

Active Learning for Level Set Estimation

Alkis Gotovos, Nathalie Casati, Gregory Hitz and Andreas Krause ETHzürich

Problem

Determine the regions where the value of some unknown function lies above or below a given threshold level.

Pose as a classification problem (into super- and sublevel sets) with *sequential* measurements, which are assumed to be *ex*pensive and noisy.

Example applications

The LSE algorithm

We propose the Level Set Estimation (LSE) algorithm:

- Input: Sample space *D* (e.g. fine grid of function domain) - Threshold level h
- Idea: Iteratively *sample* and *classify* based on GP-derived confidence bounds

while there exist unclassified points in D

for each unclassified point

Extension 1: Implicit threshold level

What if we do not have a predefined threshold level h? (E.g. determine *relative* hotspots of algal concentration.)

Implicitly defined thr. level: $h = \omega \max f(\boldsymbol{x}), \ 0 < \omega < 1$

We propose the LSE_{imp} extension of LSE:

• *h* is now an estimated quantity with associated uncertainty, which leads to slower classification.

Environmental monitoring

Estimate regions of (a vertical transect of) Lake Zurich where chlorophyll/algal concentration is "abnormally high".

Geolocating internet latency

Estimate regions of the world with "acceptable" latency to our PC, e.g. for trouble-free online gaming.

if its confidence interval lies above h then classify into superlevel set else if its confidence interval lies below h then classify into sublevel set else leave unclassified

select max. ambiguity (yet unclassified) point obtain a noisy measurement at that point

perform GP inference and update conf. intervals

Fine print

- Enforce monotonically shrinking confidence intervals
- Relax classification by an accuracy parameter ϵ

$$\frac{T}{\beta_T \gamma_T} \ge \frac{C_1}{4\epsilon^2}$$

- We need to accurately estimate the function maximum, therefore we need to keep sampling at regions where the maximum may lie.
- Similar theoretical guarantees to LSE.

Experimental results

