
Efficient Model-Based Reinforcement Learning
through Optimistic Policy Search and Planning

Sebastian Curi ∗
Department of Computer Science

ETH Zurich
scuri@inf.ethz.ch

Felix Berkenkamp ∗
Bosch Center for Artificial Intelligence
felix.berkenkamp@de.bosch.com

Andreas Krause
Department of Computer Science

ETH Zurich
krausea@ethz.ch

Abstract

Model-based reinforcement learning algorithms with probabilistic dynamical
models are amongst the most data-efficient learning methods. This is often
attributed to their ability to distinguish between epistemic and aleatoric uncertainty.
However, while most algorithms distinguish these two uncertainties for learning
the model, they ignore it when optimizing the policy, which leads to greedy
and insufficient exploration. At the same time, there are no practical solvers
for optimistic exploration algorithms. In this paper, we propose a practical
optimistic exploration algorithm (H-UCRL). H-UCRL reparameterizes the set of
plausible models and hallucinates control directly on the epistemic uncertainty.
By augmenting the input space with the hallucinated inputs, H-UCRL can be
solved using standard greedy planners. Furthermore, we analyze H-UCRL and
construct a general regret bound for well-calibrated models, which is provably
sublinear in the case of Gaussian Process models. Based on this theoretical
foundation, we show how optimistic exploration can be easily combined with
state-of-the-art reinforcement learning algorithms and different probabilistic
models. Our experiments demonstrate that optimistic exploration significantly
speeds-up learning when there are penalties on actions, a setting that is notoriously
difficult for existing model-based reinforcement learning algorithms.

1 Introduction

Model-Based Reinforcement Learning (MBRL) with probabilistic dynamical models can solve many
challenging high-dimensional tasks with impressive sample efficiency (Chua et al., 2018). These
algorithms alternate between two phases: first, they collect data with a policy and fit a model to the
data; then, they simulate transitions with the model and optimize the policy accordingly. A key feature
of the recent success of MBRL algorithms is the use of models that explicitly distinguish between
epistemic and aleatoric uncertainty when learning a model (Gal, 2016). Aleatoric uncertainty is in-
herent to the system (noise), whereas epistemic uncertainty arises from data scarcity (Der Kiureghian
and Ditlevsen, 2009). However, to optimize the policy, practical algorithms marginalize over both the
aleatoric and epistemic uncertainty to optimize the expected performance under the current model, as
in PILCO (Deisenroth and Rasmussen, 2011). This greedy exploitation can cause the optimization to

∗Equal contribution

34th Conference on Neural Information Processing Systems (NeurIPS 2020), Vancouver, Canada.

DE PE GP
0

200

400

E
pi

so
de

R
et

ur
n

Action Penalty 0.0

DE PE GP

Action Penalty 0.1

H-UCRL Greedy

DE PE GP

Action Penalty 0.2

Thompson Known Model

Figure 1: Final returns in an inverted pendulum swing-up task with sparse rewards. As the action
penalty increases, exploration through noise is penalized and algorithms get stuck in a local minimum,
where the pendulum is kept at the bottom position. Instead, H-UCRL is able to solve the swing-up task
reliably. This holds for for all considered dynamical models: Deterministic- (DE) and Probabilistic
Ensembles (PE) of neural networks as well as Gaussian Processes (GP) models.

get stuck in local minima even in simple environments like the swing-up of an inverted pendulum: In
Fig. 1, all methods can solve this problem without action penalties (left plot). However, with action
penalties, the expected reward (under the epistemic uncertainty) of swinging up the pendulum is
low relative to the cost of the maneuver. Consequently, the greedy policy does not actuate the system
at all and fails to complete the task. While optimistic exploration is a well-known remedy, there
is currently a lack of efficient, principled means of incorporating optimism in deep MBRL.

Contributions Our main contribution is a novel optimistic MBRL algorithm, Hallucinated-UCRL
(H-UCRL), which can be applied together with state-of-the-art RL algorithms (Section 3). Our key
idea is to reduce optimistic exploration to greedy exploitation by reparameterizing the model-space
using a mean/epistemic variance decomposition. In particular, we augment the control space of the
agent with hallucinated control actions that directly control the agent’s epistemic uncertainty about
the 1-step ahead transition dynamics (Section 3.1). We provide a general theoretical analysis for
H-UCRL and prove sublinear regret bounds for the special case of Gaussian Process (GP) dynamics
models (Section 3.2). Finally, we evaluate H-UCRL in high-dimensional continuous control tasks
that shed light on when optimistic exploration outperforms greedy exploitation and Thompson
sampling (Section 4). To the best of our knowledge, this is the first approach that successfully
implements optimistic exploration with deep-MBRL.

Related Work MBRL is a promising avenue towards applying RL methods to complex real-
life decision problems due to its sample efficiency (Deisenroth et al., 2013). For instance, Kaiser
et al. (2019) use MBRL to solve the Atari suite, whereas Kamthe and Deisenroth (2018) solve
low-dimensional continuous-control problems using GP models and Chua et al. (2018) solve high-
dimensional continuous-control problems using ensembles of probabilistic Neural Networks (NN).
All these approaches perform greedy exploitation under the current model using a variant of PILCO
(Deisenroth and Rasmussen, 2011). Unfortunately, greedy exploitation is provably optimal only in
very limited cases such as linear quadratic regulators (LQR) (Mania et al., 2019).

Variants of Thompson (posterior) sampling are a common approach for provable exploration in
reinforcement learning (Dearden et al., 1999). In particular, Osband et al. (2013) propose Thompson
sampling for tabular MDPs. Chowdhury and Gopalan (2019) prove a Õ(

√
T) regret bound for

continuous states and actions for this theoretical algorithm, where T is the number of episodes.
However, Thompson sampling can be applied only when it is tractable to sample from the posterior
distribution over dynamical models. For example, this is intractable for GP models with continuous
domains. Moreover, Wang et al. (2018) suggest that approximate inference methods may suffer from
variance starvation and limited exploration.

The Optimism-in-the-Face-of-Uncertainty (OFU) principle is a classical approach towards provable
exploration in the theory of RL. Notably, Brafman and Tennenholtz (2003) present the R-Max
algorithm for tabular MDPs, where a learner is optimistic about the reward function and uses the
expected dynamics to find a policy. R-Max has a sample complexity of O(1/ε3), which translates to
a sub-optimal regret of Õ(T 2/3). Jaksch et al. (2010) propose the UCRL algorithm that is optimistic
on the transition dynamics and achieves an optimal Õ(

√
T) regret rate for tabular MDPs. Recently,

Zanette and Brunskill (2019), Efroni et al. (2019), and Domingues et al. (2020) provide refined
UCRL algorithms for tabular MDPs. When the number of states and actions increase, these tabular
algorithms are inefficient and practical algorithms must exploit structure of the problem. The use of
optimism in continuous state/action MDPs however is much less explored. Jin et al. (2019) present an

2

optimistic algorithm for linear MDPs and Abbasi-Yadkori and Szepesvári (2011) for linear quadratic
regulators (LQR), both achieving Õ(

√
T) regret. Finally, Luo et al. (2018) propose a trust-region

UCRL meta-algorithm that asymptotically finds an optimal policy but it is intractable to implement.

Perhaps most closely related to our work, Chowdhury and Gopalan (2019) present GP-UCRL for
continuous state and action spaces. They use optimistic exploration for the policy optimization
step with dynamical models that lie in a Reproducing Kernel Hilbert Space (RKHS). However,
as mentioned by Chowdhury and Gopalan (2019), their algorithm is intractable to implement and
cannot be used in practice. Instead, we build on an implementable but expensive strategy that was
heuristically suggested by Moldovan et al. (2015) for planning on deterministic systems and develop
a principled and highly efficient optimistic exploration approach for deep MBRL. Partial results from
this paper appear in Berkenkamp (2019, Chapter 5).

Concurrent Work Kakade et al. (2020) build tight confidence intervals for our problem setting
based on information theoretical quantities. However, they assume an optimization oracle and do
not provide a practical implementation (their experiments use Thompson sampling). Abeille and
Lazaric (2020) propose an equivalent algorithm to H-UCRL in the context of LQR and proved that the
planning problem can be solved efficiently. In the same spirit as H-UCRL, Neu and Pike-Burke (2020)
reduce intractable optimistic exploration to greedy planning using well-selected reward bonuses.
In particular, they prove an equivalence between optimistic reinforcement learning and exploration
bonus (Azar et al., 2017) for tabular and linear MDPs. How to generalize these exploration bonuses
to our setting is left for future work.

2 Problem Statement and Background

We consider a stochastic environment with states s ∈ S ⊆ Rp, actions a ∈ A ⊂ Rq within a compact
set A, and i.i.d., additive transition noise ωn ∈ Rp. The resulting transition dynamics are

sn+1 = f(sn,an) + ωn (1)

with f : S ×A → S. For tractability we assume continuity of f , which is common for any method
that aims to approximate f with a continuous model (such as neural networks). In addition, we also
assume sub-Gaussian noise ω, which includes any zero-mean distribution with bounded support and
Gaussians. This assumption allows the noise to depend on states and actions.
Assumption 1 (System properties). The true dynamics f in (1) are Lf -Lipschitz continuous and, for
all n ≥ 0, the elements of the noise vector ωn are i.i.d. σ-sub-Gaussian.

2.1 Model-based Reinforcement Learning

Objective Our goal is to control the stochastic system (1) optimally in an episodic setting over a
finite time horizon N . To control the system, we use any deterministic policy πn : S → A from a set
Π that selects actions an = πn(sn) given the current state. For ease of notation, we assume that the
system is reset to a known state s0 at the end of each episode, that there is a known reward function
r : S × A → R, and we omit the dependence of the policy on the time index. Our results, easily
extend to known initial state distributions and unknown reward functions using standard techniques
(see Chowdhury and Gopalan (2019)). For any dynamical model f̃ : S × A → S (e.g., f in (1)),
the performance of a policy π is the total reward collected during an episode in expectation over the
transition noise ω,

J(f̃ , π) = Eω̃0:N−1

[∑N

n=0
r(s̃n, π(s̃n))

∣∣∣∣ s0

]
, s.t. s̃n+1 = f̃(s̃n, π(s̃n)) + ω̃n. (2)

Thus, we aim to find the optimal policy π∗ for the true dynamics f in (1),

π∗ = argmax
π∈Π

J(f, π). (3)

If the dynamics f were known, (3) would be a standard stochastic optimal control problem. However,
in model-based reinforcement learning we do not know the dynamics f and have to learn them online.

Model-learning We consider algorithms that iteratively select policies πt at each iteration/episode
t and conduct a single rollout on the real system (1). That is, starting with D1 = ∅, at each iteration t
we apply the selected policy πt to (1) and collect transition data Dt+1 = {(sn−1,t,an−1,t), sn,t}Nn=1.

3

Algorithm 1 Model-based Reinforcement Learning

Inputs: Calibrated dynamical model, reward function r(s,a), horizon N , initial state s0

1: for t = 1, 2, . . . do
2: Select πt based on (4), (5), or (7)
3: Reset the system to s0,t = s0

4: for n = 1, . . . , N do
5: sn,t = f(sn−1,t, πt(sn−1,t)) + ωn−1,t

6: Update statistical dynamical model with the N observed state transitions in Dt.

We use a statistical model to estimate which dynamical models f̃ are compatible with the data
in D1:t = ∪0<i≤tDi. This can either come from a frequentist model with mean and confidence
estimate µt(s,a) and Σt(s,a), or from a Bayesian perspective that estimates a posterior distribution
p(f̃ | D1:t) over dynamical models f̃ and defines µt(·) = Ef̃∼p(f̃ | D1:t)

[f̃(·)] and Σ2
t (·) = Var[f̃(·)],

respectively. Either way, we require the model to be well-calibrated:

Assumption 2 (Calibrated model). The statistical model is calibrated w.r.t. f in (1), so that with
σt(·) = diag(Σt(·)) there exists a sequence βt ∈ R>0 such that, with probability at least (1− δ), it
holds jointly for all t ≥ 0 and s,a ∈ S ×A that |f(s,a)− µt(s,a)| ≤ βtσt(s,a), elementwise.

Popular choices for statistical dynamics models include Gaussian Processes (GP) (Rasmussen
and Williams, 2006) and Neural Networks (NN) (Anthony and Bartlett, 2009). GP models naturally
differentiate between aleatoric noise and epistemic uncertainty and are effective in the low-data regime.
They provably satisfy Assumption 2 when the true function f has finite norm in the RKHS induced
by the covariance function. In contrast to GP models, NNs potentially scale to larger dimensions
and data sets. From a practical perspective, NN models that differentiate aleatoric from epistemic
uncertainty can be efficiently implemented using Probabilistic Ensembles (PE) (Lakshminarayanan
et al., 2017). Deterministic Ensembles (DE) are also commonly used but they do not represent
aleatoric uncertainty correctly (Chua et al., 2018). NN models are not calibrated in general, but can
be re-calibrated to satisfy Assumption 2 (Kuleshov et al., 2018). State-of-the-art methods typically
learn models so that the one-step predictions in Assumption 2 combine to yield good predictions for
trajectories (Archer et al., 2015; Doerr et al., 2018; Curi et al., 2020).

2.2 Exploration Strategies

Ultimately the performance of our algorithm depends on the choice of πt. We now provide a unified
overview of existing exploration schemes and summarize the MBRL procedure in Algorithm 1.

Greedy Exploitation In practice, one of the most commonly used algorithms is to select the policy
πt that greedily maximizes the expected performance over the aleatoric uncertainty and epistemic
uncertainty induced by the dynamical model. Other exploration strategies, such as dithering (e.g.,
epsilon-greedy, Boltzmann exploration) (Sutton and Barto, 1998) or certainty equivalent control
(Bertsekas et al., 1995, Chapter 6.1), can be grouped into this class. The greedy policy is

πGreedy
t = argmax

π∈Π
Ef̃∼p(f̃ | D1:t)

[
J(f̃ , π)

]
. (4)

For example, PILCO (Deisenroth and Rasmussen, 2011) and GP-MPC (Kamthe and Deisenroth, 2018)
use moment matching to approximate p(f̃ | D1:t) and use greedy exploitation to optimize the policy.
Likewise, PETS-1 and PETS-∞ from Chua et al. (2018) also lie in this category, in which p(f̃ | D1:t)
is represented via ensembles. The main difference between PETS-∞ and other algorithms is that
PETS-∞ ensures consistency by sampling a function per rollout, whereas PETS-1, PILCO, and GP-
MPC sample a new function at each time step for computational reasons. We show in Appendix A that,
in the bandit setting, the exploration is only driven by noise and optimization artifacts. In the tabular
RL setting, dithering takes an exponential number of episodes to find an optimal policy (Osband et al.,
2014). As such, it is not an efficient exploration scheme for reinforcement learning. Nevertheless, for
some specific reward and dynamics structure, such as linear-quadratic control, greedy exploitation
indeed achieves no-regret (Mania et al., 2019). However, it is the most common exploration strategy
and many practical algorithms to efficiently solve the optimization problem (4) exist (cf. Section 3.1).

4

s0 = s̃0

s̃1

s̃2 s̃3

π(s̃0)

η(s̃0) π(s̃1)
η(s̃1) π(s̃2) η(s̃2)

Sparse reward

State distribution
One-step uncertainty
βtσt(s̃n, π(s̃n))

Figure 2: Illustration of the optimistic trajectory s̃n from H-UCRL. The policy π is used to choose the
next-state distribution, and the variables η to choose the next state optimistically inside the one-step
confidence interval (dark grey bars). The true dynamics is contained inside the light grey confidence
intervals, but, after the first step, not necessarily inside the dark grey bars. Even when the expected
reward w.r.t. the epistemic uncertainty is small (red cross compared to light grey bar), H-UCRL
efficiently finds the high-reward region (red cross). Instead, greedy exploitation strategies fail.

Thompson Sampling A theoretically grounded exploration strategy is Thompson sampling, which
optimizes the policy w.r.t. a single model that is sampled from p(f̃ | D1:t) at every episode. Formally,

f̃t ∼ p(f̃ | D1:t), πTS
t = argmax

π∈Π
J(f̃t, π). (5)

This is different to PETS-∞, as the former algorithm optimizes w.r.t. the average of the (consistent)
model trajectories instead of a single model. In general, it is intractable to sample from p(f̃ | D1:t).
Nevertheless, after the sampling step, the optimization problem is equivalent to greedy exploitation
of the sampled model. Thus, the same optimization algorithms can be used to solve (4) and (5).

Upper-Confidence Reinforcement Learning (UCRL) The final exploration strategy we address
is UCRL exploration (Jaksch et al., 2010), which optimizes jointly over policies and models inside
the setMt = {f̃ | |f̃(s,a) − µt(s,a)| ≤ βtσt(s,a)∀s,a ∈ S × A} that contains all statistically-
plausible models compatible with Assumption 2. The UCRL algorithm is

πUCRL
t = argmax

π∈Π
max
f̃∈Mt

J(f̃ , π). (6)

Instead of greedy exploitation, these algorithms optimize an optimistic policy that maximizes
performance over all plausible models. Unfortunately, this joint optimization is in general intractable
and algorithms designed for greedy exploitation (4) do not generally solve the UCRL objective (6).

3 Hallucinated Upper Confidence Reinforcement Learning (H-UCRL)

We propose a practical variant of the UCRL-exploration (6) algorithm. Namely, we reparameterize
the functions f̃ ∈Mt as f̃ = µt−1(s,a)+βt−1Σt−1(s,a)η(s,a), for some function η : Rp×Rq →
[−1, 1]p. This transformation is similar in spirit to the re-parameterization trick from Kingma and
Welling (2013), except that η(s,a) are functions. The key insight is that instead of optimizing over
dynamics in f̃ ∈ Mt as in UCRL, it suffices to optimize over the functions η(·). We call this
algorithm H-UCRL, formally:

πH−UCRL
t = argmax

π∈Π
max

η(·)∈[−1,1]p
J(f̃ , π), s.t. f̃(s,a) = µt−1(s,a) + βt−1Σt−1(s,a)η(s,a). (7)

At a high level, the policy π acts on the inputs (actions) of the dynamics and chooses the next-state
distribution. In turn, the optimization variables η act in the outputs of the dynamics to select the
most-optimistic outcome from within the confidence intervals. We call the optimization variables the
hallucinated controls as the agent hallucinates control authority to find the most-optimistic model.

The H-UCRL algorithm does not explicitly propagate uncertainty over the horizon. Instead, it does
so implicitly by using the pointwise uncertainty estimates from the model to recursively plan an
optimistic trajectory, as illustrated in Fig. 2. This has the practical advantage that the model only has
to be well-calibrated for 1-step predictions and not N -step predictions. In practice, the parameter βt
trades off between exploration and exploitation.

3.1 Solving the Optimization Problem

Problem (7) is still intractable as it requires to optimize over general functions. The crucial
insight is that we can make the H-UCRL algorithm (7) practical by optimizing over a smaller class

5

Algorithm 2 H-UCRL combining Optimistic Policy Search and Planning

Inputs: Mean µ(·, ·) and variance Σ2(·, ·), parametric policies πθ(·), ηθ(·), parametric critic Qϑ(·),
horizon N , policy search algorithm PolicySearch, online planning algorithm Plan,

1: for t = 1, 2, . . . do
2: (πθ,t, ηθ,t), Qϑ,t ← PolicySearch(µt−1; Σ2

t−1; (πθ,t−1, ηθ,t−1))
3: for n = 1, . . . , N do
4: (an−1,t,a

′
n−1,t) = Plan(sn−1,t;µt−1; Σ2

t−1; (πθ,t, ηθ,t), Qϑ)
5: sn,t = f(sn−1,t,an−1,t) + ωn−1,t

6: Update statistical dynamical model with the N observed state transitions in Dt.

of functions η. In Appendix E, we prove that it suffices to optimize over Lipschitz-continuous
bounded functions instead of general bounded functions. Therefore, we can optimize jointly
over policies and Lipschitz-continuous, bounded functions η(·). Furthermore, we can re-write
η(s̃n, ãn) = η(s̃n, π(s̃n,t)) = η(s̃n,t). This allows to reduce the intractable optimistic problem
(7) to greedy exploitation (4): We simply treat η(·) ∈ [−1, 1]p as an additional hallucinated control
input that has no associated control penalties and can exert as much control as the current epistemic
uncertainty that the model affords. With this observation in mind, H-UCRL greedily exploits a
hallucinated system with the extended dynamics f̃ in (7) and a corresponding augmented control
policy (π, η). This means that we can now use the same efficient MBRL approaches for optimistic
exploration that were previously restricted to greedy exploitation and Thompson sampling (albeit
on a slightly larger action space, since the dimension of the action space increases from q to q + p).

In practice, if we have access to a greedy oracle π = GreedyOracle(f), we simply access it using
π, η = GreedyOracle(µt−1 + βt−1Σt−1η). Broadly speaking, greedy oracles are implemented
using offline-policy search or online planning algorithms. Next, we discuss how to use these strategies
independently to solve the H-UCRL planning problem (7). For a detailed discussion on how to
augment common algorithms with hallucination, see Appendix C.

Offline Policy Search is any algorithm that optimizes a parametric policy to maximize performance
of the current dynamical model. As inputs, it takes the dynamical model and a parametric family for
the policy and the critic (the value function). It outputs the optimized policy and the corresponding
critic of the optimized policy. These algorithms have fast inference time and scale to large dimensions
but can suffer from model bias and inductive bias from the parametric policies and critics (van Hasselt
et al., 2019).

Online Planning or Model Predictive Control (Morari and H. Lee, 1999) is a local planning algorithm
that outputs the best action for the current state. This method solves the H-UCRL planning problem (7)
in a receding-horizon fashion. The planning horizon is usually shorter than N and the reward-to-go is
bootstrapped using a terminal reward. In most cases, however, this terminal reward is unknown and
must be learned (Lowrey et al., 2019). As the planner observes the true transitions during deployment,
it suffers less from model errors. However, its running time is too slow for real-time implementation.

Combining Offline Policy Search with Online Planning In Algorithm 2, we propose to combine
the best of both worlds to solve the H-UCRL planning problem (7). In particular, Algorithm 2 takes as
inputs a policy search algorithm and a planning algorithm. After each episode, it optimizes parametric
(e.g. neural networks) control and hallucination policies (πθ, ηθ) using the policy search algorithm.
As a by-product of the policy search algorithm we have the learned critic Qϑ. At deployment, the
planning algorithm returns the true and hallucinated actions (a, a′), and we only execute the true
action a to the true system. We initialize the planning algorithm using the learned policies (πθ, ηθ)
and use the learned critic to bootstrap at the end of the prediction horizon. In this way, we achieve
the best of both worlds. The policy search algorithm accelerates the planning algorithm by shortening
the planning horizon with the learned critic and by using the learned policies to warm-start the
optimization. The planning algorithm reduces the model-bias that a pure policy search algorithm has.

3.2 Theoretical Analysis

In this section, we analyze the H-UCRL algorithm (7). A natural quality criterion to evaluate
exploration schemes is the cumulative regret RT =

∑T
t=1 |J(f, π∗) − J(f, πt)|, which is the

6

difference in performance between the optimal policy π∗ and πt on the true system f over the run
of the algorithm (Chowdhury and Gopalan, 2019). If we can show that RT is sublinear in T , then
we know that the performance J(f, πt) of our chosen policies πt converges to the performance of
the optimal policy π∗. We first introduce the final assumption for the results in this section to hold.
Assumption 3 (Continuity). The functions µt and σt are Lµ and Lσ Lipschitz continuous, any
policy π ∈ Π is Lπ-Lipschitz continuous and the reward r(·, ·) is Lr-Lipschitz continuous.

Assumption 3 is not restrictive. NN with Lipschitz-continuous non-linearities or GP with Lipschitz-
continuous kernels output Lipschitz-continuous predictions (see Appendix G). Furthermore, we
are free to choose the policy class Π, and most reward functions are either quadratic or tolerance
functions (Tassa et al., 2018). Discontinuous reward functions are generally very difficult to optimize.

Model complexity In general, we expect that RT depends on the complexity of the statistical
model in Assumption 2. If we can quickly estimate the true model using a few data-points, then
the regret would be lower than if the model is slower to learn. To account for these differences, we
construct the following complexity measure over a given set S and A,

IT (S,A) = max
D1,...,DT⊂S×S×A, |Dt|=N

∑T

t=1

∑
s,a∈Dt

‖σt−1(s,a)‖22. (8)

While in general impossible to compute, this complexity measure considers the “worst-case” datasets
D1 to DT , with |Dt| = N elements each, that we could collect at each iteration of Algorithm 1 in
order to maximize the predictive uncertainty of our statistical model. Intuitively, if σ(s,a) shrinks
sufficiently quickly after observing a transition (·, s,a) and if the model generalizes well over S ×A,
then (8) will be small. In contrast, if our model does not learn or generalize at all, then IT will
be O(TNp) and we cannot hope to succeed in finding the optimal policy. For the special case of
Gaussian process (GP) models, we show that IT is indeed sublinear in the following.

General regret bound The true sequence of states sn,t at which we obtain data during our rollout
in Line 5 of Algorithm 1 lies somewhere withing the light-gray shaded state distribution with epistemic
uncertainty in Fig. 2. While this is generally difficult to compute, we can bound it in terms of the
predictive variance σt−1(sn,t, πt(sn,t)), which is directly related to IT . However, the optimistically
planned trajectory instead depends on σt−1(s̃n,t, π(s̃n,t)) in (7), which enables policy optimization
without explicitly constructing the state distribution. How the predictive uncertainties of these two
trajectories relate depends on the generalization properties of our statistical model; specifically on
Lσ in Assumption 3. We can use this observation to obtain the following bound on RT :
Theorem 1. Under Assumptions 1–3 let sn,t ∈ S and an,t ∈ A for all n, t > 0. Then,
for all T ≥ 1, with probability at least (1 − δ), the regret of H-UCRL in (7) is at most

RT ≤ O
(
LNσ β

N
T−1

√
TN3 IT (S,A)

)
.

We provide a proof of Theorem 1 in Appendix D. The theorem ensures that, if we evaluate optimistic
policies according to (7), we eventually achieve performance J(f, πt) arbitrarily close to the optimal
performance of J(f, π∗) if IT (S,A) grows at a rate smaller than T . As one would expect, the regret
bound in Theorem 1 depends on constant factors like the prediction horizon N , the relevant Lipschitz
constants of the dynamics, policy, reward, and the predictive uncertainty. The dependence on the
dimensionality of the state space p is hidden inside IT , while βt is a function of δ.

Gaussian Process Models For the bound in Theorem 1 to be useful, we must show that IT is sublin-
ear. Proving this is impossible for general models, but can be proven for GP models. In particular, we
show in Appendix H that IT is bounded by the worst-case mutual information (information capacity)
of the GP model. Srinivas et al. (2012); Krause and Ong (2011) derive upper-bounds for the infor-
mation capacity for commonly-used kernels. For example, when we use their results for independent
GP models with squared exponential kernels for each component [f(s,a)]i, we obtain a regret bound
O((1+Bf)NLNσ N

2
√
T (p2(p+q) log(pTN))(N+1)/2), whereBf is a bound on the functional com-

plexity of the function f . Specifically, Bf is the norm of f in the RKHS that corresponds to the kernel.

A similar optimistic exploration scheme was analyzed by Chowdhury and Gopalan (2019), but
for an algorithm that is not implementable as we discussed at the beginning of Section 3. Their
exploration scheme depends on the (generally unknown) Lipschitz constant of the value function,
which corresponds to knowing Lf a priori in our setting. While this is a restrictive and impractical
requirement, we show in Appendix H.3 that under this assumption we can improve the dependence

7

−100

0
Reacher

−100

0
Pusher

H-UCRL
Greedy
Thompson

0x 1x 5x
0

100

Sparse-Reacher

0x 1x 5x
0

5000

Half-Cheetah

E
pi

so
di

c
R

et
ur

n

Action Penalty

Figure 3: Mean final episodic returns on Mujoco tasks averaged over five different random seeds. For
Reacher and Pusher (50 episodes), all exploration strategies perform equally. For Sparse-Reacher (50
episodes) and Half-Cheetah (250 episodes), H-UCRL outperforms other exploration algorithms.

on LNσ β
N
T in the regret bound in Theorem 1 to (LfβT)1/2. This matches the bounds derived by

Chowdhury and Gopalan (2019) up to constant factors. Thus we can consider the regret term LNσ β
N
T

to be the additional cost that we have to pay for a practical algorithm.

Unbounded domains We assume that the domain S is compact in order to bound IT for GP models,
which enables a convenient analysis and is also used by Chowdhury and Gopalan (2019). However, it
is incompatible with Assumption 1, which allows for potentially unbounded noise ω. While this is a
technical detail, we formally prove in Appendix I that we can bound the domain with high probability
within a norm-ball of radius bt = O(LNf Np log(Nt2)). For GP models with a squared exponential
kernel, we analyze IT in this setting and show that the regret bound only increases by a polylog factor.

4 Experiments

Throughout the experiments, we consider reward functions of the form r(s,a) = rstate(s)−ρcaction(a),
where rstate(s) is the reward for being in a “good” state, and ρ ∈ [0,∞) is a parameter that scales
the action costs caction(a). We evaluate how H-UCRL, greedy exploitation, and Thompson sampling
perform for different values of ρ in different Mujoco environments (Todorov et al., 2012). We expect
greedy exploitation to struggle for larger ρ, whereas H-UCRL and Thompson sampling should
perform well. As modeling choice, we use 5-head probabilistic ensembles as in Chua et al. (2018).
For greedy exploitation, we sample the next-state from the ensemble mean and covariance (PE-DS
algorithm in Chua et al. (2018)). We use ensemble sampling (Lu and Van Roy, 2017) to approximate
Thompson sampling. For H-UCRL, we follow Lakshminarayanan et al. (2017) and use the ensemble
mean and covariance as the next-state predictive distribution. For more experimental details and
learning curves, see Appendix B. We provide an open-source implementation of our method, which
is available at http://github.com/sebascuri/hucrl.

Sparse Inverted Pendulum We first investigate a swing-up pendulum with sparse rewards. In this
task, the policy must perform a complex maneuver to swing the pendulum to the upwards position.
A policy that does not act obtains zero state rewards but suffers zero action costs. Slightly moving
the pendulum still has zero state reward but the actions are penalized. Hence, a zero-action policy
is locally optimal, but it fails to complete the task. We show the results in Fig. 1: With no action
penalty, all exploration methods perform equally well – the randomness is enough to explore and
find a quasi-optimal sequence. For ρ = 0.1, greedy exploitation struggles: sometimes it finds the
swing-up sequence, which explains the large error bars. Finally, for ρ = 0.2 only H-UCRL is able to
successfully swing up the pendulum.

7-DOF PR2 Robot Next, we evaluate how H-UCRL performs in higher-dimensional problems.
We start by comparing the Reacher and Pusher environments proposed by Chua et al. (2018). We plot
the results in the upper left and right subplots in Fig. 3. The Reacher has to move the end-effector
towards a goal that is randomly sampled at the beginning of each episode. The Pusher has to push an
object towards a goal. The rewards and costs in these environments are quadratic. All exploration

8

http://github.com/sebascuri/hucrl

0 100 200

0

2000

4000

6000

R
et

ur
n

Action Penalty 0.0

H-UCRL
Greedy
Thompson

0 100 200
Episode

Action Penalty 0.1

0 100 200

Action Penalty 1.0

Figure 4: Learning curves in Half-Cheetah environment. For all action penalties, H-UCRL learns
faster than greedy and Thompson sampling strategies. For larger action penalties, greedy and
Thompson lead to insufficient exploration and get stuck in local optima with poor performance.

strategies achieve state-of-the-art performance, which seems to indicate that greedy exploitation is
indeed sufficient for these tasks. Presumably, this is due to the over-actuated dynamics and the reward
structure. This is in line with the theoretical results for linear-quadratic control by Mania et al. (2019).

To test this hypothesis, we repeat the Reacher experiment with a sparse reward function. We plot the
results in the lower left plot of Fig. 3. The state reward has a positive signal when the end-effector is
close to the goal and the action has a non-negative signal when it is close to zero. Here we observe
that H-UCRL outperforms alternative methods, particularly for larger action penalties.

Half-Cheetah Our final experiment demonstrates H-UCRL on a common deep-RL benchmark,
the Half-Cheetah. The goal is to make the cheetah run forward as fast as possible. The actuators have
to interact in a complex manner to achieve running. In Fig. 4, we can see a clear advantage of using
H-UCRL at different action penalties, even at zero. This indicates that H-UCRL not only addresses
action penalties, but also explores through complex dynamics. For the sake of completeness, we
also show the final returns in the lower right plot of Fig. 3.

H-UCRL vs. Thompson Sampling In Appendix B.4, we carry out extensive experiments to em-
pirically evaluate why Thompson sampling fails in our setting. Phan et al. (2019) in the Bandit Setting
and Kakade et al. (2020) in the RL setting also report that approximate Thompson sampling fails
unless strong modelling priors are used. We believe that the poor performance of Thompson sampling
relative to H-UCRL suggests that the models that we use are sufficient to construct well-calibrated
1-step ahead confidence intervals, but do not comprise a rich enough posterior distribution for Thomp-
son sampling. As an example, in H-UCRL we use the five members of the ensemble to construct
the 1-step ahead confidence interval at every time-step. On the other hand, in Thompson sampling
we sample a single model from the approximate posterior for the full horizon. It is possible that in
some regions of the state-space one member is more optimistic than others, and in a different region
the situation reverses. This is not only a property of ensembles, but also other approximate models
such as random-feature GP models (c.f. Appendix B.4.5) exhibit the same behaviour. This discussion
highlights the advantage of H-UCRL over Thompson sampling using deep neural networks: H-UCRL
only requires calibrated 1-step ahead confidence intervals, and we know how to construct them
(c.f. Malik et al. (2019)). Instead, Thompson sampling requires posterior models that are calibrated
throughout the full trajectory. Due to the multi-step nature of the problem, constructing scalable
approximate posteriors that have enough variance to sufficiently explore is still an open problem.

5 Conclusions

In this work, we introduced H-UCRL: a practical optimistic-exploration algorithm for deep MBRL.
The key idea is a reduction from (generally intractable) optimistic exploration to greedy exploitation
in an augmented policy space. Crucially, this insight enables the use of highly effective standard
MBRL algorithms that previously were restricted to greedy exploitation and Thompson sampling.
Furthermore, we provided a theoretical analysis of H-UCRL and show that it attains sublinear regret
for some models. In our experiments, H-UCRL performs as well or better than other exploration
algorithms, achieving state-of-the-art performance on the evaluated tasks.

9

Broader Impact

Improving sample efficiency is one of the key bottlenecks in applying reinforcement learning to
real-world problems with potential major societal benefit such as personal robotics, renewable energy
systems, medical decisions making, etc. Thus, algorithmic and theoretical contributions as presented
in this paper can help decrease the cost associated with optimizing RL policies. Of course, the overall
RL framework is so general that potential misuse cannot be ruled out.

Acknowledgments and Disclosure of Funding

This project has received funding from the European Research Council (ERC) under the European
Unions Horizon 2020 research and innovation program grant agreement No 815943. It was also
supported by a fellowship from the Open Philanthropy Project.

References
Yasin Abbasi-Yadkori. Online learning of linearly parameterized control problems. PhD Thesis,

University of Alberta, 2012.

Yasin Abbasi-Yadkori and Csaba Szepesvári. Regret bounds for the adaptive control of linear
quadratic systems. In Proceedings of the 24th Annual Conference on Learning Theory, pages 1–26,
2011.

Abbas Abdolmaleki, Jost Tobias Springenberg, Yuval Tassa, Remi Munos, Nicolas Heess, and Martin
Riedmiller. Maximum a posteriori policy optimisation. arXiv preprint arXiv:1806.06920, 2018.

Marc Abeille and Alessandro Lazaric. Efficient optimistic exploration in linear-quadratic regulators
via lagrangian relaxation. arXiv preprint arXiv:2007.06482, 2020.

Martin Anthony and Peter L Bartlett. Neural network learning: Theoretical foundations. cambridge
university press, 2009.

András Antos, Csaba Szepesvári, and Rémi Munos. Fitted q-iteration in continuous action-space
mdps. In Advances in neural information processing systems, pages 9–16, 2008.

Evan Archer, Il Memming Park, Lars Buesing, John Cunningham, and Liam Paninski. Black box
variational inference for state space models. arXiv preprint arXiv:1511.07367, 2015.

Mohammad Gheshlaghi Azar, Ian Osband, and Rémi Munos. Minimax regret bounds for reinforce-
ment learning. In International Conference on Machine Learning, pages 263–272, 2017.

Felix Berkenkamp. Safe Exploration in Reinforcement Learning: Theory and Applications in Robotics.
PhD thesis, ETH Zurich, 2019.

Felix Berkenkamp, Angela P. Schoellig, and Andreas Krause. No-Regret Bayesian optimization with
unknown hyperparameters. Journal of Machine Learning Research (JMLR), 20(50):1–24, 2019.

Dimitri P. Bertsekas, Dimitri P. Bertsekas, Dimitri P. Bertsekas, and Dimitri P. Bertsekas. Dynamic
programming and optimal control, volume 1. Athena scientific Belmont, MA, 1995.

Zdravko I Botev, Dirk P Kroese, Reuven Y Rubinstein, and Pierre L’Ecuyer. The cross-entropy
method for optimization. In Handbook of statistics, volume 31, pages 35–59. Elsevier, 2013.

Ronen I. Brafman and Moshe Tennenholtz. R-max - a General Polynomial Time Algorithm for
Near-optimal Reinforcement Learning. J. Mach. Learn. Res., 3:213–231, 2003.

Eric Brochu, Vlad M. Cora, and Nando de Freitas. A tutorial on Bayesian optimization of expensive
cost functions, with application to active user modeling and hierarchical reinforcement learning.
arXiv:1012.2599 [cs], 2010.

Jacob Buckman, Danijar Hafner, George Tucker, Eugene Brevdo, and Honglak Lee. Sample-
efficient reinforcement learning with stochastic ensemble value expansion. In Advances in Neural
Information Processing Systems, pages 8224–8234, 2018.

10

Adam D. Bull. Convergence rates of efficient global optimization algorithms. Journal of Machine
Learning Research, 12(Oct):2879–2904, 2011.

Sayak Ray Chowdhury and Aditya Gopalan. On kernelized multi-armed bandits. In Proceedings of
the 34th International Conference on Machine Learning, volume 70 of Proceedings of Machine
Learning Research, pages 844–853. PMLR, 2017.

Sayak Ray Chowdhury and Aditya Gopalan. Online Learning in Kernelized Markov Decision
Processes. In The 22nd International Conference on Artificial Intelligence and Statistics, pages
3197–3205, 2019.

Andreas Christmann and Ingo Steinwart. Support Vector Machines. Information Science and Statistics.
Springer, New York, NY, 2008.

Kurtland Chua, Roberto Calandra, Rowan McAllister, and Sergey Levine. Deep Reinforcement
Learning in a Handful of Trials using Probabilistic Dynamics Models. In S. Bengio, H. Wal-
lach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett, editors, Advances in Neural
Information Processing Systems 31, pages 4754–4765. Curran Associates, Inc., 2018.

Ignasi Clavera, Violet Fu, and Pieter Abbeel. Model-augmented actor-critic: Backpropagating
through paths. arXiv preprint arXiv:2005.08068, 2020.

Sebastian Curi. Rl-lib - a pytorch-based library for reinforcement learning research. Github, 2020.
URL https://github.com/sebascuri/rllib.

Sebastian Curi, Silvan Melchior, Felix Berkenkamp, and Andreas Krause. Structured variational
inference in unstable gaussian process state space models. Proceedings of Machine Learning
Research vol, 120:1–11, 2020.

Richard Dearden, Nir Friedman, and David Andre. Model based bayesian exploration. In Proc. of
the 15th Conf. on Uncertainty in Artificial Intelligence (UAI), 1999, pages 150–159, 1999.

Marc Deisenroth and Carl E. Rasmussen. PILCO: A model-based and data-efficient approach to
policy search. In Proc. of the International Conference on Machine Learning (ICML), pages
465–472, 2011.

Marc Deisenroth, Dieter Fox, and Carl Rasmussen. Gaussian processes for data-efficient learning in
robotics and control. Transactions on Pattern Analysis and Machine Intelligence, 37(2):1–1, 2014.

Marc Peter Deisenroth, Gerhard Neumann, and Jan Peters. A survey on policy search for robotics.
now publishers, 2013.

Armen Der Kiureghian and Ove Ditlevsen. Aleatory or epistemic? Does it matter? Structural Safety,
31(2):105–112, 2009.

Andreas Doerr, Christian Daniel, Martin Schiegg, Duy Nguyen-Tuong, Stefan Schaal, Marc Toussaint,
and Sebastian Trimpe. Probabilistic recurrent state-space models. In International Conference on
Machine Learning (ICML), pages 1280–1289. PMLR, 2018.

Omar Darwiche Domingues, Pierre Ménard, Matteo Pirotta, Emilie Kaufmann, and Michal Valko.
Regret bounds for kernel-based reinforcement learning. arXiv preprint arXiv:2004.05599, 2020.

Yonathan Efroni, Nadav Merlis, Mohammad Ghavamzadeh, and Shie Mannor. Tight regret bounds
for model-based reinforcement learning with greedy policies. In Advances in Neural Information
Processing Systems, pages 12203–12213, 2019.

Yonina C Eldar and Gitta Kutyniok. Compressed sensing: theory and applications. Cambridge
university press, 2012.

Vladimir Feinberg, Alvin Wan, Ion Stoica, Michael I Jordan, Joseph E Gonzalez, and Sergey Levine.
Model-based value estimation for efficient model-free reinforcement learning. arXiv preprint
arXiv:1803.00101, 2018.

Scott Fujimoto, Herke Van Hoof, and David Meger. Addressing function approximation error in
actor-critic methods. arXiv preprint arXiv:1802.09477, 2018.

11

https://github.com/sebascuri/rllib

Yarin Gal. Uncertainty in deep learning. PhD Thesis, PhD thesis, University of Cambridge, 2016.

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy maxi-
mum entropy deep reinforcement learning with a stochastic actor. arXiv preprint arXiv:1801.01290,
2018.

Lukas Hewing, Elena Arcari, Lukas P Fröhlich, and Melanie N Zeilinger. On simulation and trajectory
prediction with gaussian process dynamics. arXiv preprint arXiv:1912.10900, 2019.

Zhang-Wei Hong, Joni Pajarinen, and Jan Peters. Model-based lookahead reinforcement learning.
arXiv preprint arXiv:1908.06012, 2019.

David H Jacobson. New second-order and first-order algorithms for determining optimal control: A
differential dynamic programming approach. Journal of Optimization Theory and Applications, 2
(6):411–440, 1968.

Thomas Jaksch, Ronald Ortner, and Peter Auer. Near-optimal regret bounds for reinforcement
learning. Journal of Machine Learning Research, 11(Apr):1563–1600, 2010.

Chi Jin, Zhuoran Yang, Zhaoran Wang, and Michael I Jordan. Provably efficient reinforcement
learning with linear function approximation. arXiv preprint arXiv:1907.05388, 2019.

Lukasz Kaiser, Mohammad Babaeizadeh, Piotr Milos, Blazej Osinski, Roy H Campbell, Konrad
Czechowski, Dumitru Erhan, Chelsea Finn, Piotr Kozakowski, Sergey Levine, et al. Model-based
reinforcement learning for atari. arXiv preprint arXiv:1903.00374, 2019.

Sham Kakade, Akshay Krishnamurthy, Kendall Lowrey, Motoya Ohnishi, and Wen Sun. Information
theoretic regret bounds for online nonlinear control. arXiv preprint arXiv:2006.12466, 2020.

Gabriel Kalweit and Joschka Boedecker. Uncertainty-driven imagination for continuous deep
reinforcement learning. In Conference on Robot Learning, pages 195–206, 2017.

Sanket Kamthe and Marc Deisenroth. Data-Efficient Reinforcement Learning with Probabilistic
Model Predictive Control. In International Conference on Artificial Intelligence and Statistics,
pages 1701–1710, 2018.

Motonobu Kanagawa, Philipp Hennig, Dino Sejdinovic, and Bharath K. Sriperumbudur. Gaussian
processes and kernel methods: a review on connections and equivalences. arXiv:1807.02582
[stat.ML], 2018.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In International
Conference on Learning Representations (ICLR), 2015.

Diederik P. Kingma and Max Welling. Auto-Encoding Variational Bayes. arXiv:1312.6114 [cs, stat],
2013.

Johannes Kirschner and Andreas Krause. Information directed sampling and bandits with het-
eroscedastic noise. In Proceedings of the 31st Conference On Learning Theory, volume 75 of
Proceedings of Machine Learning Research, pages 358–384. PMLR, 2018.

Andreas Krause and Cheng S. Ong. Contextual Gaussian process bandit optimization. In Proc. of
Neural Information Processing Systems (NIPS), pages 2447–2455, 2011.

Volodymyr Kuleshov, Nathan Fenner, and Stefano Ermon. Accurate uncertainties for deep learning
using calibrated regression. arXiv preprint arXiv:1807.00263, 2018.

Balaji Lakshminarayanan, Alexander Pritzel, and Charles Blundell. Simple and Scalable Predictive
Uncertainty Estimation using Deep Ensembles. In I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach,
R. Fergus, S. Vishwanathan, and R. Garnett, editors, Advances in Neural Information Processing
Systems 30, pages 6402–6413. Curran Associates, Inc., 2017.

Armin Lederer, Jonas Umlauft, and Sandra Hirche. Uniform Error Bounds for Gaussian Process
Regression with Application to Safe Control. arXiv:1906.01376 [cs, stat], 2019.

12

Weiwei Li and Emanuel Todorov. Iterative linear quadratic regulator design for nonlinear biological
movement systems. In ICINCO (1), pages 222–229, 2004.

Kendall Lowrey, Aravind Rajeswaran, Sham Kakade, Emanuel Todorov, and Igor Mordatch. Plan
online, learn offline: Efficient learning and exploration via model-based control. In International
Conference on Learning Representations (ICLR), 2019.

Xiuyuan Lu and Benjamin Van Roy. Ensemble sampling. In Advances in neural information
processing systems, pages 3258–3266, 2017.

Yuping Luo, Huazhe Xu, Yuanzhi Li, Yuandong Tian, Trevor Darrell, and Tengyu Ma. Algorithmic
framework for model-based deep reinforcement learning with theoretical guarantees. arXiv preprint
arXiv:1807.03858, 2018.

Ali Malik, Volodymyr Kuleshov, Jiaming Song, Danny Nemer, Harlan Seymour, and Stefano Ermon.
Calibrated Model-Based Deep Reinforcement Learning. In International Conference on Machine
Learning, pages 4314–4323, 2019.

Horia Mania, Stephen Tu, and Benjamin Recht. Certainty equivalence is efficient for linear quadratic
control. In Neural Information Processing Systems, pages 10154–10164, 2019.

A McHutchon. Modelling nonlinear dynamical systems with Gaussian Processes. PhD thesis, PhD
thesis, University of Cambridge, 2014.

Shakir Mohamed, Mihaela Rosca, Michael Figurnov, and Andriy Mnih. Monte carlo gradient
estimation in machine learning. arXiv preprint arXiv:1906.10652, 2019.

Teodor Mihai Moldovan, Sergey Levine, Michael I. Jordan, and Pieter Abbeel. Optimism-driven
exploration for nonlinear systems. In Robotics and Automation (ICRA), 2015 IEEE International
Conference on, pages 3239–3246. IEEE, 2015.

Manfred Morari and Jay H. Lee. Model predictive control: past, present and future. Computers &
Chemical Engineering, 23(4–5):667–682, 1999.

Mojmir Mutny and Andreas Krause. Efficient High Dimensional Bayesian Optimization with
Additivity and Quadrature Fourier Features. In Advances in Neural Information Processing
Systems, pages 9005–9016, 2018.

Gergely Neu and Ciara Pike-Burke. A unifying view of optimism in episodic reinforcement learning.
arXiv preprint arXiv:2007.01891, 2020.

Ian Osband, Dan Russo, and Benjamin Van Roy. (More) Efficient Reinforcement Learning via
Posterior Sampling. In C. J. C. Burges, L. Bottou, M. Welling, Z. Ghahramani, and K. Q.
Weinberger, editors, Advances in Neural Information Processing Systems 26, pages 3003–3011.
Curran Associates, Inc., 2013.

Ian Osband, Benjamin Van Roy, and Zheng Wen. Generalization and Exploration via Randomized
Value Functions. arXiv:1402.0635 [cs, stat], 2014.

Ian Osband, Charles Blundell, Alexander Pritzel, and Benjamin Van Roy. Deep exploration via
bootstrapped DQN. In Advances in neural information processing systems, pages 4026–4034,
2016.

Paavo Parmas, Carl Edward Rasmussen, Jan Peters, and Kenji Doya. Pipps: Flexible model-based
policy search robust to the curse of chaos. In International Conference on Machine Learning,
pages 4065–4074, 2018.

Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang, Zachary DeVito,
Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer. Automatic differentiation in
pytorch, 2017.

My Phan, Yasin Abbasi Yadkori, and Justin Domke. Thompson sampling and approximate inference.
In Advances in Neural Information Processing Systems, pages 8804–8813, 2019.

13

Sébastien Racanière, Théophane Weber, David Reichert, Lars Buesing, Arthur Guez, Danilo Jimenez
Rezende, Adria Puigdomenech Badia, Oriol Vinyals, Nicolas Heess, Yujia Li, et al. Imagination-
augmented agents for deep reinforcement learning. In Advances in neural information processing
systems, pages 5690–5701, 2017.

Ali Rahimi and Benjamin Recht. Random features for large-scale kernel machines. In Advances in
neural information processing systems, pages 1177–1184, 2008.

Carl Edward Rasmussen and Christopher K.I Williams. Gaussian processes for machine learning.
MIT Press, Cambridge MA, 2006.

Arthur Richards and Jonathan P. How. Robust variable horizon model predictive control for vehicle
maneuvering. International Journal of Robust and Nonlinear Control, 16(7):333–351, 2006.

Jonathan Scarlett, Ilija Bogunovic, and Volkan Cevher. Lower bounds on regret for noisy Gaussian
process bandit optimization. In Satyen Kale and Ohad Shamir, editors, Proceedings of the 2017
Conference on Learning Theory, volume 65 of Proceedings of Machine Learning Research, pages
1723–1742, Amsterdam, Netherlands, 07–10 Jul 2017. PMLR.

John Schulman, Sergey Levine, Pieter Abbeel, Michael Jordan, and Philipp Moritz. Trust region
policy optimization. In International conference on machine learning, pages 1889–1897, 2015.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal Policy
Optimization Algorithms. arXiv:1707.06347 [cs], 2017.

Niranjan Srinivas, Andreas Krause, Sham M. Kakade, and Matthias Seeger. Gaussian process
optimization in the bandit setting: no regret and experimental design. IEEE Transactions on
Information Theory, 58(5):3250–3265, 2012.

Richard S. Sutton. Integrated Architectures for Learning, Planning, and Reacting Based on Approxi-
mating Dynamic Programming. In Bruce Porter and Raymond Mooney, editors, Machine Learning
Proceedings 1990, pages 216–224. Morgan Kaufmann, San Francisco (CA), 1990.

Richard S. Sutton and Andrew G. Barto. Reinforcement learning: an introduction. MIT press, 1998.

Y. Tassa, T. Erez, and E. Todorov. Synthesis and stabilization of complex behaviors through online
trajectory optimization. In 2012 IEEE/RSJ International Conference on Intelligent Robots and
Systems, pages 4906–4913, 2012.

Yuval Tassa, Yotam Doron, Alistair Muldal, Tom Erez, Yazhe Li, Diego de Las Casas, David Budden,
Abbas Abdolmaleki, Josh Merel, Andrew Lefrancq, et al. Deepmind control suite. arXiv preprint
arXiv:1801.00690, 2018.

Emanuel Todorov and Weiwei Li. A generalized iterative lqg method for locally-optimal feedback
control of constrained nonlinear stochastic systems. In Proceedings of the 2005, American Control
Conference, 2005., pages 300–306. IEEE, 2005.

Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine for model-based control.
In 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pages 5026–5033.
IEEE, 2012.

Hado P van Hasselt, Matteo Hessel, and John Aslanides. When to use parametric models in
reinforcement learning? In Advances in Neural Information Processing Systems, pages 14322–
14333, 2019.

Arun Venkatraman, Roberto Capobianco, Lerrel Pinto, Martial Hebert, Daniele Nardi, and J Andrew
Bagnell. Improved learning of dynamics models for control. In International Symposium on
Experimental Robotics, pages 703–713. Springer, 2016.

Roman Vershynin. Introduction to the non-asymptotic analysis of random matrices. arXiv:1011.3027
[cs, math], 2010.

Tingwu Wang and Jimmy Ba. Exploring model-based planning with policy networks. arXiv preprint
arXiv:1906.08649, 2019.

14

Zi Wang, Clement Gehring, Pushmeet Kohli, and Stefanie Jegelka. Batched large-scale bayesian
optimization in high-dimensional spaces. In International Conference on Artificial Intelligence
and Statistics, pages 745–754, 2018.

Grady Williams, Paul Drews, Brian Goldfain, James M Rehg, and Evangelos A Theodorou. Aggres-
sive driving with model predictive path integral control. In 2016 IEEE International Conference
on Robotics and Automation (ICRA), pages 1433–1440. IEEE, 2016.

Andrea Zanette and Emma Brunskill. Tighter problem-dependent regret bounds in reinforcement
learning without domain knowledge using value function bounds. arXiv preprint arXiv:1901.00210,
2019.

15

Appendix
The following table provides an overview of the appendix.

Table of Contents
A Expected Performance for Exploration in the Bandit Setting 17

B Extended Experiments 18
B.1 Experimental Setup . 18
B.2 Environment Description and Learning Curves 19
B.3 Visualization of Real and Simulated Trajectories for Inverted Pendulum 23
B.4 Further Experiments on Thompson Sampling 24

C Solving the Augmented Greedy Exploitation Program 29
C.1 Offline Policy Search . 29
C.2 Online Planning . 30
C.3 Combining Offline Policy Search with Online Planning 31

D Proofs for Exploration Regret Bound 33
D.1 Notation . 33
D.2 Bounding the Regret . 33

E Properties of the Functions η(·) 37

F Background on Gaussian Processes 38
F.1 Information Capacity . 39
F.2 Functions in a Reproducing Kernel Hilbert Space 39
F.3 Extension to multiple dimensions . 40

G Lipschitz Continuity of Gaussian Process Predictions 40

H Regret Bound for Gaussian Process model 42
H.1 Assumptions about the model . 42
H.2 Bounding IT for the GP model . 43
H.3 Comparison to Chowdhury and Gopalan (2019) 45

I Extension to Unbounded Domains 46
I.1 Bound on Aleatoric Uncertainty (Noise Bound) 47
I.2 Bounding the Domain Under Aleatoric Uncertainty 48
I.3 Regret bounds over Unbounded Domains . 50
I.4 Bounding the Maximum Information Capacity for Gaussian Processes 51

16

A Expected Performance for Exploration in the Bandit Setting

In practice, one of the most commonly used exploration strategies is to select θt in order to maximize
the expected performance over the aleatoric uncertainty and epistemic uncertainty induced by the
Gaussian process model.

We consider the simplest possible case that still allows for nonlinear dynamics. That is, we consider
a system with zero-mean noise, i.e., E[ωn = 0] for all time steps n ≥ 0. In addition, we consider
a one-dimensional system, p = 1, with a linear (convex/concave) reward function r(s,a) = s, a
constant feedback policy π(s) = θ that is parameterized by some parameters θ, and a time horizon
of one step, N = 1. With these simplifying assumptions, the performance estimate J(f, π) in (2)
reduces to

J(f̃ , π) = Eω0:N−1

[
N∑
n=0

r(s̃n, π(s̃n))

∣∣∣∣ s0

]
, s.t. s̃n+1 = f̃(s̃n, π(s̃n)) + ωn,

= Eω0:N−1

[
N∑
n=0

r(s̃n, π(s̃n))

∣∣∣∣ s0

]
, s.t. s̃n+1 = f̃(s̃n,θ) + ωn, (π(s) = θ)

= Eω0:N−1

[
N∑
n=0

s̃n

∣∣∣∣ s0

]
, s.t. s̃n+1 = f̃(s̃n,θ) + ωn, (p = 1, r(s,a) = s)

= Eω0

[
s0 + s̃1

∣∣∣∣ s0

]
, s.t. s̃1 = f̃(s0,θ) + ω0, (N = 1)

= s0 + f̃(s0,θ) + Eω0
[ω0],

= s0 + f̃(s0,θ), (E[ω] = 0)
(9)

so that the overall goal of model-based reinforcement learning in (3) becomes

θ∗ = argmax
πθ

J(f, πθ), (10)

= argmax
θ

s0 + f(s0,θ), (11)

= argmax
θ

f(s0,θ). (12)

This is the simplest possible scenario and reduces the optimal control problem in (4) to the bandit
problem, where want to maximize an unknown function f that depends on parameters θ together
with a fixed context s0 that does not impact the solution of the problem.

Algorithms that model the unknown function f in (10) with a probabilistic model p(f̃ | D1:t) based
on noisy observations in Dt are called Bayesian optimization algorithms (Brochu et al., 2010). In this
special case of model-based reinforcement learning, the expected performance objective (4) reduces
to

θt = argmax
θ

Ef̃∼p(f̃ | D1:t)

[
J(f̃ , πθ)

]
, (13)

= argmax
θ

Ef̃∼p(f̃ | D1:t)

[
s0 + f̃(s0,θ)

]
, (14)

= argmax
θ

Ef̃∼p(f̃ | D1:t)

[
f̃(s0,θ)

]
, (15)

= argmax
θ

µt−1(s0,θ). (16)

Thus the expected performance objective selects parameters θt that maximize the posterior mean
estimate of f according to p(f̃ | D1:t). This may seem natural, since the linear reward function
encourages states that are as large as possible. However, in the Bayesian optimization literature (13)
is equivalent to the UCB strategy with βt = 0. This is a greedy algorithm that is well-known to get
stuck in local optima (Srinivas et al., 2012).

This is illustrated in Fig. 5: We use a Gaussian process model for f and use (13), which means we set
β = 0 in the GP-UCB algorithm. As a result, we obtain optimization behaviors as in Fig. 5a. The

17

Inputs \

�
(\
)

(a) βt = 0.

Inputs \

�
(\
)

(b) βt = 2.

Figure 5: Comparison of the GP-UCB algorithm with two different constants for βt. The expected
performance objective in (13) is equivalent setting to β = 0 in Fig. 5a. The algorithm gets stuck
and repeatedly evaluates inputs (orange crosses) at a local optimum of the true objective function
(black dashed). This is due to the mean function (blue line) achieving higher values than the prior
expected performance of zero. In contrast, an optimistic algorithm with β = 2 in Fig. 5b determines
close-to-optimal parameters after few evaluations.

first evaluation that achieves performance higher than the expected prior performance (in our case,
zero), is evaluated repeatedly (orange crosses). However, this can correspond to a local optimum of
the true, unknown objective function (black dashed). In contrast, if we use an optimistic algorithm
and set β = 2, GP-UCB evaluates parameters with close-to-optimal performance.

As a consequence of this counter-example, it is clear that we cannot expect the expected performance
exploration criterion in (4) to yield regret guarantees for exploration in the general case. However,
under the additional assumption of linear dynamics, Mania et al. (2019) show that the algorithm is
no-regret. More empirically, Deisenroth et al. (2014, Section 6.1) discuss how to choose specific
reward functions that tend to encourage high-variance transitions and thus exploration. However,
it is unclear how such an approach can be analyzed theoretically and we would prefer to avoid
reward-shaping to encourage exploration.

B Extended Experiments

B.1 Experimental Setup

Models We consider ensembles of Probabilistic Neural Networks (PE) as in Chua et al. (2018)
and Gaussian Process (GP) Models for the inverted pendulum as in Kamthe and Deisenroth (2018).
For GPs, we use the predictive variance estimate as Σt−1(s,a) For Ensembles, we approximate the
output of the ensemble with a Gaussian as suggested by Lakshminarayanan et al. (2017) and use its
predictive mean and variance as µt−1(s,a) and Σt−1(s,a).

Model Selection (Training) For GPs we do not optimize the Hyper-parameters as this is prone
to getting stuck to local minima (Bull, 2011). Advanced methods to avoid this problem, such as
those proposed by Berkenkamp et al. (2019), are left for future work. For Ensembles, we train each
ensemble separately using Adam (Kingma and Ba, 2015). We assign a transition to each ensemble
member sampling from a Poisson distribution Poi(1) (Osband et al., 2016). This is an asymptotic
approximation to the Bootstrap.

Approximate Thompson Sampling We do not consider a Thompson sampling variant of Exact
GPs due to the computational complexity. For PE, we sample at the beginning of each episode a head
and use only this head for optimizing the policy as in Lu and Van Roy (2017).

Trajectory Sampling For greedy exploitation, we propagate particles and the next-state distri-
bution is given by the ensemble (or GP) output at the current particle location. This is the PE-DS

18

algorithm from Chua et al. (2018), which has comparable performance to PE-TS1 and PE-TS∞. We
use this algorithm because it has the same predictive uncertainty used by H-UCRL.

Policy Search and Planning Algorithm For experiments, we use a modification of MPO (Ab-
dolmaleki et al., 2018) with Hallucinated Data Augmentation to simulate data and Hallucinated
Value Expansion to compute targets as the PolicySearch algorithm. As the resulting algorithm is
on-policy, we only learn a value function as critic. The planning algorithm is implemented using
Dyna-MPC from Algorithm 7. We update the sampling distribution using the Cross-Entropy Method
from Botev et al. (2013). We provide an open-source implementation of our method, which is
available at http://github.com/sebascuri/hucrl that builds upon the RL-LIB library from
Curi (2020), based on pytorch (Paszke et al., 2017).

B.2 Environment Description and Learning Curves

B.2.1 Swing-Up Inverted Pendulum

The pendulum has p = 2 and q = 1, with actions bounded in [−1, 1] and each episode lasts 400 time
steps.. We transform the angles to a quaternion representation via [sin(θ), cos(θ)]. The pendulum
starts at θ0 = π, ω0 = 0 and the objective is to swing it up to θ0 = 0, ω0 = 0. The reward function
is r(θ, ω,a) = rθ · rω + ρra, where rθ = TOLERANCE(cos(θ), bounds = (0.95, 1.),margin = 0.1),
rω = TOLERANCE(ω, bounds = (−0.5, 0.5),margin = 0.5), and ra = TOLERANCE(a, bounds =
(−0.1, 0.1),margin = 0.1)− 1. The TOLERANCE is defined in Tassa et al. (2018). In Fig. 6 we show
the learning curve of the PE model for five different random seeds. H-UCRL finds quickly a swing-up
maneuvere even with high action penalties.

0 10 20
0

100

200

300

E
pi

so
de

R
et

ur
n

Action Penalty 0.0

H-UCRL
Greedy
Thompson
Known Model

0 10 20
Episode

Action Penalty 0.1

0 10 20

Action Penalty 0.2

Figure 6: Learning curves of the inverted pendulum. H-UCRL outperforms other algorithms during
learning.

B.2.2 Mujoco Cart Pole

We repeat the experiment in a easy environment, the Mujoco Cart Pole. The cart-pole has p = 4
and q = 1, with actions bounded in [−3, 3] and each episode lasts 200 time steps. We transform the
angles to a quaternion representation via [sin(θ), cos(θ)]. The cart-pole starts from (0, 0, 0, 0) + ω,
where ω is a zero-mean normal noise with 0.1 standard deviation. The goal is to upswing and stabilize
the end-effector at position x = 0. The reward is given by r = e−

∑
i=x,y ee2i /0.6

2 − ρa2, where ee
is vector of coordinates of the end-effector. Here we see again that, as the action penalty increases,
expected and Thompson sampling do not find a swing-up maneuver. We plot the final results together
with the learning curves in Fig. 7.

19

http://github.com/sebascuri/hucrl

0

50

100

150

200

R
et

ur
n

Cart Pole
H-UCRL
Greedy
Thompson

0 20 40

0

100

200

R
et

ur
n

Action Penalty 0.0

H-UCRL
Greedy
Thompson

0 20 40
Episode

Action Penalty 0.01

0 20 40

Action Penalty 0.05

Figure 7: Top: Final episodic return in Cart-Pole environment. Bottom: Learning curves in Cart-
Pole environment. For action penalty = 0.05, H-UCRL outperforms other algorithms. For action
penalty=0.2 already after the fifth episode it finds a swing-up maneuver. Thompson sampling finds it
in only one run after the thirtyfifth episode.

B.2.3 Reacher

The Reacher is a 7DOF robot with p = 14 and q = 7, with actions bounded in [−20, 20]q and each
episode lasts 150 time steps. The goal is sampled at location (x, y, z) = (0, 0.25, 0) + ω, where ω
is a zero-mean normal noise with 0.1 standard deviation. We transform the angles to a quaternion
representation via [sin(θ), cos(θ)]. The goal is to move the end-effector towards the goal and the
reward signal is given by r = −∑i=x,y,z(ee− goal)2

i − ρ
∑7
i=1 a2

i , where ee− goal is the vector
that measures the distance between the end-effector and the goal. We show the results in Fig. 8. All
algorithms perform equally for different action penalties.

−150

−100

−50

0

R
et

ur
n

Reacher
H-UCRL
Greedy
Thompson

0 50 100
−150

−100

−50

0

R
et

ur
n

Action Penalty 0.0

H-UCRL
Greedy
Thompson

0 50 100
Episode

Action Penalty 0.01

0 50 100

Action Penalty 0.05

Figure 8: Top: Final episodic return in Reacher environment. Bottom: Learning curves in Reacher
environment. Greedy, Thompson sampling, and H-UCRL perform equally well.

20

B.2.4 Pusher

The Pusher is also a 7DOF robot with p = 14 and q = 7, with action bounds in [−2, 2]q and
each episode lasts 150 time steps. The object is free to move, introducing 3 more states to the
environment. The robot starts with zero angles, an angular velocity sampled uniformly at random
from [−0.005, 0.005], the object is sampled from (x, y) = (−0.25, 0.15)+ω, where ω is a zero-mean
normal noise with 0.025 standard deviation. The objective is to push the object towards the goal at
(x, y) = (0, 0). The reward signal is given by r = −0.5

∑
i=x,y,z(ee− obj)2

i − 1.25
∑
i=x,y,z(obj−

goal)2
i − ρ

∑7
i=1 a2

i , where ee − obj is the distance between the end-effector and the object and
obj − goal is the distance between the object and the goal. We show the results in Fig. 9. All
algorithms perform equally for different action penalties.

−150

−100

−50

0

R
et

ur
n

Pusher
H-UCRL
Greedy
Thompson

0 50 100
−150

−100

−50

0

R
et

ur
n

Action Penalty 0.0

H-UCRL
Greedy
Thompson

0 50 100
Episode

Action Penalty 0.1

0 50 100

Action Penalty 0.5

Figure 9: Top: Final episodic return in Pusher environment. Bottom: Learning curves in Pusher
environment. Greedy, Thompson sampling, and H-UCRL perform equally well.

B.2.5 Sparse Reacher

The sparse Reacher is the same 7DOF robot as the Reacher with p = 14 and q = 7, with actions
bounded in [−20, 20]q and each episode lasts 150 time steps. The sole difference arises in the reward
function, which is given by r = e−

∑
i=x,y,z(ee−goal)2i /0.452

+ ρ(e−
∑7

i=1 a2
i − 1). We show the results

in Fig. 10. H-UCRL performs better than Greedy and Thompson, particularly for larger action
penalties.

21

0

25

50

75

100
R

et
ur

n

Reacher Sparse
H-UCRL
Greedy
Thompson

0 20 40
0

50

100

R
et

ur
n

Action Penalty 0.0

H-UCRL
Greedy
Thompson

0 20 40
Episode

Action Penalty 0.1

0 20 40

Action Penalty 0.5

Figure 10: Top: Final episodic return in sparse Reacher environment. Bottom: Learning curves in
sparse Reacher environment. H-UCRL outperforms greedy and Thompson sampling, particularly
when the action penalty increases.

B.2.6 Half-Cheetah

The Half-Cheetah is a mobile robot with p = 17 and q = 6, with actions bounded in [−2, 2]q and
each episode lasts 1000 time steps. The objective is to make the cheetah run as fast as possible
forwards up to a maximum of 10m/s. The reward function is given by r = max(v, 10). We show the
results in Fig. 11. H-UCRL performs finds quicker policies with higher returns and, when the action
penalty is 1, it outperforms greedy and Thompson sampling considerably.

0

2000

4000

6000

R
et

ur
n

Half Cheetah
H-UCRL
Greedy
Thompson

0 100 200

0

2000

4000

6000

R
et

ur
n

Action Penalty 0.0

H-UCRL
Greedy
Thompson

0 100 200
Episode

Action Penalty 0.1

0 100 200

Action Penalty 1.0

Figure 11: Top: Final episodic return in Half-Cheetah environment. Bottom: Learning curves in
Half-Cheetah environment. H-UCRL outperforms greedy and Thompson sampling, particularly when
the actoin penalty increases.

22

B.3 Visualization of Real and Simulated Trajectories for Inverted Pendulum

In this section, we visualize the optimistic trajectory for the inverted pendulum problem. We plot the
real and simulated trajectories using H-UCRL in Figs. 12–14 with increasing action penalties.

B.3.1 H-UCRL Trajectories

Already in the first episode, the H-UCRL finds an optimistic trajectory to reach the goal (0, 0) position.
With more episodes, it learns the dynamics and simulated and real trajectories match. As the action
penalty increases, the action magnitude decreases and it takes longer for the algorithm to find a
swing-up trajectory.

−100 0 100
Angle [degree]

−10

0

10

A
ng

ul
ar

V
el

oc
ity

[r
ad

/s
]

Real Trajectory.

−100 0 100
Angle [degree]

Sim Trajectory.H-UCRL Episode 1

−100 0 100
Angle [degree]

−10

0

10

A
ng

ul
ar

V
el

oc
ity

[r
ad

/s
]

Real Trajectory.

−100 0 100
Angle [degree]

Sim Trajectory.H-UCRL Episode 2

−100 0 100
Angle [degree]

−10

0

10

A
ng

ul
ar

V
el

oc
ity

[r
ad

/s
]

Real Trajectory.

−100 0 100
Angle [degree]

Sim Trajectory.H-UCRL Episode 3

−100 0 100
Angle [degree]

−10

0

10

A
ng

ul
ar

V
el

oc
ity

[r
ad

/s
]

Real Trajectory.

−100 0 100
Angle [degree]

Sim Trajectory.H-UCRL Episode 4

−100 0 100
Angle [degree]

−10

0

10

A
ng

ul
ar

V
el

oc
ity

[r
ad

/s
]

Real Trajectory.

−100 0 100
Angle [degree]

Sim Trajectory.H-UCRL Episode 5

−100 0 100
Angle [degree]

−10

0

10

A
ng

ul
ar

V
el

oc
ity

[r
ad

/s
]

Real Trajectory.

−100 0 100
Angle [degree]

Sim Trajectory.H-UCRL Episode 6

Figure 12: Real and simulated trajectories for first 6 episodes with H-UCRL (0 action penalty). We
plot the trajectory in phase space, and use color coding to denote the action magnitude.

−100 0 100
Angle [degree]

−10

0

10

A
ng

ul
ar

V
el

oc
ity

[r
ad

/s
]

Real Trajectory.

−100 0 100
Angle [degree]

Sim Trajectory.H-UCRL Episode 1

−100 0 100
Angle [degree]

−10

0

10

A
ng

ul
ar

V
el

oc
ity

[r
ad

/s
]

Real Trajectory.

−100 0 100
Angle [degree]

Sim Trajectory.H-UCRL Episode 2

−100 0 100
Angle [degree]

−10

0

10

A
ng

ul
ar

V
el

oc
ity

[r
ad

/s
]

Real Trajectory.

−100 0 100
Angle [degree]

Sim Trajectory.H-UCRL Episode 3

−100 0 100
Angle [degree]

−10

0

10

A
ng

ul
ar

V
el

oc
ity

[r
ad

/s
]

Real Trajectory.

−100 0 100
Angle [degree]

Sim Trajectory.H-UCRL Episode 4

−100 0 100
Angle [degree]

−10

0

10

A
ng

ul
ar

V
el

oc
ity

[r
ad

/s
]

Real Trajectory.

−100 0 100
Angle [degree]

Sim Trajectory.H-UCRL Episode 5

−100 0 100
Angle [degree]

−10

0

10

A
ng

ul
ar

V
el

oc
ity

[r
ad

/s
]

Real Trajectory.

−100 0 100
Angle [degree]

Sim Trajectory.H-UCRL Episode 6

Figure 13: Real and simulated trajectories for first 6 episodes with H-UCRL (0.1 action penalty). We
plot the trajectory in phase space, and use color coding to denote the action magnitude.

23

−100 0 100
Angle [degree]

−10

0

10

A
ng

ul
ar

V
el

oc
ity

[r
ad

/s
]

Real Trajectory.

−100 0 100
Angle [degree]

Sim Trajectory.H-UCRL Episode 1

−100 0 100
Angle [degree]

−10

0

10

A
ng

ul
ar

V
el

oc
ity

[r
ad

/s
]

Real Trajectory.

−100 0 100
Angle [degree]

Sim Trajectory.H-UCRL Episode 2

−100 0 100
Angle [degree]

−10

0

10

A
ng

ul
ar

V
el

oc
ity

[r
ad

/s
]

Real Trajectory.

−100 0 100
Angle [degree]

Sim Trajectory.H-UCRL Episode 3

−100 0 100
Angle [degree]

−10

0

10

A
ng

ul
ar

V
el

oc
ity

[r
ad

/s
]

Real Trajectory.

−100 0 100
Angle [degree]

Sim Trajectory.H-UCRL Episode 4

−100 0 100
Angle [degree]

−10

0

10

A
ng

ul
ar

V
el

oc
ity

[r
ad

/s
]

Real Trajectory.

−100 0 100
Angle [degree]

Sim Trajectory.H-UCRL Episode 5

−100 0 100
Angle [degree]

−10

0

10

A
ng

ul
ar

V
el

oc
ity

[r
ad

/s
]

Real Trajectory.

−100 0 100
Angle [degree]

Sim Trajectory.H-UCRL Episode 6

Figure 14: Real and simulated trajectories for first 6 episodes with H-UCRL (0.2 action penalty). We
plot the trajectory in phase space, and use color coding to denote the action magnitude.

B.4 Further Experiments on Thompson Sampling

We found surprising that Thompson Sampling under-performs compared to optimistic exploration.
To understand better why this happens, we perform different experiments in this section.

B.4.1 Can the sampled models solve the task?

One possibility is that, when doing posterior sampling, the agent learns a model for the sampled
model, which might be biased. If this was the case, we would expect to see the simulated returns, i.e.,
the returns of the optimal policy in the sampled system f̃i large.

In Fig. 15 we show the returns of the last simulated trajectory starting from the bottom position
of each episode. This figure indicates that there is no model bias, i.e., the simulated returns for
Thompson sampling are also low. We conclude that it is not over-fitting to the sampled model, but
rather the algorithm cannot solve the task with the sampled model.

0 5 10 15 20
Episode

−100

0

100

200

300

400

Si
m

ul
at

ed
R

et
ur

n

Action Penalty 0

H-UCRL
Greedy
Thompson

0 5 10 15 20
Episode

Action Penalty 0.1

0 5 10 15 20
Episode

Action Penalty 0.2

Figure 15: Total return from last simulated trajectory with the same initial state as the environment
initial state. H-UCRL has higher simulated returns than Greedy and Thompson as the action penalty
increases.

24

B.4.2 Is it variance starvation?

Another possibility is Thompson Sampling suffers variance starvation, i.e., all ensemble members’
predictions are identical. Variance starvation means that the approximate posterior variance is smaller
than the true posterior variance. When this happens, (approximate) Thompson Sampling fails because
of lack of exploration (Wang et al., 2018). In contrast to UCRL-stye algorithms where the optimism
is implemented deterministically, Thompson sampling implements optimism stochastically. Thus, it
is crucial that the variance is not underestimated.

If there was variance starvation, we would expect to see the epistemic variance along simulated
trajectories shrink. In Fig. 16 we show the average simulated uncertainty during training, considered
as the predictive variance of the ensemble. To summarize the predictive uncertainty into a scalar, we
consider the trace of the Cholesky factorization of the covariance matrix. From the figure, we see that
H-UCRL starts with the same predictive uncertainty as greedy and Thompson sampling. Furthermore,
the variance of Thompson sampling does not shrink. We conclude that there is no variance starvation
in the one-step ahead predictions.

0 5 10 15 20
Episode

0

10

20

30

40

50

U
nc

er
ta

in
ty

Sc
al

e

Action Penalty 0
H-UCRL
Greedy
Thompson

0 5 10 15 20
Episode

Action Penalty 0.1

0 5 10 15 20
Episode

Action Penalty 0.2

Figure 16: Epistemic model uncertainty along simulated trajectories. Thompson and Greedy have the
same or more uncertainty than H-UCRL.

B.4.3 Is the number of ensemble members enough?

In order to verify this hypothesis, we ran the same experiments with 5, 10, 20, 50, and 100 ensemble
members. All models swing-up the pendulum with 0 action penalty. With 0.1 action penalty, the
20, 50, and 100 ensembles find a swing up in only one run out of five. With 0.2 action penalty, no
model finds a swing-up strategy. This suggests that having larger ensembles could help, but it is not
convincing. Furthermore, the model training computational complexity increases linearly with the
number of ensemble members, which limits the practicality of larger ensembles.

5 10 20 50 100
0

50

100

150

200

250

300

E
pi

so
de

R
et

ur
n

R
et

ur
n

Action Penalty 0

5 10 20 50 100
Number of Heads

Action Penalty 0.1

5 10 20 50 100

Action Penalty 0.2

Figure 17: Episodic returns using Thompson Sampling for different number of ensemble members

25

B.4.4 Is it the bootstrapping procedure during Training?

Yet another possibility is that the bootstrap procedure yields inconsistent models for Thompson
sampling. To simulate bootstrapping, for each transition and ensemble member, we sample a mask
from a Poisson distribution (Osband et al., 2016). Then, we train using the loss of each transition
multiplied by this mask. This yields correct one-step ahead confidence intervals. However, the model
is used for multi-step ahead predictions. To test if this is the reason of the failure we repeat the
experiment without bootstrapping the transitions. The only source of discrepancy between the models
comes from the initialization of the model. This is how Chua et al. (2018) train their probabilistic
models and the models learn from consistent trajectories.

In Fig. 18 we show the results when training without bootstrapping. The learning curves closely
follow those with bootstrapping in Fig. 6. We conclude that the bootstrapping procedure is likely not
the cause of the failure of Thompson Sampling.

0 5 10 15 20
Episode

0

50

100

150

200

250

300

U
nc

er
ta

in
ty

Sc
al

e

Action Penalty 0

H-UCRL
Greedy
Thompson

0 5 10 15 20
Episode

Action Penalty 0.1

0 5 10 15 20
Episode

Action Penalty 0.2

Figure 18: Episodic Returns in inverted pendulum without bootstrapping data while learning the
model.

B.4.5 Are probabilistic ensembles not a good approximation to the posterior in Thompson
sampling?

We next investigate the possibility that Probabilistic Ensembles are not a good approximation for
p(f̃ | D1:t). To this end, we consider the Random Fourier Features (RFF) proposed by Rahimi and
Recht (2008) for GP Models. To sample a posterior, we sample a set of random features and use the
same features throughout the episodes as required by theoretical results for Thompson sampling and
suggested by Hewing et al. (2019) to simulate trajectories. RFFs, however, are known to suffer from
variance starvation. We also consider Quadrature Fourier Features (QFF) proposed by Mutny and
Krause (2018). QFFs have provable no-regret guarantees in the Bandit setting as well as a uniform
approximation bound.

In Fig. 19, we show the results for both RFF (1296 features), and QFFs (625 features). Neither
QFFs nor RFFs find a swing-up maneuver for action penalties larger than zero, whereas optimistic
exploration with both QFFs and RFFs do. For 0 action penalty, optimistic exploration with RFFs
underperforms compared to greedy exploitation and Thompson sampling. This might be due to
variance starvation of RFFs because we do not see the same effect on QFFs. We conclude that PE are
as good as other approximate posterior methods such as random feature models.

26

QFF RFF
0

50

100

150

200

250

300

350

E
pi

so
de

R
et

ur
n

Action Penalty 0.0

QFF RFF

Action Penalty 0.1
H-UCRL
Greedy

Thompson

QFF RFF

Action Penalty 0.2

Figure 19: Episodic Returns in inverted pendulum using Random Fourier Features (RFF) and
Quadrature Fourier Features (QFF).

B.4.6 Is it the optimization procedure?

The final and perhaps most enlightening experiment is the following. We run optimistic exploration
with five ensemble heads and save snapshots of the models after the first, fifth and tenth episode.
Then, we optimize a different policy for each of the models separately. In Fig. 20 we compare the
simulated returns using optimistic exploration on the ensemble at each episode against the maximum
return obtained by the best head.

After the first episode, the simulated returns using optimistic exploration always find an optimistic
swing-up trajectory, whereas the best-head always returns zero. This indicates that, when the
uncertainty is large, optimistic exploration finds a better policy than approximate Thompson sampling.
Without action penalty, the best head return quickly catches up to the simulated ones with optimistic
exploration. For an action penalty of 0.1, after five episodes the best head is not able to find a
swing-up trajectory. However, after ten episodes it does. This shows that the optimization algorithm
is able to find the policy that swings-up a single model. However, when Thompson sampling is used
to collect data, the optimization does not find such a policy. This indicates that the models learned
using H-UCRL better reduce the uncertainty around the high-reward region and each member of the
ensemble has sharper predictions. For 0.2 action penalty, the best head never finds a swing-up policy
in ten episodes.

1 5 10
0

50

100

150

200

250

300

Si
m

ul
at

ed
R

et
ur

n

Action Penalty 0

1 5 10
Episode Number

Action Penalty 0.1

1 5 10

Action Penalty 0.2

H-UCRL Best Head

Figure 20: Simulated Returns using H-UCRL vs. Maximum simulated return over all ensemble
members using the same model as H-UCRL.

B.4.7 Conclusions

We believe that the poor performance of Thompson sampling relative to H-UCRL suggests that a
probabilistic ensemble with five members is sufficient to construct reasonable confidence intervals
(hence H-UCRL finds good policies), but does not comprise a rich enough posterior distribution

27

for Thompson Sampling. We suspect that this effect is inherent to the multi-step RL setting. It
seems to be the case that an approximate posterior model whose variance is rich enough for one-step
predictions does not sufficiently represent/cover the diversity of plausible trajectories in the multi-step
setting. Thompson sampling implements optimism stochastically: for it to work, we must be able to
sample a model that solves the task using multi-step predictions. Designing tractable approximate
posteriors with sufficient variance for multi-step prediction is still a challenging problem. For instance,
an ensemble model with B members that has sufficient variance for 1-step predictions, requires BN
members for N-step predictions, this quickly becomes intractable.

Compared to Thompson sampling, UCRL algorithms in general, and H-UCRL in particular, only
require one-step ahead calibrated predictive uncertainties in order to successfully implement optimism.
This is because the optimism is implemented deterministically and it can be used recursively in a
computationally efficient way. Furthermore, we know how to train (and calibrate) models to capture
the uncertainty. This hints that optimism might be better suited than approximate Thompson sampling
in model-based reinforcement learning.

28

C Solving the Augmented Greedy Exploitation Program

In this section, we discuss how to practically solve the greedy exploitation problem with the augmented
hallucination variables. In Section 3.1 we showed that the optimization program is a stochastic
optimal-control problem for the hallucinated model f̃ . There are two common ways to solve this
stochastic optimal-control problem: off-line policy search and on-line planning. In Appendix C.1, we
describe offline policy search algorithms, in Appendix C.2 we present online planning algorithms,
and in Appendix C.3 we show how to combine these algorithms.

C.1 Offline Policy Search

Off-line policy search usually parameterize a policy π(·; θ) using a function approximation method
(e.g., neural networks), and then uses the policy π(·; θ) to interact with the environment. We
parameterize both the true and hallucinated policies with neural network π(·; θ), η(·; θ). Next, we
describe how to augment common policy-search algorithms with hallucinated policies. Any of such
algorithms can be used as the PolicySearch method in Algorithm 2.

Imagined Data Augmentation consists of using the model to simulate data and then use these data
to learn a policy using a model-free RL method. For example, the celebrated Dyna algorithm from
Sutton (1990), DAD from Venkatraman et al. (2016), IB from Kalweit and Boedecker (2017), and
I2A Racanière et al. (2017) generate data by sampling from expected models. In Algorithm 3, we
show HDA (for Hallucinated Data Augmentation). In HDA, we generate data using the optimistic
dynamics in (4) and then call any model-free RL algorithm such as SAC (Haarnoja et al., 2018),
MPO (Abdolmaleki et al., 2018), TD3 (Fujimoto et al., 2018), TRPO (Schulman et al., 2015), or PPO
(Schulman et al., 2017). Furthermore, the initial state distribution where hallucinated trajectories
start from might be any exploratory distribution. This greatly simplifies the task of the ModelFree
algorithm. Usually these strategies combine true with hallucinated data buffers. To match dimensions
between these, we augment the action space of the true data buffer with samples of a standard normal.
This strategy usually suffers from model-bias as model errors compound throughout a trajectory,
yielding highly biased estimates that hinder the policy optimization (van Hasselt et al., 2019).

Algorithm 3 Hallucinated Data Augmentation

Inputs: Calibrated dynamical model (µ,Σ), reward function r(s,a), horizonN , initial state distribu-
tion d(s0), number of iterations Niter, number of data points Ndata, initial parameters θt−1, ϑt−1,
model-free algorithm ModelFree.

1: Initialize θt,0 ← θt−1, ϑt,0 ← ϑt−1

2: for i = 1, . . . , Niter do
3: /* Simulate Data */
4: Initialize hallucinated data buffer Dh = {∅}.
5: for i = 1, . . . , Ndata do
6: Start from initial state distribution ŝ0 ∼ d(s0).
7: for n = 0, . . . , N − 1 do
8: Compute action ân ∼ π(ŝn; θt,i), â′n ∼ η(ŝn; θt,i)
9: Sample next state ŝn+1 ∼ µt(ŝn, ân) + βtΣt(ŝn, ân)â′n + ωn .

10: Append transition to buffer Dh ← Dh ∪ {(ŝn, ŝn+1, ân, â
′
n, r(ŝn, ân))}.

11: /* Optimize Policy */
12: θt,i+1, ϑt,i+1 ← ModelFree(Dh, θt,i, ϑt,i)

Outputs: Final policy and critic θt = θt,Niter , ϑt = ϑt,Niter

Back-Propagation Through Time is an algorithm that updates the policy parameters by computing
the derivatives of the performance w.r.t. the parameters directly. For instance, PILCO from Deisenroth
and Rasmussen (2011) and MBAC from Clavera et al. (2020) are different examples of practical
algorithms that use a greedy policy (4) using GPs and ensembles of neural networks, respectively.
In Algorithm 4, we show how to adapt BPTT to hallucinated control. Like in BPTT it samples the
trajectories in a differentiable way, i.e., using the reparameterization trick (Kingma and Welling, 2013).
Under some assumptions (such as moment matching), the sampling step in Line 8 of Algorithm 4 can
be replaced by exact integration as in PILCO (Deisenroth and Rasmussen, 2011). While performing
the rollout, it computes the performance and at the end it bootstrapped with a critic. This critic is

29

learned using a policy evaluation PolEval algorithm such as Fitted Value Iteration (Antos et al.,
2008). This strategy usually suffers from high variance due to the stochasticity of the sampled
trajectories and the compounding of gradients (McHutchon, 2014). Interestingly, Parmas et al. (2018)
propose a method to combine the model-free gradients given by any HDA strategy together with the
model-based gradients given by HBPTT, but we leave this for future work. We found that limiting
the KL-divergence between the policies in different episodes as suggested by Schulman et al. (2015)
helps to control this variance by regularization.

Algorithm 4 Hallucinated Back-Propagation Through Time

Inputs: Calibrated dynamical model (µ,Σ), reward function r(s,a), horizon N , initial state distri-
bution d(s0), number of iterations Niter, initial parameters θt−1, ϑt−1, learning rate eta, policy
evaluation algorithm PolEval, regularization λ.

1: Initialize θt,0 ← θt−1, ϑt,0 ← ϑt−1

2: for i = 1, . . . , Niter do
3: /* Simulate Data */
4: Start from initial state distribution ŝ0 ∼ d(s0).
5: Restart J ← 0
6: for n = 0, . . . , N − 1 do
7: Compute action ân ∼ π(ŝn; θt,i), â′n ∼ η(ŝn; θt,i)
8: Sample next state ŝn+1 ∼ µt(ŝn, ân) + βtΣt(ŝn, ân)â′n + ωn .
9: Accumulate J ← J + γnr(ŝn, ân)− λKL(π(ŝn; θt,i)||π(ŝn; θt−1)).

10: Bootstrap J ← J + γNQ(ŝN , π(ŝN ; θt,i), η(ŝN ; θt,i);ϑt,i)
11: /* Optimize Policy */
12: Compute gradient ∂J/∂θt with back-propagation through time.
13: Do gradient step θt,i+1 ← θt,i + η∂J/∂θt
14: Update Critic ϑt,i+1 ← PolEval(θt,i+1)

Outputs: Final policy and critic θt = θt,Niter , ϑt = ϑt,Niter

Model-Based Value Expansion is an Actor-Critic approach that uses the model to compute the
next-states for the Bellman target when learning the action-value function. It then uses pathwise
derivatives (Mohamed et al., 2019) through the learned action-value function. For example MVE from
(Feinberg et al., 2018) and STEVE from Buckman et al. (2018) use such strategy. In Algorithm 5, we
show H-MVE (Hallucinated-Model Based Value Expansion). Here we use optimistic trajectories
only to learn the Bellman target. In turn, the learned action-values functions are optimistic and so are
the pathwise gradients computed through them. This strategy is usually less data efficient than BPTT
or IDA as it uses the model only to compute targets, but suffers less from model bias. To address
data efficiency, one can combine HVE and HDA to compute optimistic value functions as well as
simulating optimistic data.

C.2 Online Planning

An alternative approach is to consider non-parametric policies and directly optimize the true and
hallucinated actions as an,t ∈ [−1, 1]q,a′n,t ∈ [−1, 1]p. This is usually called Model-Predictive
Control (MPC) and it is implemented in a receding horizon fashion (Morari and H. Lee, 1999). That
means that for each new state encounter online the HUCRL planning problem (7) is solved using
the actions as decission variables. This addresses model errors compounding as the trajectories are
evaluated through the real trajectories, but it comes at high online computational costs, which limit
the applicability of such algorithms to simulations.

GP-MPC Kamthe and Deisenroth (2018) and PETS Chua et al. (2018) are MPC-based methods that
use the greedy policy (4) using GP and neural networks ensembles, respectively. Other MPC solvers
such as POPLIN Wang and Ba (2019) or POLO (Lowrey et al., 2019) are also compatible with
such dynamical models. In H-MPC (Hallucinated-MPC), we directly optimize both the control and
hallucinated inputs jointly and any of the previous methods can be used as the MPC solver. Moldovan
et al. (2015) also use MPC to solve an optimistic exploration scheme but only on linear models and,
like other on-line planning methods, are extremely slow for real-time deployment.

30

Algorithm 5 Hallucinated Value Expansion

Inputs: Calibrated dynamical model (µ,Σ), reward function r(s,a), number of steps N , number
of iterations Niter, initial parameters θt−1, ϑt−1, true data buffer Dr, learning rate η, polyak
parameter τ .

1: Initialize θt,0 ← θt−1, ϑt,0 ← ϑt−1, ϑ̄t,0 ← ϑt−1

2: for i = 1, . . . , Niter do
3: /* Simulate Data */
4: Start from buffer ŝ0 ∼ Dr.
5: Initialize target Qtarget ← 0.
6: Compute prediction Qpred = Q(ŝ0;ϑt,i).
7: for n = 0, . . . , N − 1 do
8: Compute action ân ∼ π(ŝn; θt,i), â′n ∼ η(ŝn; θt,i)
9: Sample next state ŝn+1 ∼ µt(ŝn, ân) + βtΣt(ŝn, ân)â′n + ωn .

10: Accumulate target Qtarget ← γnr(ŝn, ân).
11: Bootstrap Qtarget ← Qtarget + γNQ(ŝN , π(ŝN ; θt,i), η(ŝN ; θt,i); ϑ̄t,i)
12: /* Optimize Critic */
13: ϑt,i+1 ← ϑt,i − η∇ϑ(Qpred −Qtarget)

2

14: Update target parameters ϑ̄t,i+1 ← τ ϑ̄t,i + (1− τ)ϑt,i+1

15: /* Optimize Policy */
16: θt,i+1 ← θt,i + η∇θt,iQ(ŝ0;ϑt,i)

Outputs: Final policy θt = θt,θt .

To solve the optimization problem, approximate local solvers are usually used that rely either on
sampling or on linearization. We discuss how to use both of them with hallucinated inputs. These
algorithms can be used as the Plan method in Algorithm 2.

Random Sampling Methods An approximate way of solving MPC problems is to exhaustively
sample the decision variables. Shooting methods sample the actions and then propagate the trajectory
through the model whereas collocation methods sample both the states and the actions. For simplicity,
we only consider shooting methods. This method initializes particles at the current state. For each
particle, it samples a sequence of actions from a proposal distribution and rollouts each particle
independently, computing the returns of such sequence. This process is repeated updating the proposal
distribution. Random Shooting (Richards and How, 2006), the Cross-Entropy Method (Botev et al.,
2013), and Model-Predictive Path Integral Control (Williams et al., 2016) differ in the ways to select
the elite actions between iterations and how to update the sampling distributions. All these methods
maintain a distribution over the actions. POPLIN from Wang and Ba (2019) instead maintains a
distribution over the weights of a policy network and samples different policies. The main advantage
of this method is that it correlates the random samples through the dynamics, possibly scalling to
higher dimensions. Any of these methods can be used with hallucination. We show in Algorithm 6
the pseudo-code for a meta-Hallucinated shooting algorithm.

Differential Dynamic Programming (DDP) DDP can be interpreted as a second-order shooting
method Jacobson (1968) for dynamical systems. For linear dynamical models with quadratic costs,
problem (4) is a quadratic program (QP) that enjoys a closed form solution (Morari and H. Lee,
1999). To address non-linear systems and other cost functions, a common strategy is to use a variant
of iLQR Li and Todorov (2004); Todorov and Li (2005); Tassa et al. (2012) which linearizes the
system and uses a second order approximation to the cost function to solve sequential QPs (SQP)
that approximate the original problem. When the rewards and dynamical model are differentiable,
this method is faster to sampling methods as it uses the problem structure to update the sampling
distribution.

C.3 Combining Offline Policy Search with Online Planning

MPC methods suffer less from model bias, but typically require substantial computation. Furthermore,
they are limited to the planning horizon unless a learned terminal reward is used to approximate the
reward-to-go (Lowrey et al., 2019). On the other hand, off-policy search approaches yield policies
and value function estimates (critics) that are fast to evaluate, but suffer from bias (van Hasselt et al.,

31

Algorithm 6 Hallucinated Shooting Method

Inputs: Calibrated dynamical model (µ,Σ), terminal reward V , reward function r(s,a), horizon N ,
current state sn, number of particles nparticle, number of iterations niter, number of elite particles
nelite. initial sampling distribution d(·), algorithm to evaluate actions EliteActions, algorithm
to update distribution UpdateDistribution.

1: for i = 1, . . . , niter do
2: /* Simulate Data */
3: Initialize nparticle at the current state ŝ

(i)
0 = sn

4: Initialize J (i) ← 0
5: for n = 0, . . . , N − 1 do
6: Sample action â

(i)
n , â

′(i)
n ∼ d(·)

7: Sample next state ŝ
(i)
n+1 ∼ µn(ŝ

(i)
n , â

(i)
n) + βtΣn(ŝ

(i)
n , â

(i)
n)â

′(i)
n + ωn.

8: Accumulate J (i) ← J (i) + γnr(ŝ
(i)
n , â

(i)
n)

9: Bootstrap J (i) ← J (i) + γNV (ŝ
(i)
N).

10: a, a′ ← EliteActions(J (i), â
(i)
0:N−1, â

′(i)
0:N−1, nelite)

11: /* Optimize Policy */
12: Update proposal distribution d(·)← UpdateDistribution(a, a′).
Outputs: Return best action a, a′ ← EliteActions(J (i), â

(i)
0:N−1, â

′(i)
0:N−1, 1).

Algorithm 7 Dyna-MPC with Hallucinated Models

Inputs: Calibrated dynamical model (µ,Σ), learned policies π(·; θ), η(·; θ) learned critic Q(·;ϑ),
reward function r(s,a), horizon N , current state sn, number of particles nparticle, number of
iterations niter, number of elite particles nelite. initial sampling distribution d(·), algorithm to
evaluate actions EliteActions, algorithm to update distribution UpdateDistribution.

1: for i = 1, . . . , niter do
2: /* Simulate Data */
3: Initialize nparticle at the current state ŝ

(i)
0 = sn

4: Initialize J (i) ← 0
5: for n = 0, . . . , N − 1 do
6: Sample action â

(i)
n , â

′(i)
n ∼ (π(ŝ

(i)
n ; θ), η(ŝ

(i)
n ; θ)) + d(·)

7: Sample next state ŝ
(i)
n+1 ∼ µn(ŝ

(i)
n , â

(i)
n) + βtΣn(ŝ

(i)
n , â

(i)
n)â

′(i)
n + ωn.

8: Accumulate J (i) ← J (i) + γnr(ŝ
(i)
n , â

(i)
n)

9: Bootstrap J (i) ← J (i) + γNQ(ŝ
(i)
N , â

(i)
N , â

′(i)
N ;ϑ).

10: a, a′ ← EliteActions(J (i), â
(i)
0:N−1, â

′(i)
0:N−1, nelite)

11: /* Optimize Policy */
12: Update proposal distribution d(·)← UpdateDistribution(a, a′).
Outputs: Return best action a, a′ ← EliteActions(J (i), â

(i)
0:N−1, â

′(i)
0:N−1, 1).

2019). We propose to combine these methods to get the best of both worlds: First, we learn parametric
policies π and η using a policy search algorithm. Then, we use such policies as a warm-start for
the sampling distributions of the planning algorithm. We name this planning algorithm Dyna-MPC,
as it resembles the Dyna architecture proposed by Sutton (1990) and we show the pseudo-code for
hallucinated models in Algorithm 7.

Closely related to Dyna-MPC is POPLIN (Wang and Ba, 2019). We also use a policy to initialize
actions and and then refine them with a shooting method. Nevertheless, we use a policy search
algorithm to optimize the policy parameters instead of the cross-entropy method. Hong et al. (2019)
also uses MPC to refine an off-line learned policy. However, they use a model-free algorithm directly
form real data instead of model-based policy search.

32

D Proofs for Exploration Regret Bound

In this section, we prove the main theorem.

D.1 Notation

In the following, we implicitly denote with sn,t the states visited under the true dynamics f in
(1) and with s̃n the states visited under πt but the optimistic dynamics f̃t(s,a) = µt−1(s,a) +
Σt−1(s,a)ηt(s,a),

sn+1,t = f(sn,t,an,t) + ωn,t (17a)
an,t = πt(sn,t) (17b)

and

s̃n+1,t = f̃t(sn,t, ãn,t) + ωn,t (17c)
= µt−1(sn,t, ãn,t) + Σt−1(sn,t, ãn,t)ηt(sn,t, ãn,t) + ωn,t (17d)

ãn,t = πt(s̃n,t). (17e)

Since the control actions an,t = πt(sn,t) and ãn,t = πt(s̃n,t) are fixed given πt, we generally drop
the dependence on u and write f(s) = f(s, πt(s)), µ(s, πt(s)), etc. We also drop the subscript t
from sn,t whenever it is clear that we refer to the tth episode. Lastly, when no norm is specified,
‖ · ‖ = ‖ · ‖2 refers to the two-norm.

We start by clarifying that as a consequence of Assumptions 1 and 3 the closed-loop dynamics are
Lipschitz continuous too.

Corollary 1. As in Assumption 6, let the open-loop dynamics f in (1) be Lf -Lipschitz continuous
and the policy π ∈ Π be Lπ-Lipschitz continuous w.r.t. to the 2-norm. Then the closed-loop system is
Lfc-Lipschitz continuous with Lfc = Lf

√
1 + Lπ .

Proof.

‖f(s, π(s))− f(s′, π(s′))‖2 ≤ Lf‖(s− s′, π(s)− π(s′))‖2 (18)

= Lf

√
‖(s− s′‖22 + ‖π(s)− π(s′))‖22 (19)

≤ Lf
√
‖(s− s′‖22 + Lπ‖s− s′))‖22 (20)

= Lf
√

1 + Lπ︸ ︷︷ ︸
:=Lfc

‖s− s′‖2 (21)

D.2 Bounding the Regret

We start by bounding the cumulative regret in terms of the predictive variance of the states/actions on
the true trajectory (the one that we will later collect data one).

Lemma 1. Under Assumption 2, for any sequence sn,t generated by the true system (1), there exists
a function η : Rp → [−1, 1]p such that sn,t = s̃n,t if ω = ω̃.

Proof. By Assumption 2 we have |f(s) − µ(s)| ≤ βσ(s) elementwise. Thus for each s,a there
exists a vector η with values in [−1, 1]p such that f(s,a) = µ(s,a) + Σ(s,a)η. Let the function
η(·) return this vector for each state and action, then the result follows.

Lemma 2. Under Assumption 2, with probability at least (1 − δ) we have for all t ≥ 0 that the
regret rt is bounded by

rt = J(f, π∗)− J(f, πt) ≤ J(f̃t, πt)− J(f, πt) (22)

33

Proof. By Assumption 2, we know from Lemma 1 that the true dynamics are contained within
the feasible region of (7); that is, there exists an η(·) : Rp × Rq → [−1, 1]p such that with f̃(s) =

µ(s) + Σ(s)η(s) we have J(f, π∗) = J̃(f̃ , π∗). As a consequence, we have J(f, π∗) ≤ J(f̃t, πt)
and the result follows.

Thus, to bound the instantaneous regret rt, we must bound the difference between the optimistic
value estimate J(f̃t, πt) and the true value J(f, πt). We can use the Lipschitz continuity properties
to obtain
Lemma 3. Based on Assumption 3 we have

|J(f̃t, πt)− J(f, πt)| ≤ Lr
√

1 + Lπ

N∑
n=0

Eω=ω̃[‖sn,t − s̃n,t‖2] (23)

Proof.

|J(f̃t, πt)− J(f, πt)| =
∣∣∣∣∣Eω̃

[
N∑
n=0

r(s̃n, πt(s̃n))

]
− Eω

[
N∑
n=0

r(sn, πt(sn))

]∣∣∣∣∣ (24)

=

∣∣∣∣∣Eω=ω̃

[
N∑
n=0

r(s̃n, πt(s̃n))− r(sn, πt(sn))

]∣∣∣∣∣ (25)

≤ Lr
√

1 + Lπ

N∑
n=0

Eω=ω̃[‖s̃n − sn‖2], (26)

where Eω=ω̃[·] means in expectation over ω and with ω̃ = ω; that is, ω̃ and ω are the same random
variable.

Figure 21: Illustrative comparison of the true state trajectory sn under the policy πθ and the optimistic
trajectory s̃n from (7). After one step, s1 is contained within the confidence intervals (grey bars). The
optimistic dynamics are chosen within this confidence interval to maximize performance. Since the
optimistic dynamics are constructed iteratively based on the previous state s̃n, beyond one step the
true dynamics are not contained in the confidence intervals.

What remains is to bound the deviation of the optimistic and the true trajectory. We show a different
perspective of Fig. 2 in Fig. 21, where we explicitly show the “real” state trajectory under a policy
and for a given noise realisation the the optimistic trajectory with its one-step uncertainty estimates
as in (7). We exploit the Lipschitz continuity of σ from Assumption 3 in order to bound the deviation
in terms of σt−1 at states of the “real” trajectory.
Lemma 4. Under Assumptions 1–3, let L̄f = 1 + Lfc + 2βt−1Lσ

√
1 + Lπ . Then, for all iterations

t > 0, any function η : Rp × Rq → [−1, 1]p and any sequence of ωn with ω̃n = ωn, π ∈ Π with
1 ≤ n ≤ N we have that

‖sn,t − s̃n,t‖ ≤ 2βt−1L̄
N−1
f

n−1∑
i=0

‖σt−1(si,t)‖ (27)

34

Proof. We start by showing that, for any n ≥ 1 we have

‖sn,t − s̃n,t‖ ≤ 2βt−1

n−1∑
i=0

(Lfc + 2βt−1Lσ
√

1 + Lπ)n−1−i‖σt−1(si,t)‖ (28)

by induction. For the base case we have s̃0 = s0. Consequently, at iteration t we have

‖s1,t − s̃1,t‖ = ‖f(s0) + ω0 − µt−1(s0)− βt−1Σt−1(s0)η(s0)− ω̃0‖ (29)
≤ ‖f(s0)− µt−1(s0)‖+ βt−1‖Σt−1(s0)η(s0)‖ (30)
≤ βt−1‖σt−1(s0)‖+ βt−1‖σt−1(s0)‖ (31)
= 2βt−1‖σt−1(s0)‖ (32)

For the induction step assume that (28) holds at time step n. Subsequently we have at iteration t that

‖sn+1,t − s̃n+1,t‖
= ‖f(sn) + ωn − µt−1(s̃n)− βt−1Σt−1(s̃n)η(s̃n)− ω̃n‖
= ‖f(sn)− µt−1(s̃n)− βt−1Σt−1(s̃n)η(s̃n) + f(s̃n)− f(s̃n)‖
= ‖f(s̃n)− µt−1(s̃n)− βt−1Σt−1(s̃n)η(s̃n) + f(sn)− f(s̃n)‖
= ‖f(s̃n)− µt−1(s̃n)‖+ ‖βt−1Σt−1(s̃n)η(s̃n)‖+ ‖f(sn)− f(s̃n)‖
≤ βt−1‖σt−1(s̃n)‖+ βt−1‖σt−1(s̃n)‖+ Lfc‖sn − s̃n‖
= 2βt−1‖σt−1(s̃n)‖+ Lfc‖sn − s̃n‖
= 2βt−1‖σt−1(sn) + σt−1(s̃n)− σt−1(sn)‖+ Lfc‖sn − s̃n‖
≤ 2βt−1

(
‖σt−1(sn)‖+ Lσ

√
1 + Lπ‖sn − s̃n‖

)
+ Lfc‖sn − s̃n‖

= 2βt−1‖σt−1(sn)‖+ (Lfc + 2βt−1Lσ
√

1 + Lπ)‖sn − s̃n‖

≤ 2βt−1‖σt−1(s̃n)‖+ (Lfc + 2βt−1Lσ
√

1 + Lπ)2βt−1

n−1∑
i=0

(Lfc + 2βt−1Lσ
√

1 + Lπ)n−1−i‖σt−1(si)‖

= 2βt−1

(n+1)−1∑
i=0

(Lfc + 2βt−1Lσ
√

1 + Lπ)(n+1)−1−i‖σt−1(si)‖

Thus (28) holds. Now since n ≤ N we have

‖sn,t − s̃n,t‖ ≤ 2βt−1

n−1∑
i=0

(Lfc + 2βt−1Lσ
√

1 + Lπ)n−1−i‖σt−1(si,t)‖ (33)

≤ 2βt−1

n−1∑
i=0

(1 + Lfc + 2βt−1Lσ
√

1 + Lπ)n−1−i‖σt−1(si,t)‖ (34)

≤ 2βt−1(1 + Lfc + 2βt−1Lσ
√

1 + Lπ)︸ ︷︷ ︸
:=L̄f

N−1
n−1∑
i=0

‖σt−1(si,t)‖ (35)

(36)

Corollary 2. Under the assumptions of Lemma 4, for any sequence of ηn ∈ [−1, 1], θ ∈ D, and
n ≥ 1, t ≥ 1 we have that

Eω=ω̃[‖sn,t − s̃n,t‖] ≤ 2βt−1L̄
N−1
f Eω

[
n−1∑
i=0

‖σt−1(si,t)‖
]

(37)

Proof. This is a direct consequence of Lemma 4.

As a direct consequence of these lemmas, we can bound the regret in terms of the predictive
uncertainty of our statistical model in expectation over the states visited under the true dynamics.

35

Lemma 5. Under Assumptions 2–3, let LJ = 2Lr
√

1 + Lπβt−1L̄
N−1
f . Then, with probability at

least (1− δ) it holds for all t ≥ 0 that

r2
t ≤ L2

JN
3Eω

[
N−1∑
n=0

‖σt−1(sn,t)‖22

]
(38)

Proof.

rt ≤ J(f̃t, πt)− J(f, πt) (39)

≤ Lr
√

1 + Lπ

N∑
n=0

Eω=ω̃[‖sn,t − s̃n,t‖2] (40)

≤ 2Lr
√

1 + Lπβt−1L̄
N−1
f

N∑
n=0

Eω

[
n−1∑
i=0

‖σt−1(si,t)‖2
]

(41)

≤ 2Lr
√

1 + Lπβt−1L̄
N−1
f NEω

[
N−1∑
n=0

‖σt−1(sn,t)‖2
]

(42)

where the third inequality follows from Corollary 2. Now, let LJ = 2Lr
√

1 + Lπβt−1L̄
N−1
f , so that

rt ≤ LJNEω

[
N−1∑
n=0

‖σt−1(sn,t)‖2
]

(43)

r2
t ≤ L2

JN
2

(
Eω

[
N−1∑
n=0

‖σt−1(sn,t)‖2
])2

(44)

≤ L2
JN

2Eω

(N−1∑
n=0

‖σt−1(sn,t)‖2
)2
 (45)

≤ L2
JN

3Eω

[
N−1∑
n=0

‖σt−1(sn,t)‖22

]
(46)

Lemma 6. Under the assumption of Assumptions 1–3, with probability at least (1− δ) it holds for
all t ≥ 0 that

R2
T ≤ TL2

JN
3
T∑
t=1

Eω

[
N−1∑
n=0

‖σt−1(sn,t,an,t)
2‖22

]
(47)

Proof.

R2
T =

(
T∑
t=1

rt

)2

(48)

≤ T
T∑
t=1

r2
t Jensen’s (49)

≤ TL2
JN

3
T∑
t=1

Eω

[
N−1∑
n=0

‖σt−1(sn,t,an,t)
2‖22

]
Lemma 5 (50)

That is, at every iteration t the regret bound increases by the sum of predictive uncertainties in
expectation over the true states that we may visit. This is an instance-dependent bound, since it
depends on specific data collected up to iteration t within σt−1. We will replace this with a worst-case
bound in the following.

36

Lemma 7. Under the assumption of Assumptions 1–3, let sn,t ∈ St, St−1 ⊆ St, and an,t ∈ A for
all n, t > 0 with compact sets St and A. Then, with probability at least (1− δ) it holds for all t ≥ 0
that

R2
T ≤ TL2

JN
3IT (St,A) (51)

where

IT (S,A) = max
D1,...,DT⊂S×S×A, |Di|=N

T∑
t=1

∑
s,a∈Dt

‖σt−1(s,a)‖22 (52)

Proof. As a consequence of sn,t ∈ St we have

T∑
t=1

Eω

[
N−1∑
n=0

‖σt−1(sn,t,an,t)
2‖22

]
≤ IT (St,A) (53)

and thus
R2
T ≤ TL2

JN
3IT (St,A). (54)

Theorem 2. Under Assumptions 1–3 let sn,t ∈ St, St−1 ⊆ St, and an,t ∈ A for all n, t > 0.
Then, for all T ≥ 1, with probability at least (1 − δ), the regret of H-UCRL in (7) is at most

RT ≤ O
(
βNT−1L

N
σ

√
TN3 IT (ST ,A)

)
.

Proof. From Lemma 7 we have

R2
T ≤ TL2

JN
3IT (St,A) (55)

RT ≤ LJ
√
N3IT (St,A) (56)

where LJ = 2Lr
√

1 + Lπβt−1L̄
N−1
f from Lemma 5 and L̄f = 1 + Lf + 2βt−1Lσ

√
1 + Lπ

from Lemma 4. Plugging in we get LJ = 2Lr
√

1 + Lπβt−1(1 + Lf + 2βt−1Lσ
√

1 + Lπ)N−1 =
O
(
βNt−1L

N
σ

)
so that

RT ≤ O
(
βNt−1L

N
σ

√
N3IT (St,A)

)
(57)

Theorem 1. Under Assumptions 1–3 let sn,t ∈ S and an,t ∈ A for all n, t > 0. Then,
for all T ≥ 1, with probability at least (1 − δ), the regret of H-UCRL in (7) is at most

RT ≤ O
(
LNσ β

N
T−1

√
TN3 IT (S,A)

)
.

Proof. A direct consequence of Theorem 2.

E Properties of the Functions η(·)

So far, we have considered general functions η : Rp × Rq → [−1, 1]p, which can potentially be
discontinuous. However, as long as Lemma 1 holds and the true dynamics are feasible in (7), we can
use any more restrictive function class. In this section, we investigate properties of η.

It is clear, that it is sufficient to consider functions η such that Σt(s)η(s) is Lipschitz continuous,
since it aims to approximate a Lipschitz continuous function f :
Lemma 8. With Assumptions 1–3 let η(·) be a function such that f(s)−µt(s) = βtΣt(s)η(s) as in
Lemma 1. Then Σt(s)η(s) is Lipschitz continuous.

Proof.

‖Σt(s)η(s)−Σt(s
′)η(s′)‖ ≤ ‖f(s)− µt(s)− (f(s′)− µt(s′))‖ (58)

≤ (Lf + Lµ)‖s− s′‖ (59)

37

Unfortunately, the same is not true for η on its own in general. However, if the predictive standard
deviation σ does not decay to zero, this holds.

Lemma 9. Under the assumptions of Lemma 8 let 0 < σmin ≤ σ(s,a) ≤ σmax elementwise for all
s,a ∈ S × A. Then, with probability at least (1− δ), there exists a Lipschitz-continuous function
η(·) with ‖η(·)‖∞ = 1 such that f(s)− µt(s) = βtΣt(s)η(s) for all s ∈ Rp.

Proof. By contradiction. Let η(·) be a function that is not Lipschitz continuous such that f(s) −
µ(s) = βΣ(s)η(s). By assumption we know that σt(s) is strictly larger than zero and bounded
element-wise from above by some constant. As a consequence, Σ−1(s) exists and is Lσ/σ2

min-
Lipschitz continuous w.r.t. the Frobenius norm. Thus, we have

‖η(s)− η(s′)‖2
= ‖ 1

β
Σ−1(s)(f(s)− µ(s))− 1

β
Σ−1(s′)(f(s′)− µ(s′))‖2

≤ | 1
β
|‖Σ−1(s)((f(s)− µ(s))− (f(s′)− µ(s′)))‖2 + | 1

β
|‖
(
Σ−1(s)−Σ−1(s′)

)
(f(s′)− µ(s′))‖2

≤ | 1
β
|‖Σ−1(s)‖F‖(f(s)− µ(s))− (f(s′)− µ(s′))‖2 + | 1

β
|‖f(s′)− µ(s′)‖2‖Σ−1(s)−Σ−1(s′)‖F

≤ | 1
β
|‖Σ−1(s)‖F(Lfc + Lµ

√
1 + Lπ)‖s− s′‖2 + | 1

β
|‖βσ(s′)‖2‖Σ−1(s)−Σ−1(s′)‖F

≤
√
p

βσmin
(Lfc + Lµ

√
1 + Lπ)‖s− s′‖2 +

√
pσmax

σ2
min

Lσ
√

1 + Lπ‖s− s′‖2

Since βt > 0 we have that η(s) is Lipschitz continuous, which is a contradiction.

Thus, it is generally sufficient to optimize over Lipschitz continuous functions in order to obtain the
same regret bounds as in the optimistic case. However, it is important to note that the complexity of
the function (i.e., its Lipschitz constant) will generally increase as the predictive variance decreases.
It is easy to construct cases where σ(·) = 0 implies that η has to be discontinuous. However, at least
in theory σ(·) = 0 is impossible with finite data when the system is noisy (σ > 0). Also note that as
σ decreases, the effect of η on the dynamics also decreases.

This might also motivate optimizing over a function that model Σt−1(s,a)η(s,a) jointly, since that
one is regular even for σ(·) = 0. However, this would require regularizing the resulting function to
be bounded by βtσt(s,a) and might lead to difficulties with policy optimization, since the resulting
hallucinated actions are no longer normalized to [−1, 1]p. We leave it as an avenue for future
research.

F Background on Gaussian Processes

Gaussian processes are a nonparametric Bayesian model that has a tractable, closed-form posterior
distribution (Rasmussen and Williams, 2006). The goal of Gaussian process inference is to infer
a posterior distribution over a nonlinear map f ′(x) : X → R from an input vector x ∈ X with
X ⊆ Rd to the function value f ′(x). This is accomplished by assuming that the function values
f ′(x), associated with different values of x, are random variables and that any finite number of these
random variables have a joint normal distribution (Rasmussen and Williams, 2006).

A Gaussian process distribution is parameterized by a prior mean function and a covariance function
or kernel k(x,x′), which defines the covariance of any two function values f(x) and f(x′) for
x,x′ ∈ X . In this work, the mean is assumed to be zero without loss of generality. The choice of
kernel function is problem-dependent and encodes assumptions about the unknown function. A
review of potential kernels can be found in (Rasmussen and Williams, 2006).

We can condition a Gaussian process on the observations yt at input locations Xt. The Gaussian
process model assumes that observations are noisy measurements of the true function value with
Gaussian noise, ω ∼ N (0, σ2). The posterior distribution is again a Gaussian process with mean µt,

38

covariance kt, and variance σt, where

µt(x) = kt(x)(Kt + Iσ2)−1yt, (60)

kt(x,x
′) = k(x,x′)− kt(x)(Kt + Iσ2)−1kT

t (x′), (61)

σ2
t (x) = kt(x,x). (62)

The covariance matrix Kt ∈ R|Xt|×|Xt| has entries [Kt](i,j) = k(xi,xj) with xi,xj ∈ Xt and the
vector kt(x) =

[
k(x,x1), . . . , k(x,x|Xt|)

]
contains the covariances between the input x and the

observed data points in Xt. The identity matrix is denoted by I.

Given the Gaussian process assumptions, we obtain point-wise confidence estimates from the marginal
Normal distribution specified by µt and σt. For finite sets, the Gaussian process belief induces a
joint normal distribution over function values that is correlated through (61). We can use this to
fulfill Assumption 2 for continuous sets by using a union bound and exploiting that samples from a
Gaussian process are Lipschitz continuous with high probability (Srinivas et al., 2012, Theorem 2).

F.1 Information Capacity

One important property of normal distributions is that the confidence intervals contract after we
observe measurement data. How much data we require for this to happen generally depends on the
variance of the observation noise, σ2, and the size of the function class; i.e., the assumptions that
we encode through the kernel. In the following, we use results by Srinivas et al. (2012) and use the
mutual information to construct such a capacity measure.

Formally, the mutual information between the Gaussian process prior on f ′ at locations X and the
corresponding noisy observations yX is given by

I(yX ; f ′) = 0.5 log |I + σ−2KX |, (63)

where KX is the kernel matrix [k(x,x′)]x,x′∈X and | · | is the determinant. Intriguingly, for Gaussian
process models this quantity only depends on the inputs inX and not the corresponding measurements
yX . Intuitively, the mutual information measures how informative the collected samples yX are
about the function f . If the function values are independent of each other under the Gaussian process
prior, they provide large amounts of new information. However, if measurements are taken close
to each other as measured by the kernel, they are correlated under the Gaussian process prior and
provide less information.

The mutual information in (63) depends on the locations Xt at which we obtain measurements. While
it can be computed in closed-form, it can also be bounded by the largest mutual information that any
algorithm could obtain from t noisy observations,

γt = max
X⊂D, |X |≤t

I(yX ; f ′). (64)

We refer to γt as the information capacity, since it can be interpreted as a measure of complexity of
the function class associated with a Gaussian process prior. It was shown by Srinivas et al. (2012)
that γt has a sublinear dependence on t for many commonly used kernels such as the Gaussian
kernel. This sublinear dependence is generally exploited by exploration algorithms in order to show
convergence.

F.2 Functions in a Reproducing Kernel Hilbert Space

Instead of the Bayesian Gaussian process framework, we can also consider frequentist confidence
intervals. Unlike the Bayesian framework, which inherently models a belief over a random function,
frequentists assume that there is an a priori fixed underlying function f ′ of which we observe noisy
measurements.

The natural frequentist counterpart to Gaussian processes are functions inside the Reproducing Kernel
Hilbert Space (RKHS) spanned by the same kernel k(x,x′) as used by the Gaussian process in
Appendix F. An RKHSHk contains well-behaved functions of the form f(x) =

∑
i≥0 αi k(x,xi),

for given representer points xi ∈ Rd and weights αi ∈ R that decay sufficiently quickly. For example,
the Gaussian process mean function (60) lies in this RKHS. The kernel function k(·, ·) determines

39

the roughness and size of the function space and the induced RKHS norm ‖f ′‖2k = 〈f ′, f ′〉k =∑
i,j≥0 αiαjk(xi,xj) measures the complexity of a function f ′ ∈ Hk with respect to the kernel. In

particular, the function f ′ is Lipschitz continuous with respect to the kernel metric

d(x,x′) =
√
k(x,x) + k(x′,x′)− 2k(x,x′), (65)

so that |f ′(x) − f ′(x′)| ≤ ‖f ′‖kd(x,x′), see the proof of Proposition 4.30 by Christmann and
Steinwart (2008).

F.2.1 Confidence Intervals

We can construct an estimate together with reliable confidence intervals if the measurements are
corrupted by σ-sub-Gaussian noise. This is a class of noise where the tail probability decays
exponentially fast, such as in Gaussian random variables or any distribution with bounded support.
Specifically, we have the following definition.
Definition 1 (Vershynin (2010)). A random variableX is σ-sub-Gaussian if P {|X| > s} ≤ exp(1−
s2/σ2) for all s > 0.

While the Gaussian process framework makes different assumptions about the function and the noise,
Gaussian processes and RKHS functions are closely related (Kanagawa et al., 2018) and it is possible
to use the Gaussian process posterior marginal distributions to infer reliable confidence intervals
on f ′.
Lemma 10 (Abbasi-Yadkori (2012); Chowdhury and Gopalan (2017)). Assume that f has bounded
RKHS norm ‖f ′‖k ≤ B and that measurements are corrupted by σ-sub-Gaussian noise. If β1/2

t =

B + 4σ
√

I(yt; f) + 1 + ln(1/δ), then for all x ∈ X and t ≥ 0 it holds jointly with probability at
least 1− δ that | f ′(x)− µt(x) | ≤ β1/2

t σt(x).

Lemma 10 implies that, with high probability, the true function f ′ is contained in the confidence
intervals induced by the posterior Gaussian process distribution that uses the kernel k from Lemma 10
as a covariance function, scaled by an appropriate factor βt. In contrast to Appendix F, Lemma 10
does not make probabilistic assumptions on f ′. In fact, f ′ could be chosen adversarially, as long as it
has bounded norm in the RKHS.

Since the frequentist confidence intervals depend on the mutual information and the marginal
confidence intervals of the Gaussian process model, they inherit the same contraction properties up
to the factor βt. However, note that the confidence intervals in Lemma 10 hold jointly through the
continuous domain X . This is not generally possible for Gaussian process models without employing
additional continuity arguments, since Gaussian process distributions are by definitions only defined
via a multivariate Normal distribution over finite sets. This stems from the difference between a
Bayesian belief and the frequentist perspective, where the function is unknown but fixed a priori.

F.3 Extension to multiple dimensions

It is straight forward to extend these models to functions with vector-values outputs by extending
the input domain by an extra input argument that indexes the output dimension. While this requires
special kernels, they have been analyzed by Krause and Ong (2011).
Lemma 11 (based on Chowdhury and Gopalan (2017)). Assume that f ′(θ, i) = [f ′(θ)]i has RKHS
norm bounded byB and that measurements are corrupted by σ-sub-Gaussian noise. Let Xt = Dt×I
denote the measurements obtained up to iteration t. If βt = B+4σ

√
I(yXt ; f

′) + 1 + ln(1/δ), then
the following holds for all parameters θ ∈ D, function indices i ∈ I, and iterations n ≥ 0 jointly
with probability at least 1− δ: ∣∣ f ′(θ, i)− µn(θ, i)

∣∣ ≤ βnσn(θ, i) (66)

G Lipschitz Continuity of Gaussian Process Predictions

Since the mean function is a linear combination of kernels evaluations (features), it is easy to show
that it is Lipschitz continuous if the kernel function is Lipschitz continuous (Lederer et al., 2019).

40

However, existing bounds for the Lipschitz constant for the posterior standard deviation σt(·) depend
on the number of data points. Since our regret bounds depend on LNσ , this would render our regret
bound superlinear and thus meaningless.

In the following, we show that the GP standard deviation is Lipschitz-continuous with respect to the
kernel metric.
Definition 2 (Kernel metric). dk(x,x′) =

√
k(x,x) + k(x′,x′)− 2k(x,x′).

We start with the standard deviation.
Lemma 12. For all x and x′ in X and all t ≥ 0, we have

|σt(x)− σt(x′)| ≤ dk(x,x′) (67)

Proof. From Mercer’s theorem we know that each kernel can be equivalently written in terms of
an infinite-dimensional inner product, so that k(x,x′) = 〈k(x, ·), k(x′, ·)〉k, where < ·, · >k is
the inner product in the Reproducing Kernel Hilbert Space corresponding to the kernel k. We can
think of Gaussian process regression as linear regression based on these infinite-dimensional feature
vectors. In particular, it follows from (Kirschner and Krause, 2018, Appendix D) that we can write the
Gaussian process posterior standard deviation σt(x) as the weighted norm of the infinite-dimensional
feature vectors k(x, ·),

σt(x) = ‖k(x, ·)‖V−1
t
, (68)

where Vt = σ2M∗M + I and M is a linear operator that corresponds to the infinite-dimensional
feature vectors k(xi, ·) of the data points xi in Xt so that [MM∗](i,j) = k(xi,xj), where xi and xj
are the ith and jth data point in Xt. Now we have that the minimum eigenvalue of Vt is larger or
equal than one, which implies that the maximum eigenvalue of V−1

t is less or equal than one. Thus,

|σt(x)− σt(x′)| =
∣∣‖k(x, ·)‖V−1

t
− ‖k(x′, ·)‖V−1

t

∣∣ (69)

≤ ‖k(x, ·)− k(x′, ·)‖V−1
t
, (70)

≤ ‖k(x, ·)− k(x′, ·)‖k, (71)

=
√
〈k(x, ·)− k(x′, ·), k(x, ·)− k(x′, ·)〉k, (72)

=
√
k(x,x)− k(x,x′)− k(x′,x) + k(x′,x′), (73)

=
√
k(x,x) + k(x′,x′)− 2k(x,x′), (74)

= dk(x,x′), (75)

where (69)→ (70) follows from the reverse triangle inequality.

To show that Lemma 12 implies Lipschitz continuity of the variance, the key observation is that
standard deviation σni(x) is bounded for all t ≥ 0. In particular,

σt(x) ≤ σ0(x) =
√
k(x,x) ≤ max

x,x′∈Rd

√
k(x,x′) :=

√
|k|∞ (76)

Based on this, we have the following result.
Lemma 13. For all x and x′ in X and all t ≥ 0, we have

|σt(x)− σt(x′)| ≤ 2
√
|k|∞ dk(x,x′) (77)

Proof. For any compact domain D the function f(x) = x2 is Lipschitz continuous for s ∈ D with
Lipschitz constant |df/dx|∞ = maxx∈D 2|x|. Since 0 ≤ σt(x) ≤

√
|k|∞, we have

|σ2
t (x)− σ2

t (x′)| ≤ 2
√
|k|∞

∣∣σt(x)− σt(x′)
∣∣ (78)

≤ 2
√
|k|∞ dk(x,x′) (79)

41

H Regret Bound for Gaussian Process model

H.1 Assumptions about the model

Assumption 4. The both the kernel and the kernel metric (65) are Lipschitz continuous.

Note that the kernel metric is not trivially Lipschitz if the kernel is Lipschitz, since the square root
function has unbounded derivatives at zero. However, for many commonly used kernels, e.g., the
linear and squared exponential kernels, the kernel metric is in fact Lipschitz continuous.

As a direct consequence of Assumption 4 together with Appendix G we know that σ(·) is Lσ-
Lipschitz continuous.

Assumption 5. The model f has RKHS norm bounded by Bf with respect to a kernel that fulfilles
Assumption 4 and k((s, π(s), (s, π(s)) ≤ 1 for all π ∈ Π and s ∈ S.

This assumption allows us to learn a calibrated model of the function g. Note that the assumption
of a bounded kernel over a compact domain S is mild, since any scaling can be absorbed into the
constant Bf . We weaken this assumption in Appendix I, where we bound the domain S rather than
assuming compactness.

Since RKHS functions are linear combinations of the kernel function evaluated at representer points,
the continuity assumptions on the kernel directly transfer to continuity assumptions on the function f ,
so that we get the following result.

Corollary 3. Under Assumption 5, the dynamics function f is Lf -Lipschitz continuous with respect
to the 2-norm.

Proof. For scalar functions, this is a direct consequence of Assumption 5 and (Christmann and
Steinwart, 2008, Cor. 4.36). This directly generalizes to the vector case.

Since the state s is observed directly, the Assumption 5 allows us to learn a reliable statistical model
of f that conforms with the requirement of a well-calibrated model in Assumption 2. In particular,
for each transition from (sn,an) to sn+1, we add p observations, one for each output dimension, to
Dt as in Lemma 11.

Corollary 4. Under Assumptions 1 and 5 with βt as in Lemma 11 and a Gaussian process model
trained on observations xn+1 based on an input a = (sn,an), the following holds with probability
1− δ for all t ≥ 0, s ∈ Rp, and a ∈ Rq:

|f(s,a, i)− µt(s,a, i)| ≤ βtσt(s,a, i) (80)

In the following, we write

µt(s,a) = (µtNp(s,a, 1), . . . ,atNp(s,a, p)), (81)
σt(s,a) = (σtNp(s,a, 1), . . . , σtNp(s,a, p)) (82)

to represent the individual elements as vectors. Note that µt is conditioned on the tNp individual
one-dimensional observations after t episodes. Corollary 4 allows us to build confidence intervals on
the model error g based on the scaled Gaussian process posterior variance. A direct consequence of
these point-wise error bounds is that we can also bound the norm of the error on the vector-output of
f .

Corollary 5. Under the assumption of Corollary 4, with probability 1 − δ we have for all t ≥ 0,
s ∈ Rp, and a ∈ Rq that

‖f(s,a)− h(s,a)− µt(s,a)‖2 ≤ βt‖σt(s,a)‖2 (83)

42

Proof.

‖f(s,a)− µt(s,a)‖2 =

(
p∑
i=1

|f(s,a, i)− µt(s,a, i)|2
)1/2

(84)

≤
(

p∑
i=1

|βtσt(s,a, i)|2
)1/2

= βt‖σt(s,a)‖2 (85)

H.2 Bounding IT for the GP model

In this section, we bound IT based on the GP assumptions. This allows us to use them together with
Theorem 2 to obtain regret bounds. We start with some preliminary lemmas

Lemma 14 (Srinivas et al. (2012)). s2 ≤ s2max

log(1+s2max) log(1 + s2) for all s ∈ [0, s2
max]

Lemma 15. Let |σt(·)| ≤ σmax and σ > 0. Then

σ2
t (x) ≤ σmax

log(1 + σ−2σmax)
log(1 + σ−2σ2

t (x)) (86)

Proof.

σ2
t (x) ≤ σ2(σ−2σ2

t (x)) (87)

Now σ−2σ2
t (x) ≤ σ−2σmax by assumption. Thus, we can use Lemma 14 to obtain

σ2
t (x) ≤ σ2 σ−2σmax

log(1 + σ−2σmax)
log(1 + σ−2σ2

t (x)) (88)

=
σmax

log(1 + σ−2σmax)
log(1 + σ−2σ2

t (x)) (89)

Lemma 16. Let D1:T denote the TN p-dimensional observations collected up to iteration t and
yD1:t

the corresponding observations of the following states. Then

1

2

T∑
t=1

N−1∑
n=0

p∑
j=1

log(1 + σ−2σ2
(t−1)Np(xn,t, j)) ≤ Np I(yDT

; fDT
) (90)

Proof.

1

2

T∑
t=1

N−1∑
n=0

p∑
j=1

log(1 + σ−2σ2
(t−1)Np(xn,t, j)) (91)

=

N−1∑
n=0

p∑
j=1

1

2

T∑
t=1

log(1 + σ−2σ2
(t−1)Np(xn,t, j)) (92)

≤ Np I(yD1:T
; fD1:T

) (93)

Where the second to last step follows from (Srinivas et al., 2012, Lemma 2) together with log(1+x) ≥
0 for x ≥ 0 and the properties of the mutual information. In particular, the inner sum conditions
on (t− 1)Np measurements, but sums only over the one element (xn,t, j). The mutual information
in (Srinivas et al., 2012, Lemma 2) instead sums over every element that we condition on in the next
step. By adding the missing non-negative terms together with the fact that the mutual information is
independent of the order of the observations we obtain the result. Another way to interpret this bound
is that, in the worst case, we could hypothetically visit N times the same state during a trajectory and
obtain the corresponding p-dimensional observation. This explains the Np factor that multiplies the
mutual information.

43

We can use these two lemmas to obtain:
Lemma 17. For a GP model let |σt(·)| ≤ σmax and σ > 0. Then

IT (S,A) ≤ σmaxNp

log(1 + σ−2σmax)
γTNp(S ×A× Ip) (94)

Proof.

IT (S,A) = max
D1,...,DT⊂S×S×A, |Dt|=N

T∑
t=1

∑
s,a∈Dt

‖σt−1(s,a)‖22 (95)

= max
D1,...,DT⊂S×S×A, |Dt|=N

T∑
t=1

∑
s,a∈Dt

p∑
j=1

σ2
(t−1)Np(s,a, j) (96)

≤ σmax

log(1 + σ−2σmax)
max

D1,...,DT⊂S×S×A, |Dt|=N

T∑
t=1

∑
s,a∈Dt

p∑
j=1

log(1 + σ−2σ2
(t−1)Np(s,a, j))

(97)

≤ σmax

log(1 + σ−2σmax)
max

D1,...,DT⊂S×S×A, |Dt|=N
Np I(yD1:T

; fD1:T
) (98)

≤ σmaxNp

log(1 + σ−2σmax)
γTNp(S ×A× Ip) (99)

To obtain an instance-independent bound, we must bound the mutual information by the worst-case
mutual information as in (Srinivas et al., 2012).
Theorem 3. Under Assumptions 1–3 let sn,t ∈ Xt, St−1 ⊆ St, and an,t ∈ U for all n, t > 0 with
compact sets St and A. Let ‖σ(·)‖∞ ≤ σmax. At each iteration, select parameters according to (7).
Then the following holds with probability at least (1− δ) for all t ≥ 1

RT ≤ O
(
βNT−1L

N
σ N

2
√
T p γpTN (ST ×A× Ip)

)
, (100)

where γpTN (S ×A× Ip) is the information capacity after (ptN) observations within the extended
domain S ×A× Ip.

Proof. From Theorem 2 we have R2
T ≤ TL2

JN
3IT (St,A). Together with Lemma 17 we obtain

RT ≤ LJ
√
N3IT (St,A) (101)

≤ LJ
(

σmaxN
4p

log(1 + σ−2σmax)
γTNp(S ×A× Ip)

)1/2

(102)

where LJ = 2Lr(1 + Lπ)βt−1L̄
N−1
f from Lemma 5 and L̄f = 1 + Lf + 2βt−1Lσ

√
1 + Lπ

from Lemma 4. Plugging in we get LJ = 2Lr(1 + Lπ)βt−1(1 + Lf + 2βt−1Lσ
√

1 + Lπ)N−1 =
O
(
βNt−1L

N
σ

)
so that

RT ≤ O
(
LNσ β

N
T−1N

2
√
TpγpTN (St ×A× Ip)

)
(103)

Notably, unlike in Theorem 1 we can actually bound the information capacity γ in Theorem 3.
For a GP model that uses a squared exponential kernel with independent outputs, we have
γpTN ≤ O(p(p+ q) log(pTN)) by (Srinivas et al., 2012; Krause and Ong, 2011), which ren-
ders the overall regret bound sublinear. Note that for the Matern kernel the best known bound on
γpTN is O(p(pTN)c log(pTN)) with 0 < c < 1. This means the regret bound is not sublinear for
long trajectories due to the βNt term in the regret bound. However, the bound is expected to be loose
(Scarlett et al., 2017). Tighter bounds can be computed numerically, see (Srinivas et al., 2012, Fig. 3).

Note that the requirement ‖σ(·)‖∞ if fulfilled according to

44

Lemma 18. Under Assumption 5 we have σ(s) ≤ 1 for all s ∈ S.

Proof. This is a direct consequence of (62).

H.3 Comparison to Chowdhury and Gopalan (2019)

In this section, we compare our bound to the one by Chowdhury and Gopalan (2019). This is a
difficult endeavour, because they make fundamentally different assumptions. In particular, they
assume that the value function v(x) is LM -Lipschitz continuous, which hides all the complexity of
thinking about different trajectories, as deviations between the two trajectories can be bounded after
one step by LM‖s1 − s̃1‖. In contrast, we do not make this high-level assumption and specifically
reason about the entire trajectories based on system properties. Note, that the constant LM is at least
Ω(N) without additional assumptions about the system and generally will depend on the statistical
model (GP).

Secondly, they restrict the optimization over dynamics that are Lipschitz continuous, which means
their algorithm depends on system properties that are difficult to estimate in general. However, this
assumption avoids the dependency βN in our regret bound, since it limits optimization to trajectories
that are at most as smooth as the dynamics of the true system. The cost of this is that their algorithm
is not tractable to implement or compute.

For completeness, in the following we modify our proof to use their assumption and show a regret
bound that is comparable to the one by Chowdhury and Gopalan (2019).

H.3.1 Our bound under the assumptions of (Chowdhury and Gopalan, 2019)

Now, we show that if we assume that the optimistic dynamics are Lipschitz, which together with a
Lipschitz-continuous policy implies the Lipschitz continuity of the value function that is assumed by
Chowdhury and Gopalan (2019), we obtain the same regret bounds.

Let

M̃t =
{
f ′ | |µ(s,a)− f ′(s,a)| ≤ βσ(s,a)∀s,a ∈ Rp × Rq,
‖f ′(s,a)− f ′(s′,a′)‖ ≤ Lf‖(s,a)− (s′,a′)‖ ∀(s,a), (s′,a′) ∈ Rp × Rq,

}
be the set of all Lipschitz continuous dynamics that are compatible with the uncertainty representation
in Assumption 2. We now consider a variant of (7) that optimizes over dynamics in this set,

πt = argmax
π∈Π, f̃t∈M̃t

J(f̃t, π) (104)

and we implicitly define s̃ and ã based on f̃t in (104) for the remainder of this section, instead of the
global definition from (17). Note that this optimization is not tractable in the noisy case.

For the exploration scheme in (104) we have the following results that lead to improved regret bounds
that match those in (Chowdhury and Gopalan, 2019) up to constant factors.

Lemma 19. Under the assumptions of Corollary 4, let L̄f = Lf . Then, for any sequence of ηn ∈
[−1, 1]p, any sequence of ωn with ω̃n = ωn, θ ∈ D, and n ≥ 1 we have that

‖sn,t − s̃n,t‖ ≤ 2βt−1L̄
N−1
f

n−1∑
i=0

‖σt−1(si,t)‖ (105)

Proof. Let
f̃(s̃n,t) = µt−1(s̃n) + βt−1Σt−1(s̃n)ηn. (106)

Then by design we have ‖f̃(s)− f̃(s′)‖ ≤ Lf‖s− s′‖.
We start by showing that, for any n ≥ 1, we have

‖sn,t − s̃n,t‖ ≤ 2βt−1

n−1∑
i=0

Ln−1−i
f ‖σt−1(si,t)‖ (107)

45

by induction.

For the base case we have s̃0 = s0. Consequently, at t we have

‖s1,t − s̃1,t‖ = ‖f(s0) + ω0 − f̃(s0)− ω̃0‖ (108)

= ‖f(s0)− f̃(s0)‖ (109)
= ‖f(s0)− µt−1(s0)− βt−1Σt−1(s0)η0‖ (110)
≤ ‖f(s0)− µt−1(s0)‖+ βt−1‖σt−1(s0)η0‖ (111)
≤ βt−1‖σt−1(s0)‖+ βt−1‖σt−1(s0)‖ (112)
= 2βt−1‖σt−1(s0)‖ (113)

For the induction step assume that (107) holds at time step n. Subsequently we have at iteration t that

‖sn+1,t − s̃n+1,t‖ = ‖f(sn)− f̃(s̃n)‖
= ‖f(sn)− f̃(sn) + f̃(sn)− f̃(s̃n)‖
= ‖f(sn)− f̃(sn)‖+ ‖f̃(sn)− f̃(s̃n)‖
≤ 2βt−1‖σt−1(sn)‖+ Lf‖sn − s̃n‖

≤ 2βt−1‖σt−1(sn)‖+ Lf2βt−1

n−1∑
i=0

Ln−1−i
f ‖σt−1(si,t)‖

= 2βt−1‖σt−1(sn)‖+ 2βt−1

n−1∑
i=0

Ln−1−i+1
f ‖σt−1(si,t)‖

= 2βt−1

(n+1)−1∑
i=0

L
(n+1)−1−i+1
f ‖σt−1(si,t)‖

= 2βt−1

(n+1)−1∑
i=0

L
(n+1)−i
f ‖σt−1(si,t)‖

Thus (107) holds. Now since n ≤ N we have

‖sn+1,t − s̃n+1,t‖ ≤ 2βt−1

n−1∑
i=0

Ln−1−i
f ‖σt−1(si,t)‖ ≤ 2βt−1L

N−1
f

n−1∑
i=0

‖σt−1(si,t)‖ (114)

Theorem 4. Under Assumptions 1–3 let sn,t ∈ Xt, St−1 ⊆ St, and an,t ∈ U for all n, t > 0 with
compact sets St and A. Let ‖σ(·)‖∞ ≤ σmax. At each iteration, select parameters according to
(104). Then the following holds with probability at least (1− δ) for all t ≥ 1

RT ≤ O
(
LNf N

2
√
T p γpTN (ST ×A)

)
, (115)

where γpTN (S ×A) is the information capacity after (ptN) observations within the domain S ×A.

Thus, our proof strategy also avoids the scaling βN when we assume that optimizing over dynamics
inM is tractable. Thus, the factor βN is the cost that we pay for not being able to do so.

I Extension to Unbounded Domains

So far, we have assumed a compact domain S . This is incompatible with the dynamic system in (1),
since sub-Gaussian noise includes noise distributions with unbounded support. In this section, we
show that we can bound the domain with high probability and that we can use continuity arguments
to extend our previous theorem to this more general settings. This also avoids the implicit assumption
that the dynamics function is bounded, which is not even true for linear systems.

46

I.1 Bound on Aleatoric Uncertainty (Noise Bound)

We start by bounding the norm of the noise vector ωn over all time steps n.

We know that the ωn are i.i.d. sub-Gaussian vectors. We exploit the basic properties of sub-Gaussian
random variables and refer to Eldar and Kutyniok (2012, Chapter 5) for a concise review.

Lemma 20. Vershynin (2010, Corollary 5.17) Let X1, . . . , Xp be independent centered sub-
exponential random variables, and let 2σ = maxi ‖Xi‖φ1

be the largest, sub-exponential norm.
Then, for every ε ≥ 0, we have

P

{∣∣∣∣∣
T∑
i=1

Xi

∣∣∣∣∣ ≥ εp
}
≤ 2exp

[−eT

2
min

(
ε2

4σ2
,
ε

2σ

)]
(116)

This allows us to bound the 2-norm of the noise vectors in (1).

Lemma 21. Letω = (ω1, . . . , ωp) be a vector with i.i.d. elements [ω]i = ωi that are σ-sub-Gaussian.
Then, with probability at least 1− δ, we have that

‖ω‖22 ≤ 2σp+
4σ

e
log

2

δ
(117)

Proof. Since the ωi are σ-sub-Gaussian, we have the ω2
i are 2σ-sub-exponential (Vershynin, 2010,

Lemma 5.14). Thus we have

‖ω‖22 =

p∑
i=1

ω2
i ,

where the ω2
i are i.i.d. 2σ-sub-exponential. Following Lemma 20, we have

P
{
‖ω‖22 ≥ εp

}
≤ 2exp

[−ep

2
min

(
ε2

4σ2
,
ε

2σ

)]
(118)

Now for ε ≥ 2σ we have ε2/(4σ2) ≥ ε/(2σ). Thus

P
{
‖ω‖22 ≥ (2σ + ε)p

}
≤ 2exp

[−ep

2

(2σ + ε)

2σ

]
≤ 2exp

[−ep

2

ε

2σ

]
(119)

We want to upper bound the right hand side by δ. so

2 exp

[−epε

4σ

]
≤ δ, (120)

−epε

4σ
≤ log(δ/2), (121)

epε

4σ
≥ log(2/δ), (122)

ε ≥ 4σ

ep
log(2/δ). (123)

the result follows by plugging the bound for ε into (119),

(2σ + ε)p = (2σ +
4σ

ep
log(2/δ))p (124)

= 2σp+
4σ

e
log

2

δ
(125)

As the last step, we apply the union bound to obtain confidence intervals over multiple steps.

47

Lemma 22. Let ω0,ω1, . . . be i.i.d. random vectors with ωn ∈ Rp such that each entry of the vector
is i.i.d. σ-sub-Gaussian. Then, with probability at least (1− δ),

‖ωn‖22 ≤ 2σp+
4σ

e
log

(n+ 1)2π2

3δ
(126)

holds jointly for all n ≥ 0.

Proof. At each time step n, we apply a probability budget of δ/πn to the bound in Lemma 21, where
πn ≥ 0 and

∑
n≥0 π

−1
n = 1. In particular, we use πn = (n+1)2π2

6 as in (Srinivas et al., 2012, Lemma
5.1), so that we apply monotonically decreasing probability thresholds as n increases. We obtain the
result by applying a union bound over n, since

∑
n≥0 δ/πn = δ.

This means that, for all time steps n, the noise is bounded within the hyper-sphere defined through
(126) with high probability. In particular, the joint confidence intervals only come at the cost of a
O
(
log n2

)
increase in the confidence intervals over time.

I.2 Bounding the Domain Under Aleatoric Uncertainty

We exploit the σ-sub-Gaussian property of the transition noise and build on Lemmas 20 and 21 to
obtain a bound over the domain. We start by applying a union bound on Lemma 21 over the time
horizon N .
Lemma 23. Let ω0, . . . ,ωN−1 be vectors with ωi ∈ Rp such that each entry of the vector is i.i.d.
σ-sub-Gaussian. Then, with probability at least (1− δ),

N−1∑
n=0

‖ωi‖2 ≤ N
√

2σp+
4σ

e
log

2T

δ
(127)

Proof. Now using Lemma 21 with probability threshold δ/T and applying the union bound we, get
that ‖ωi‖22 ≤ 2σp+ 4σ

e log 2T
δ holds for all 0 ≤ i ≤ N − 1 with probability at least 1− δ.

Now, first using Jensen’s inequality and then plugging in the bound for ‖ωi‖22, we obtain
N∑
n=1

‖ωn‖2 =

N−1∑
i=0

√
‖ωn‖22 (128)

≤
√
T

√√√√N−1∑
n=0

‖ωn‖22 (129)

≤
√
T

√√√√N−1∑
n=0

(
2σp+

4σ

e
log

2T

δ

)
(130)

= N

√
2σp+

4σ

e
log

2T

δ
(131)

Lastly, we use a union bound over all iterations similar to (Srinivas et al., 2012, Lemma 5.1).
Lemma 24. Let ωt,n be the random vectors as in Lemma 23 at iteration n. Then, with probability
(1− δ) we have for all n ≥ 1 that

N∑
t=1

‖ωn,t‖2 ≤ N
√

2σp+
4σ

e
log

Nπ2t2

3δ
(132)

Proof. At each iteration n, we apply a probability budget of δ/ρt to the bound in Lemma 23, where
ρt ≥ 0 and

∑
t≥1 ρ

−1
t = 1. In particular, we use ρt = t2π2

6 as in (Srinivas et al., 2012, Lemma 5.1),
so that we apply monotonically decreasing probability thresholds as t increases. We obtain the result
by applying a union bound over t, since

∑
t≥1 δ/ρt = δ.

48

Now that we can bound the noise over all iterations, we can bound the domain over which the system
acts with a compact set.
Lemma 25. Let f be Lf -Lipschitz continuous with respect to the norm ‖ · ‖. Then we have for all
n ≥ 1 that

‖sn − s0‖ ≤
n−1∑
i=0

Lifc‖f(s0)− s0‖+

n−1∑
i=0

Ln−1−i
fc ‖ωi‖ (133)

≤ (1 + Lfc)n−1

(
n‖f(s0)− s0‖+

n−1∑
i=0

‖ωi‖
)

(134)

Proof. We first proof (133) by induction. For the base case we have

‖s1 − s0‖ = ‖f(s0) + ω0 − s0‖ (135)
≤ ‖f(s0)− s0‖+ ‖ω0‖, (136)

= L0
fc‖f(s0)− s0‖+ L0

fc‖ω0‖. (137)

For the induction step, assume that the assumption holds for some n. Then,

‖st+1 − s0‖ = ‖f(sn) + ωn − s0‖ (138)
= ‖f(sn)− f(s0) + f(s0)− s0 + ωn‖ (139)
≤ ‖f(sn)− f(s0)‖+ ‖f(s0)− s0‖+ ‖ωn‖ (140)
≤ Lfc‖sn − s0‖+ ‖f(s0)− s0‖+ ‖ωn‖ (141)

≤ Lfc

(
n−1∑
i=0

Lifc‖f(s0)− s0‖+

n−1∑
i=0

Ln−1−i
fc ‖ωi‖

)
(142)

+ ‖f(s0)− s0‖+ ‖ωn‖ (143)

=

(t−1)+1∑
i=1

Lifc‖f(s0)− s0‖+ ‖f(s0)− s0‖

+

n−1∑
i=0

L
(t+1)−1−i
fc ‖ωi‖+ ‖ωn‖ (144)

=

(t−1)+1∑
i=0

Lifc‖f(s0)− s0‖+

(t+1)−1∑
i=0

L
(t+1)−1−i
fc ‖ωi‖ (145)

Which concludes the proof. For (134), note that Lifc ≤ (1 + Lfc)t for all i ≤ t. Thus we have

n−1∑
i=0

Lifc‖f(s0)− s0‖+

n−1∑
i=0

Ln−1−i
fc ‖ωi‖ (146)

≤ Ln−1
fc

n−1∑
i=0

(
‖f(s0)− s0‖+ ‖ωi‖

)
(147)

= Ln−1
fc

(
n‖f(s0)− s0‖+

n−1∑
i=0

‖ωi‖
)

(148)

Lemma 26. Let bt = LT−1
fc N

(
B0 +

√
2σp+ 4σ

e log Nπ2n2

3δ

)
and ‖f(s0) − s0‖2 ≤ B0. Then,

with probability at least (1 − δ), we have for all iterations n ≥ 1 and corresponding time steps
0 ≤ n ≤ N that

sn,t ∈ B(s0, bt), (149)
where B(s0, bt) = {s ∈ Rp | ‖s− s0‖2 ≤ bt} is a norm-ball centered around s0 with radius bt.

49

Proof. From Lemma 25, we have for all n ≥ 1, 0 ≤ n ≤ N that

‖st,n − s0‖2 ≤ (1 + Lfc)n−1

(
n‖f(s0)− s0‖2 +

n−1∑
i=0

‖ωi‖2
)

(150)

Now by Assumptions 1 and 3 and Combined with Lemma 24, we obtain

‖st,n − s0‖2 ≤ (1 + Lfc)n−1

(
n‖f(s0)− s0‖2 + n

√
2σp+

4σ

e
log

tπ2n2

3δ

)
(151)

≤ (1 + Lfc)T−1N

(
‖f(s0)− s0‖2 +

√
2σp+

4σ

e
log

Nπ2n2

3δ

)
(152)

:= bt (153)
Lastly, we have ‖f(s0)− s0‖2 ≤ B0 by assumption, which concludes the proof.

I.3 Regret bounds over Unbounded Domains

The probability for the noise bound is generally different from the one used for the well-calibrated
model. We can derive a joint bound using a simple union bound.
Lemma 27. Under Assumptions 1–3, let ‖f(s0) − s0‖2 ≤ B0 and define bt =

LT−1
fc N

(
B0 +

√
2σp+ 4σ

e log Nπ2n2

3δ

)
. Then the following hold jointly with probability at least

(1− 2δ) for all t ≥ 1 and 0 ≤ n < N

i) |f(s,a)− µt(s,a)| ≤ βtσt(s,a) elementwise for all s ∈ Rp and a ∈ Rq

ii) sn,t ∈ B(s0, bt)

Proof. This follows directly from applying a union bound over Lemma 26 and Corollary 5 with a
probability budget of δ/2 for each.

Note that the probability dropped from individual confidences of 1−δ in Assumption 2 and Lemma 26
to a joint confidence of 1− 2δ.

Thus, we can used Lemma 27 together with Corollary 6 to fulfill both the compact set and the
boundedness requirements. The last assumption we need is boundedness of the predictions. For this,
we introduce an additional weak assumptions
Assumption 6 (Boundedness). The system dynamics at the first step are bounded, ‖f(s0)− s0‖2 ≤
B0. Similarly we have Σ(s0) and, if used, k(s0, s0) bounded.

These assumptions are not restrictive, since any dynamical system that explodes to infinity after one
step is generally not real-world relevant or controllable. Similarly, we cannot expect to do learning if
our model’s confidence intervals allow infinite predictions.
Corollary 6. Under Assumptions 3 and 6, if the states live in a compact set St, then σ(s) is bounded.

Proof. This follows trivially from Assumption 3, since s0 ∈ S and σ(s0) is bounded. Thus, by
continuity, it must be bounded over a compact set.

Theorem 5. Under Assumptions 1–3 let the noise distribution be σ-subGaussian as in Assumption 1
and πθ(s) ∈ A for all π ∈ Π with A compact. At each iteration, select parameters according to (7).
Then the following holds with probability at least (1− 2δ) for all T ≥ 1

RT ≤ O
(
βNT−1L

N
σ N

2
√
T p γpTN (B(s0, bt)×A× Ip)

)
, (154)

where bt = LT−1
fc N

(
B0 +

√
2σp+ 4σ

e log Nπ2n2

3δ

)
.

Proof. By Assumption 1 we know from Lemma 27 that with probability at least (1− 2δ) the model
is well-calibrated and s ∈ St = B(s0, bt). Boundedness of predictions follows from Corollary 6, so
that all requirements of Theorem 1 are satisfied and the result follows.

50

I.4 Bounding the Maximum Information Capacity for Gaussian Processes

In Theorem 5 the information capacity is a function of the domain size. Given the previous proofs,
the radius of the domain increases at a logarithmic rate bt ∈ O

(
log t2

)
, which also increases the

information capacity. In the following two lemmas, we show how this affects the information capacity
of the Gaussian process model.
Lemma 28 (Srinivas et al. (2012)). For the linear kernel k(s, s′) = sTs′ with s ∈ Rp we have

γt(B(s0, bt)) = O(p log(t)) (155)

Lemma 29. For the squared exponential kernel we have

γt(B(s0, bt)) = O
(
bpt (log(t))p+1

)
(156)

Proof. The proof is the same as in (Srinivas et al., 2012). In their notation, we have nT =
O
(
bdt log(bdt)

)
while analyzing the terms in the eigenvalue bound leads to Bk(T ∗) ∼ bdt . The

remainder of the proof follows through as in the original paper, which leads to the result.

Thus, the information capacity grows proportionally to the volume of the domain. Since bt in
Theorem 5 is O

(
log t2

)
this means that this costs us only an additional logarithmic factor in the

regret relative to a fixed domain S.

Note that we are using a composite kernel to model the different output dimensions. Thus these
bounds need to be combined with the methodology from Krause and Ong (2011) in order to obtain
bounds for the composite kernels. However, this does not affect the result.

51

	Introduction
	Problem Statement and Background
	Model-based Reinforcement Learning
	Exploration Strategies

	Hallucinated Upper Confidence Reinforcement Learning (H-UCRL)
	Solving the Optimization Problem
	Theoretical Analysis

	Experiments
	Conclusions
	 Appendix
	Expected Performance for Exploration in the Bandit Setting
	Extended Experiments
	Experimental Setup
	Environment Description and Learning Curves
	Swing-Up Inverted Pendulum
	Mujoco Cart Pole
	Reacher
	Pusher
	Sparse Reacher
	Half-Cheetah

	Visualization of Real and Simulated Trajectories for Inverted Pendulum
	H-UCRL Trajectories

	Further Experiments on Thompson Sampling
	Can the sampled models solve the task?
	Is it variance starvation?
	Is the number of ensemble members enough?
	Is it the bootstrapping procedure during Training?
	Are probabilistic ensembles not a good approximation to the posterior in Thompson sampling?
	Is it the optimization procedure?
	Conclusions

	Solving the Augmented Greedy Exploitation Program
	Offline Policy Search
	Online Planning
	Combining Offline Policy Search with Online Planning

	Proofs for Exploration Regret Bound
	Notation
	Bounding the Regret

	Properties of the Functions bold0mu mumu ()()appendix()()()()
	Background on Gaussian Processes
	Information Capacity
	Functions in a Reproducing Kernel Hilbert Space
	Confidence Intervals

	Extension to multiple dimensions

	Lipschitz Continuity of Gaussian Process Predictions
	Regret Bound for Gaussian Process model
	Assumptions about the model
	Bounding IT for the GP model
	Comparison to Chowdhury2019Online
	Our bound under the assumptions of Chowdhury2019Online

	Extension to Unbounded Domains
	Bound on Aleatoric Uncertainty (Noise Bound)
	Bounding the Domain Under Aleatoric Uncertainty
	Regret bounds over Unbounded Domains
	Bounding the Maximum Information Capacity for Gaussian Processes

