMi − c1 − c2 ≤ 0.

Due to the quadratic formula, the largest Mi that satisfies the inequality above is
Mi =

(
b+

√
b2 + 4a(c1 + c2)

)
/(2a). We can get an upper bound on Mi by using√

b2 + 4a(c1 + c2) ≤ b+ 2
√
ac1 + 2

√
ac2 to finally get that

Mi ≤
8nL

θ
+ 2n

1
2Lθ

1
2T

1
2 + 4

√
L
(
`2

1:T (i)
) 1

4

(
n∑
i=1

√
`2

1:T (i)

) 1
2

.

Using θ = (n/T )1/3 we have proven the first claim of the lemma. For the second claim, we
use the upper bound `2

1:T (i) ≤ LT and note that n
2
3T

1
3 ≤ n

1
2T

1
2 (since T ≥ n).

E.3 Proof of Lemma 16

Proof.
(
√
x+ a−

√
x)2 = 2x+ a− 2

√
x2 + xa ≤ a

which proves that
√
x+ a −

√
x ≤

√
a. On the other hand, we have that

√
x+ a −

√
x ≤

a/
√
x, which can be easily seen by rearranging it as

√
x+ a ≤ a/

√
x +
√
x and taking the

square of both side. Combining these two facts we get the results.

E.4 Proof of Lemma 17

Proof. Define F (x) := min
{
a(x) · x1/8, b(x) · x−1/4

}
. Note that in order to establish the

lemma it is sufficient to show that the following holds for any x ≥ 0,

F (x) ≤ a(x)2/3b(x)1/3 .

To do so, fix x ≥ 0 and divide into two cases.
Case 1: If a(x)x1/8 ≤ b(x)x−1/4 then x ≤ (b(x)/a(x))8/3 implying that F (x) = a(x)x1/8 ≤

a(x)2/3b(x)1/3.
Case 2: If a(x)x1/8 ≥ b(x)x−1/4 then x ≥ (b(x)/a(x))8/3 implying that F (x) = b(x)x−1/4 ≤

a(x)2/3b(x)1/3.
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