Active Detection via Adaptive Submodularity

Yuxin Chen[†], Hiroaki Shioi[‡], Cesar Antonio Fuentes Montesinos[†] Lian Pin Koh[†], Serge Wich[¶] and Andreas Krause[†]

ICML Beijing June 23, 2014

Motivating Example: Biodiversity Monitoring

Application: Detecting Orangutan nests

Automatic, Open-loop Computer Vision System

Interactive Detection

How can human experts best help the detection task?

The adaptive policy

Open-loop (Passive) System

Closed-loop (Active) System

Evidence for Detection

- Train classifier (e.g., SVM; conv. Neural Network, etc.) on 45 positive and 148 negative examples
- Use sliding window to produce "response images"
- Which detection should be proposed next?

Votes and Hypotheses

Interactions between voting elements and hypotheses: $\mathcal{G} = (\mathcal{V}, \mathcal{H}, \mathcal{E})$ [Hough '59; Gall et al, '09; Barinova et al, '11]

Active Detection as an Adaptive Optimization Problem

Positive coverage:

Votes can be fully explained /covered by a true hypotheses.

Assume that each vote carries unit weight

Active Detection as an Adaptive Optimization Problem

Negative coverage:

Votes that are similar with false votes should be discounted.

Assume that each vote carries unit weight

The general case: Real-votes setting

Now observe that hypothesis 3 is false

Voting elements with real-value votes

Active Detection in a Nutshell

The Objective

Coverage for edge (v,h) = Coverage due to positive observations + Coverage due to negative observations Coverage of $\mathcal{G} = (\mathcal{V}, \mathcal{H}, \mathcal{E}) = \sum_{(v,h)}$ Coverage for edge (v,h)

Diminishing Evidence in Detection

- Positive observations explain "response" in local areas
- Negative observations explain "response" in similar areas

Adaptive submodular objective can capture this diminishing returns effect

Adaptive Submodularity [Golovin & Krause, 2011]

Receiving observation earlier (i.e., at an ancestor) only increases its <u>expected</u> marginal benefit.

Greedy vs. Optimal

Assume that:

- The optimal policy achieves a maximum coverage of Q
- The greedy policy achieves a maximum coverage of $Q-\beta$

 $\leq \Big(\ln \frac{Q}{\beta} + 1 \Big) \cdot$

Cost of the Greedy algorithm w.r.t. F

Cost of optimal policy

Detection Results

Active detection improves precision and recall

TUD-pedestrian: Pedestrian Detection

Votes and Hypotheses Hough-forest Based Detector

h2 6 4

Response Image Original Image [Hough-forest, Gall et al, CVPR'09]

TUD-pedestrian: Detection Results

Cyan box: current detection. Red boxes: ground-truth labels of pedestrians. Green boxes: detections made by the active detector. ¹⁹

PASCAL 2008 - Person Category Deformable Parts Model (DPM)

Conclusion

- An active detection framework that enables turning existing base detectors into systems that intelligently interact with users.
- We show that the objective function satisfies adaptive submodularity, allowing us to use efficient greedy algorithms, with strong theoretical guarantees.
- We demonstrate the effectiveness of the active detection algorithm on three different real-world object detection tasks.

Come to our poster on Tuesday for more details !