Near-Optimal Bayesian Active Learning with Noisy Observations Daniel Golovin, Andreas Krause, Debajyoti Ray

Bayesian Active Learning

- How should we perform experiments to determine the most accurate scientific theory among competing candidates?
- How should we decide among expensive medical procedures
- How should we select which labels to obtain in order to determine the hypothesis that minimizes generalization error?

We have to sequentially
select among a set of noisy, expensive
observations in order to observations in or
determine which hypothesis is most hypothesis
accurate.

Bayesian Active Learning problem:
Distinguish among a set of hypotheses $\{$ Running test t incurs cost $c(t)$ and produces an outcome in $\{1, \ldots$
We have a prior distribution P modeling assumptions on the join probability $P(H, X$
X_{N}) over the hypotheses and test
Noise-free Bayesian Active Learning Suppose that $P\left(X_{t} \mid H\right)$ is deterministic (noise-free) Each test rules out a set of hypotheses, based on its outcome. How should we test to rule out all incorrect hypotheses?

Adaptive Submodularity
Key insight: GBS is adaptive submodular
$\Delta_{G B S}\left(s \mid x_{A}\right) \geq \Delta_{G B S}\left(s \mid x_{B}\right) \underset{x_{B}}{\text { whener }} \underset{\text { medues al oloseserationsin } x_{A}}{ } x_{B}$
Adaptive submodularity [Golovin \& Krause, COLT 2010] generalizes
submodularity tu the
dapmoduv sularity to the the adaptive setting.
Adaptive-Greedy is $a\left(\ln \left(1 / p_{\text {min }}\right)+1\right)$ approximation
Results require that tests are exact (no noise)!
Bayesian Active Learning with Noisy Observations:
In practice, observations are noisy. Results for noise free case do not generalize. Key Problem: Tests no longer eliminate hypotheses (only make them less likely) Suppose all tests are run, see x_{V}, best we can do is maximize expected utility:

$$
a^{*}=\arg \max _{a} \sum_{u} P\left(y \mid \mathbf{x}_{V}\right) U(a, y)
$$

How should we cheaply test to guarantee that we choose a^{*} ?

Existing approaches:
Generaized binary se

Existing approachess:
Senearch?

- Maximizize iniony information gain? Not adaptive submodular
in the noisy setting!
- Maximize information gain?

With noisy observations,
$P\left(X_{1}, \ldots, X_{n} \mid H\right)$ is not deterministic. The noise is modeled with a random The noise is modeled with a random
variable Θ, so that $P\left(X_{1}, \ldots, X_{n} \mid H, \Theta\right)$
is deterministic. variable Θ, so th.
is deterministic.

Greedily maximizing Informatio Example: H is rand random \square Test result positive
 Test result positive Test result negative

Greadiy maximizing
Information Gain
Chooses all Linear
tests!
$\theta \Theta \Theta \theta$
Theorem: All previous approaches pay $\Omega\left(\frac{n}{\log n}\right)$ times the
optimum with noisy observations, in the worst case, even
when Θ has constant-sized support, and $p_{\text {min }}=\Theta(1 / n)$

Equivalence-Class Edge-Cutting (EC²)

The expected conditional marginal benefit for test t upon observations x_{A} :
$\Delta_{E C}\left(t \mid x_{A}\right)=\mathbb{E}[$ weight of edges eliminated]

$$
\begin{aligned}
& \text { Theorem: For the } \\
& \text { by } \mathrm{EC}^{2} \text {, it holds tha }
\end{aligned}
$$

$$
c\left(\pi_{E C}\right) \leq\left(2 \ln \left(1 / P_{\min }\right)+1\right) c\left(\pi^{*}\right)
$$

where $P_{\text {min }}:=\min \left\{P\left(\mathbf{x}_{V}\right): P\left(\mathbf{x}_{V}\right)>0\right\}$ is the minimum prior

$$
\text { probability of any outcome vector, and } \pi^{*} \text { is the optimal policy }
$$

daucing Bayesian active eearning to Equivalence Class Determination may in some istances result in exponentially-1arge equivalence classes, which makes running $\mathrm{EC}{ }^{2}$
hallenging. We can use rejection sampling Challenging. We can use rejection samping.
Alternatively we develop the Efficient Edge Cutting approXimate objective algorithm
The EffECXtive objective function
$\Delta_{E f f}\left(t \mid x_{A}\right):=\sum P\left(X_{t}=x \mid x_{A}\right)\left(\sum P\left(h_{i} \mid x_{A}, X_{t}=x\right)^{2}\right)-\sum P\left(h_{i} \mid x_{A}\right)^{2}$

Adaptive experimental design in behavioural economics

 We veried the probabilities
forthe untomes.

ter uncertainty
 Random Uncerananyssamping
 obs

