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Motivation

I Many AI problems boil down to
selecting a number of elements from a
large set of options

I Sequentially make smart choices
based on past observations

. .
 .
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Motivation

Find classes of objective functions that are amenable to efficient
sequential optimization with theoretical approximation guarantees
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Birdwatching
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Birdwatching
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Objective

I Ground set V = {a, b, c, d}

I Objective function f : 2V → R≥0

I f({d}) = 4

I f({c, d}) = 5
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Objective

I f is monotone

I f is submodular

I Benefit of visiting c, given that…

I …it is the first place we visit:

f({c}) = 3

I …we have already visited d:

f({c, d})− f({d}) = 5− 4 = 1

b
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Monotone submodular maximization

I Unconstrained problem:

maximize f(S)

−→ Trivial OPT = f(V )

I Cardinality-constrained problem:

maximize f(S)

subject to |S| ≤ k

−→ NP-hard

I More general constraints: matroid, knapsack, etc.
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Greedy

I k = 2

I S0 = ∅ −→ f(S0) = 0

I S1 = {d} −→ f(S1) = 4

I S2 = {d, a} −→ f(S2) = 6
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Greedy

Theorem [Nemhauser et al., 1978]

If f is monotone submodular, then greedy gives a (1− 1/e)-approximation.
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Birdwatching with costs
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Non-monotonicity

I g(A) = f(A)︸ ︷︷ ︸
monotone submodular

− c(A)︸︷︷︸
cost term

I Greedy has no guarantees for non-monotone functions

I Introduce randomization −→ random greedy algorithm
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Random greedy

Theorem [Buchbinder et al., 2014]

If f is submodular, then random greedy gives a (1/e)-approximation*.

If f is also monotone, then random greedy gives a (1− 1/e)-approximation*.

* In expectation over the randomness of the algorithm.
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Stochastic birdwatching
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Stochastic birdwatching
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Adaptivity

I Non-adaptive: choose set of locations in advance without looking at outcomes

I Adaptive: sequentially make choices based on past outcomes

I Monotonicity and submodularity −→ adaptive monotonicity and adaptive
submodularity

I Greedily select the most promising location in conditional expectation −→
adaptive greedy algorithm
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Adaptive greedy

Theorem [Golovin and Krause, 2011]

If f is adaptive monotone submodular, then adaptive greedy gives a
(1− 1/e)-approximation*.

* In expectation over the randomness of the environment.
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What’s missing?

Non-adaptive Adaptive

Monotone

Greedy
(1− 1/e)

Adaptive greedy
(1− 1/e)

Non-monotone

Random greedy
(1/e) ?
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What’s missing?

How do we maximize a non-monotone adaptive submodular function
subject to a cardinality constraint?

Adaptive random greedy
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Adaptive random greedy

Theorem [Our contribution]

If f is adaptive submodular, then adaptive random greedy gives a
(1/e)-approximation*.

If f is also adaptive monotone, then adaptive random greedy gives a
(1− 1/e)-approximation*.

* In expectation over the randomness of the algorithm and the environment.
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Conclusion
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Conclusion

More in our poster! (Panel 40)

I Details on algorithm

I Classes of non-monotone
objectives

I Experimental evaluation on
social networks
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