Non-monotone Adaptive Submodular Maximization

Alkis Gotovos ETH Zurich Amin Karbasi Yale University Andreas Krause ETH Zurich

24TH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE BUENOS AIRES JULY 25TH-31TH, 2015 Many AI problems boil down to selecting a number of elements from a large set of options Many AI problems boil down to selecting a number of elements from a large set of options

 Sequentially make smart choices based on past observations Many AI problems boil down to selecting a number of elements from a large set of options

 Sequentially make smart choices based on past observations

Find classes of objective functions that are amenable to efficient sequential optimization with theoretical approximation guarantees

Birdwatching

Birdwatching

Objective

• Ground set $V = \{a, b, c, d\}$

- Ground set $V = \{a, b, c, d\}$
- Objective function $f: 2^V \to \mathbb{R}_{>0}$

- Ground set $V = \{a, b, c, d\}$
- Objective function $f: 2^V \to \mathbb{R}_{\geq 0}$
- $\blacktriangleright \ f(\{d\}) = 4$

b 💽 🔇

- Ground set $V = \{a, b, c, d\}$
- Objective function $f: 2^V \to \mathbb{R}_{\geq 0}$
- $\blacktriangleright f(\{d\}) = 4$
- $\blacktriangleright \ f(\{c,d\})=5$

► *f* is monotone

► *f* is monotone

► *f* is submodular

- ► *f* is monotone
- ► *f* is submodular
- Benefit of visiting *c*, given that...

- ► *f* is monotone
- ► *f* is submodular
- Benefit of visiting *c*, given that...
 - …it is the first place we visit:

$$f(\{c\}) = 3$$

- ► *f* is monotone
- ► *f* is submodular
- Benefit of visiting *c*, given that...
 - …it is the first place we visit:

 $f(\{c\})=3$

....we have already visited d:

$$f(\{c,d\}) - f(\{d\}) = 5 - 4 = 1$$

- Unconstrained problem:
 - maximize f(S)

Unconstrained problem:

maximize $f(S) \longrightarrow \text{Trivial } \mathsf{OPT} = f(V)$

Unconstrained problem:

maximize $f(S) \longrightarrow \text{Trivial } \mathsf{OPT} = f(V)$

Cardinality-constrained problem:

 $\begin{array}{ll} \mbox{maximize} & f(S) \\ \mbox{subject to} & |S| \leq k \end{array}$

Unconstrained problem:

maximize $f(S) \longrightarrow \text{Trivial } \mathsf{OPT} = f(V)$

Cardinality-constrained problem:

 $\begin{array}{lll} \mbox{maximize} & f(S) & & \longrightarrow & \mbox{NP-hard} \\ \mbox{subject to} & |S| \leq k & & \end{array}$

Unconstrained problem:

maximize $f(S) \longrightarrow \text{Trivial } \mathsf{OPT} = f(V)$

Cardinality-constrained problem:

 $\begin{array}{lll} \mbox{maximize} & f(S) & & \longrightarrow & \mbox{NP-hard} \\ \mbox{subject to} & |S| \leq k & & \end{array}$

More general constraints: matroid, knapsack, etc.

Unconstrained problem:

maximize $f(S) \longrightarrow$ Trivial OPT = f(V)

```
Cardinality-constrained problem:
```

```
\begin{array}{ccc} \text{maximize} & f(S) & & \longrightarrow & \text{NP-hard} \\ \text{subject to} & |S| \leq k & & \end{array}
```

More general constraints: matroid, knapsack, etc.

Greedy

Greedy

$$\blacktriangleright S_0 = \varnothing \longrightarrow f(S_0) = 0$$

$$\blacktriangleright S_0 = \varnothing \longrightarrow f(S_0) = 0$$

$$\blacktriangleright S_1 = \{d\} \longrightarrow f(S_1) = 4$$

a

$$\blacktriangleright S_0 = \varnothing \longrightarrow f(S_0) = 0$$

$$\blacktriangleright S_1 = \{d\} \longrightarrow f(S_1) = 4$$

$$\blacktriangleright S_2 = \{d, a\} \longrightarrow f(S_2) = 6$$

Theorem [Nemhauser et al., 1978]

If f is monotone submodular, then greedy gives a (1 - 1/e)-approximation.

Birdwatching with costs

c(A) $\blacktriangleright g(A) = f(A)$ monotone submodular cost term

Greedy has no guarantees for non-monotone functions

Greedy has no guarantees for non-monotone functions

• Introduce randomization \longrightarrow random greedy algorithm

Theorem [Buchbinder et al., 2014]

If f is submodular, then random greedy gives a (1/e)-approximation*.

* In expectation over the randomness of the algorithm.

Theorem [Buchbinder et al., 2014]

If f is submodular, then random greedy gives a (1/e)-approximation*.

If f is also monotone, then random greedy gives a (1 - 1/e)-approximation*.

* In expectation over the randomness of the algorithm.

Stochastic birdwatching

Stochastic birdwatching

Non-adaptive: choose set of locations in advance without looking at outcomes

- Non-adaptive: choose set of locations in advance without looking at outcomes
- Adaptive: sequentially make choices based on past outcomes

- Non-adaptive: choose set of locations in advance without looking at outcomes
- Adaptive: sequentially make choices based on past outcomes
- \blacktriangleright Monotonicity and submodularity \longrightarrow adaptive monotonicity and adaptive submodularity

- Non-adaptive: choose set of locations in advance without looking at outcomes
- Adaptive: sequentially make choices based on past outcomes
- Greedily select the most promising location in conditional expectation \longrightarrow *adaptive greedy* algorithm

Theorem [Golovin and Krause, 2011]

If f is adaptive monotone submodular, then adaptive greedy gives a (1 - 1/e)-approximation*.

* In expectation over the randomness of the environment.

 Non-adaptive	Adaptive

Monotone

Non-monotone

	Non-adaptive	Adaptive
Monotone	Greedy $(1-1/e)$	

Non-monotone

	Non-adaptive	Adaptive
Monotone	Greedy $(1-1/e)$	
Non-monotone	Random greedy $(1/e)$	

	Non-adaptive	Adaptive
Monotone	Greedy $(1-1/e)$	Adaptive greedy $(1-1/e)$
Non-monotone	Random greedy $(1/e)$	

	Non-adaptive	Adaptive
Monotone	Greedy $(1-1/e)$	Adaptive greedy $(1-1/e)$
Non-monotone	Random greedy $(1/e)$?

What's missing?

How do we maximize a non-monotone adaptive submodular function subject to a cardinality constraint?

How do we maximize a non-monotone adaptive submodular function subject to a cardinality constraint?

Adaptive random greedy

Theorem [Our contribution]

If f is adaptive submodular, then adaptive random greedy gives a (1/e)-approximation*.

* In expectation over the randomness of the algorithm and the environment.

Theorem [Our contribution]

If f is adaptive submodular, then adaptive random greedy gives a (1/e)-approximation*.

If f is also adaptive monotone, then adaptive random greedy gives a (1 - 1/e)-approximation*.

* In expectation over the randomness of the algorithm and the environment.

	Non-adaptive	Adaptive
Monotone	Greedy $(1-1/e)$	Adaptive greedy $(1-1/e)$
Non-monotone	Random greedy $(1/e)$?

	Non-adaptive	Adaptive
Monotone	Greedy $(1-1/e)$	Adaptive greedy $(1-1/e)$
Non-monotone	Random greedy $(1/e)$	Adaptive random greedy $(1/e)$

Conclusion

More in our poster! (Panel 40)

- Details on algorithm
- Classes of non-monotone objectives
- Experimental evaluation on social networks

