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Unified Scaling of Polar Codes: Error Exponent,
Scaling Exponent, Moderate Deviations, and Error

Floors
Marco Mondelli, S. Hamed Hassani, and Rüdiger Urbanke

Abstract

Consider transmission of a polar code of block length N and rate R over a binary memoryless symmetric channel
W and let Pe be the error probability under successive cancellation decoding. In this paper, we develop new bounds
that characterize the relationship among the parameters R, N , Pe, and the quality of the channel W quantified by its
capacity I(W ) and its Bhattacharyya parameter Z(W ).

In previous works, two main regimes have been studied. In the error exponent regime, the channel W and the
rate R < I(W ) are fixed, and it has been proved that the error probability Pe scales roughly as 2−

√
N . In the scaling

exponent approach, the channel W and the error probability Pe are fixed and it has been proved that the gap to
capacity I(W ) − R scales as N−1/µ. Here, µ is called scaling exponent and this scaling exponent depends on the
channel W . A heuristic computation for the binary erasure channel (BEC) gives µ = 3.627 and it has been shown
that, for any channel W , 3.579 ≤ µ ≤ 5.702.

The original contributions of this paper are as follows. First, we provide the tigher upper bound µ ≤ 4.714 valid
for any W . With the same technique, we obtain an upper bound for the scaling exponent of the BEC which very
closely approaches its heuristically derived value µ = 3.639.

Secondly, we develop a trade-off between the gap to capacity I(W )−R and the error probability Pe, as functions
of the block length N . In other words, we neither fix the gap to capacity (error exponent regime) nor the error
probability (scaling exponent regime), but we consider a moderate deviations regime in which we study how fast both
quantities simultaneously go to 0 as functions of the block length N .

Thirdly, we prove that polar codes are not affected by error floors. To do so, we fix a polar code of block length
N and rate R. We then vary the channel W and study the impact of this variation on the error probability. We show
that the error probability Pe scales as the Bhattacharyya parameter Z(W ) raised to a power which scales like

√
N .

This agrees with the scaling in the error exponent regime.

I. INTRODUCTION

Performance Analysis in Different Regimes. When considering the transmission using a coding scheme over a
channel W , the parameters of interest are the rate R, which represents the amount of information transmitted per
channel use, the block length N , which represents the total number of channel uses, and the block error probability
Pe. The exact characterization of the relationship between R, N , Pe, and the quality of the channel W (which can be
quantified, e.g., by its capacity I(W ) or its Bhattacharyya parameter Z(W )) is a formidable task. It is easier to study
the scaling of these parameters in various regimes, namely by fixing some of these parameters and by considering
the relationship among the remaining parameters.

To be concrete, consider the plots in Figure 1 which represent the performance of a family of codes C with rate
R = 0.5. Different curves correspond to codes of different block length N . The codes are transmitted over a family
of channels W parameterized by z, which is represented on the horizontal axis. On the vertical axis we represent the
error probability Pe. The error probability is an increasing function of z, which means that the channel gets “better”
as z decreases. The parameter z indicates the quality of the transmission channel W and, e.g., it could be set to
Z(W ) or to 1− I(W ). Let us assume that there exists a threshold z∗ such that, if z < z∗, then Pe tends to 0 as N
grows large, while if z > z∗, then Pe tends to 1 as N grows large. For example, if the family of codes C is capacity
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achieving, then we can think to the threshold z∗ as the channel parameter such that I(W ) = R. In the example of
Figure 1, we have that z∗ = 0.5.

The oldest approach to analyze the performance of the family C is known under the name of error exponent. We
pick any channel parameter z < z∗. Then, by definition of z∗, the error probability tends to 0 as N grows large. The
error exponent regime quantifies this statement and computes how the error probability varies as a function of the
block length. This corresponds to consider the blue vertical cut in Figure 1. The best possible scaling is obtained by
considering random codes, for which Pe = e−NE(R,W )+o(N), where E(R,W ) is the so-called error exponent [1].

Another approach is known under the name of scaling exponent. We pick a target error probability Pe. Then, by
definition of z∗, the gap between the threshold and the channel parameter z∗ − z tends to 0 as N grows large. The
scaling exponent regime quantifies this statement and computes how the gap to the threshold varies as a function of
the block length. This corresponds to consider the red horizontal cut in Figure 1. From a practical viewpoint, we
are interested in such a regime, since we typically have a certain requirement on the error probability and we look
for the shortest code possible to transmit over the assigned channel. As a benchmark, a sequence of works starting
from [2], then [3], and finally [4] shows that the smallest possible block length N required to achieve a gap to the
threshold z∗ − z with a fixed error probability Pe is s.t.

N ≈ V (Q−1(Pe))
2

(z∗ − z)2
, (1)

where Q(·) is the tail probability of the standard normal distribution and V is referred to as channel dispersion
and measures the stochastic variability of the channel relative to a deterministic channel with the same capacity. A
similar asymptotic expansion is put forward in [5] by using the information spectrum method. In general, if N is

Θ

(
1

(z∗ − z)µ

)
, then we say that the family of codes C has scaling exponent µ. Hence, by (1), the most favorable

scaling exponent is µ = 2 and it is achieved by random codes. Further, for a large class of ensembles of LDPC codes
and channel models the scaling exponent is also µ = 2 [6].

To sum up, in the error exponent regime we compute how fast Pe goes to 0 as a function of N when z∗ − z is
fixed, while in the scaling exponent regime we compute how fast z∗ − z goes to 0 as a function of N when Pe is
fixed. Then, a natural question is to ask how fast both Pe and z∗− z go to 0 as functions of N . In other words, one
can describe a trade-off between the speed of decay of the error probability and the speed of decay of the gap to
capacity as functions of the block length. This intermediate approach is named moderate deviations regime and it is
studied for random codes in [7].

The last approach we are taking into account concerns the so-called error floor. We pick a specific code of an
assigned block length N . Then, we compute how the error probability Pe behaves as a function of the channel
parameter z. This corresponds to taking into account one of the four curves in Figure 1. This kind of analysis was
introduced for iterative coding schemes, such as turbo and LDPC codes, where two distinct regions are typically
recognizable: the so-called waterfall region in which the error probability falls off sharply as a function of the channel
parameter and the error floor region in which the curves are much more shallow. In short, when there is no error
floor, the error probability steadily decreases in the form of a waterfall as the channel condition improves (this is
the case of Figure 1). On the other hand, when there is a point after which the error probability curve does not
fall as quickly as before, then we enter the error floor region (this is the case of Figure 2). Error floors constitute
a known issue for turbo codes, where they can be partially attributed to low-weight codewords [8], and for LDPC
codes, where they are caused by small weaknesses in the graph and they are related to the weight distribution [9].
For transmission over the Binary Erasure Channel (BEC), the error floor region of LDPC codes is well understood
[9, Section 3.24], [10] and computational techniques that accurately predict the performance for a given LDPC code
in the error floor region have been developed [11].

Existing Results for Polar Codes. Polar codes have recently attracted the interest of the scientific community,
since they provably achieve the capacity of a large class of channels, including any Binary Memoryless Symmetric
Channel (BMSC), with low encoding and decoding complexity. Since their introduction in the seminal paper [12],
the performance of polar codes has been extensively studied in different regimes.

As concerns the error exponent regime, in [13] it is proved that the block error probability under Successive
Cancellation (SC) decoding behaves roughly as 2−

√
N . This result is further refined in [14], where it is shown that
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Figure 1. Performance of the family of codes C with rate R = 0.5 transmitted over the family of channels W with threshold z∗ = 0.5. Each
curve corresponds to a code of an assigned block length N , on the x-axis it is represented the channel parameter z, and on the y-axis the
error probability Pe. The error exponent regime captures the behavior of the blue vertical cuts of fixed channel parameter z (or, equivalently,
of fixed gap to threshold z∗ − z). The scaling exponent regime captures the behavior of the red horizontal cuts of fixed error probability Pe.
The error floor regime captures the behavior of a single curve of fixed block length N .

log2(− log2 Pe) scales as
log2N

2
+

√
log2N

2
·Q−1

(
R

C

)
+o(

√
log2N). This last result holds both under SC decoding

and under optimal MAP decoding.
As concerns the scaling exponent regime, the value of µ depends on the particular channel taken into account. A

heuristic method to compute the scaling exponent for transmission over the BEC under SC decoding is provided in
[15], and it yields µ ≈ 3.627. Universal bounds on µ valid for any BMSC under SC decoding are presented in [16]:
the scaling exponent is lower bounded by 3.579 and it is upper bounded by 6. Furthermore, it is conjectured that the
lower bound on µ can be increased up to 3.627, i.e., up to the value heuristically computed for the BEC. The upper
bound on µ is further refined to 5.702 in [17]. Since a significant performance gain is obtained by using a Successive
Cancellation List (SCL) decoder [18], the scaling exponent of list decoders has also been studied. However, in [19]
it is proved that the value of µ does not change by adding any finite list size to the MAP decoder, and, in addition,
the scaling exponent stays the same also under genie-aided SC decoding for any finite number of helps from the
genie when transmission takes place over the BEC.

As concerns the error floor regime, in [20] it is proved that the stopping distance of polar codes scales as
√
N ,

which implies good error floor performance under Belief Propagation (BP) decoding, and simulation results have
shown no sign of error floors for transmission over the BEC and over the Binary Additive White Gaussian Noise
Channel (BAWGNC). However, even if we restrict to the simpler case of the transmission over the BEC, the existing
results cannot rigorously exclude the existence of an error floor region for polar codes.

Contribution of the Present Work. This paper provides a unified view on the performance analysis of polar
codes and presents several results about the scaling of the parameters of interest, namely, the rate R, the block length
N , the error probability under SC decoding Pe, and the quality of the channel W . In particular, the contributions
of this work concern the scaling exponent, the moderate deviations, and the error floor regimes, and they can be
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Figure 2. Performance of the family of (3, 6)-regular LDPC codes transmitted over the Binary Erasure Channel with erasure probability z.
The waterfall region in which the error probability decreases sharply is clearly distinguishable from the error floor region in which the decay
is much slower.

summarized as follows.
1) New universal upper bound on the scaling exponent µ. We show that µ ≤ 4.714 for any BMSC and that

µ ≤ 3.639 for the BEC. Basically, this result improves by 1 the previous upper bound valid for any BMSC and
approaches closely the value 3.627 which has been heuristically computed for the BEC. The proof technique
consists in relating the scaling exponent to the sup of some function and, then, in describing an interpolation
algorithm to obtain a provable upper bound on this sup. The values 4.714 for any BMSC and 3.639 for the
BEC have been obtained for a particular number of samples used by the algorithm and they can be slightly
improved simply by running the algorithm with a larger number of samples.

2) Moderate deviations: joint scaling of error probability and gap to capacity. We unify the two perspectives of
the error exponent and the scaling exponent by allowing both the gap to capacity I(W ) − R and the error
probability Pe to go to 0 as functions of the block length N . In particular, we describe a trade-off between the
speed of decay of Pe and the speed of decay of I(W )−R. In the limit in which the gap to capacity is arbitrary
small but independent of N , this trade-off recovers the result of [13] where it is shown that Pe scales roughly
as 2−

√
N .

3) Absence of error floors. We study the dependency of the error probability on the quality of the channel over
which the transmission takes place. To do so, we assign a polar code of block length N and rate R designed for
transmission over a channel W ′. Then, we look at the performance of this fixed code over other channels W
which are “better” that W ′. In particular, we study the error probability Pe as a function of the Bhattacharyya
parameter Z(W ) of the transmission channel W . Note that the code is fixed and the channel varies, which
means that we do not choose the optimal polar indices for W . In particular, we prove that Pe scales as Z(W )
raised to some power which depends on N and, in addition, the exponent behaves roughly as

√
N in accordance

to the error exponent regime. As a result, we conclude that polar codes are not affected by error floors.
The rest of the paper is organized as follows. Section II reviews some preliminary notions about polar coding. The

successive three sections contain the original contributions of the paper: Section III presents the new upper bound
on the scaling exponent, Section IV concerns the moderate deviations regime, and Section V proves that polar codes
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are not affected by error floors. Section VI concludes the paper with some final remarks.

II. PRELIMINARIES

Let W be a BMSC, and let X = {0, 1} denote its input alphabet, Y the output alphabet, and {W (y | x) : x ∈
X , y ∈ Y} the transition probabilities. Denote by I(W ) ∈ [0, 1] the mutual information between the input and output
of W with uniform distribution on the input. Then, I(W ) is also equal to the capacity of W . Denote by Z(W ) ∈ [0, 1]
the Bhattacharyya parameter of W , which is defined as

Z(W ) =
∑
y∈Y

√
W (y | 0)W (y | 1),

and it is related to the capacity I(W ) via

Z(W ) + I(W ) ≥ 1, (2)

Z(W )2 + I(W )2 ≤ 1, (3)

both proved in [12].
The basis of channel polarization consists in mapping two identical copies of the channel W : X → Y into the

pair of channels W 0 : X → Y2 and W 1 : X → X × Y2, defined as [12, Section I-B], [16, Section I-B],

W 0(y1, y2 | x1) =
∑
x2∈X

1

2
W (y1 | x1 ⊕ x2)W (y2 | x2),

W 1(y1, y2, x1 | x2) =
1

2
W (y1 | x1 ⊕ x2)W (y2 | x2).

(4)

Then, the idea is that W 0 is a “worse” channel and W 1 is a “better” channel than W . This statement can be quantified
by computing the relations among the Bhattacharyya parameters of W , W 0 and W 1:

Z(W )
√

2− Z(W )2 ≤ Z(W 0) ≤ 2Z(W )− Z(W )2, (5)

Z(W 1) = Z(W )2, (6)

which follow from Proposition 5 of [12] and from Exercise 4.62 of [9]. In addition, when W is a BEC, we have
that W 0 and W 1 are also BECs and, by Proposition 5 of [12],

Z(W 0) = 2Z(W )− Z(W )2. (7)

By repeating n times this operation, we map 2n identical copies of W into the synthetic channels W
(i)
n (i ∈

{1, · · · , 2n}), defined as
W (i)
n = (((W b

(i)
1 )b

(i)
2 )···)b

(i)
n , (8)

where (b
(i)
1 , · · · , b(i)n ) is the binary representation of the integer i− 1 over n bits.

Given a BMSC W , for n ∈ N, define a random sequence of channels Wn, as W0 = W , and

Wn =

{
W 0
n−1, w.p. 1/2,

W 1
n−1, w.p. 1/2.

(9)

Let Zn(W ) = Z(Wn) be the random process that tracks the Bhattacharyya parameter of Wn. Then, from (5) and
(6) we deduce that, for n ≥ 1,

Zn

{
∈
[
Zn−1

√
2− Z2

n−1, 2Zn−1 − Z2
n−1

]
, w.p. 1/2,

= Z2
n−1, w.p. 1/2.

(10)

When W is a BEC with erasure probability z, then the process Zn has a simple closed form. It starts with Z0 = z,
and, by using (5) and (6), we deduce that, for n ≥ 1,

Zn =

{
2Zn−1 − Z2

n−1, w.p. 1/2,
Z2
n−1, w.p. 1/2.

(11)
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Consider transmission over W of a polar code of block length N = 2n and rate R and let Pe denote the block
error probability under SC decoding. Then, by Proposition 2 of [12],

Pe ≤
∑
i∈I

Z(i)
n , (12)

where Z(i)
n denotes the Bhattacharyya parameter of W (i)

n and I denotes the information set, i.e., the set containing
the positions of the information bits.

III. NEW UNIVERSAL UPPER BOUND ON THE SCALING EXPONENT

In this section, we present an improved upper bound on the scaling exponent which is valid for transmission over
any BMSC W . First of all, we relate the value of the scaling exponent µ to the sup of some function. Secondly, we
provide a provable bound on this sup, which gives us a provably valid choice for µ, i.e., µ = 4.714 for any BMSC
and µ = 3.639 for the BEC. More specifically, Section III-A contains the statement and the discussion of these two
main theorems. Sections III-B and III-C contain the proof of the first and of the second result, respectively.

A. Main Result: Statement and Discussion

Theorem 1 (From fixed function to scaling exponent): Assume that there exists a fixed function h(x) : [0, 1] →
[0, 1] s.t. h(0) = h(1) = 0, h(x) > 0 for any x ∈ (0, 1), and, for some µ > 2,

sup
x∈(0,1),y∈[x

√
2−x2,2x−x2]

h(x2) + h(y)

2h(x)
< 2−1/µ. (13)

Consider transmission over a BMSC W with capacity I(W ) using a polar code of rate R < I(W ). Fix pe ∈ (0, 1)
and assume that the block error probability under successive cancellation decoding is at most pe. Then, it suffices to
have a block length N s.t.

N ≤ β1

(I(W )−R)µ
, (14)

where β1 is a constant which depends only on pe. If W is a BEC, a less stringent hypothesis on µ is required for
(14) to hold: the condition (13) is replaced by

sup
x∈(0,1)

h(x2) + h(2x− x2)

2h(x)
< 2−1/µ. (15)

Theorem 2 (Valid choice for scaling exponent): Consider transmission over a BMSC W with capacity I(W ) using
a polar code of rate R < I(W ). Fix pe ∈ (0, 1) and assume that the block error probability under successive
cancellation decoding is at most pe. Then, it suffices to have a block length N upper bounded by (14) with µ = 4.714
Furthermore, if W is a BEC, then (14) holds with µ = 3.639.

Before proceeding with the proofs, it is useful to discuss two points. The first remark focuses on the role of the
fixed function h(x) and shows a heuristic reason why the value of the scaling exponent is linked to the existence of
a function that fulfills condition (13) (condition (15) for the BEC). The second remark points out that we can allow
the error probability to tend to 0 polynomially fast in N while maintaining the same scaling between gap to capacity
and block length.

Remark 3 (Heuristic interpretation of fixed function): First, let W be a BEC and consider the operator TBEC

defined as

TBEC(g) =
g(z2) + g(2z − z2)

2
, (16)

where g(z) is a bounded and real valued function over [0, 1]. The relation between the Bhattacharyya process Zn
and the operator TBEC is given by

E [g(Zn) | Z0 = z] =

n times︷ ︸︸ ︷
TBEC ◦ TBEC ◦ · · · ◦ TBEC(g) = TnBEC(g), (17)
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where the formula comes from a straightforward application of (11). A detailed explanation of the dynamics of the
functions TnBEC(g) is provided in Section III of [16]. In short, a simple check shows that λ = 1 is an eigenvalue of
the operator TBEC with eigenfunctions v0(z) = 1 and v1(z) = z. Let λ∗ be the largest eigenvalue of TBEC other than

λ = 1 and define µ∗ as µ∗ = − 1

log2 λ
∗ . Then, the heuristic discussion of [16] leads to the fact that µ∗ is the largest

candidate that we could plug in (15). For this choice, the fixed function h(x) represents the eigenfunction associated
to the eigenvalue λ∗, namely,

h(x2) + h(2x− x2)

2
= 2−1/µ∗h(x). (18)

A numerical method for the calculation of this second eigenvalue was originally proposed in [15] and it yields
µ∗ = 3.627. Furthermore, in Section III of [16] it is also heuristically explained how µ∗ = 3.627 gives a lower bound
to the scaling exponent of the BEC.

Now, let W be a BMSC and consider the operator TBMSC defined as

TBMSC(g) = sup
y∈[x

√
2−x2,2x−x2]

g(z2) + g(y)

2
. (19)

The relation between the Bhattacharyya process Zn and the operator TBMSC is given by

E [g(Zn) | Z0 = z] ≤ TnBMSC(g), (20)

where the formula comes from a straightforward application of (10). Similarly to the case of the BEC, λ = 1 is an
eigenvalue of TBMSC and we write the largest eigenvalue other than λ = 1 as 2−1/µ∗ . Then, the idea is that µ∗ is the
largest candidate that we could plug in (13) and, for this choice, the fixed function h(x) represents the eigenfunction
associated to the eigenvalue 2−1/µ∗ , namely,

sup
y∈[x

√
2−x2,2x−x2]

h(x2) + h(y)

2
= 2−1/µ∗h(x). (21)

In Section IV of [16] it is proved that the scaling exponent µ is upper bounded by 6: this result is obtained by
showing that the eigenvalue is at least 2−1/5, i.e. µ∗ ≤ 5 and, then, that µ∗ + 1 is an upper bound on the scaling
exponent µ. Furthermore, it is conjectured that µ∗ is a tighter upper bound on the scaling exponent µ. In [17], a
more refined computation of µ∗ is presented, which yields µ∗ ≤ 4.702, and, therefore, µ ≤ 5.702. In this paper, we
solve the conjecture of [16] by proving that, indeed, µ∗ is an upper bound on the scaling exponent µ. In addition, we
show an algorithm which guarantees a provable bound on the eigenvalue, thus obtaining µ ≤ 4.714 for any BMSC
and µ ≤ 3.639 for the BEC. We finally note from (20) that TBMSC provides only an upper bound on the (expected)
evolution of Zn. As a result, although µ ≤ 4.714 holds universally for any channel, this bound is certainly not tight
if we consider a specific BMSC.

Remark 4 (Polynomial decay of Pe): With some more work, it is possible to prove the following generalization
of Theorem 1. Assume that there exists h(x) as in Theorem 1 and consider transmission over a BMSC W with
capacity I(W ) using a polar code of rate R < I(W ). Then, for any ν > 0, the block length N and the block error
probability under successive cancellation decoding Pe are s.t.

Pe ≤
1

Nν
,

N ≤ β2

(I(W )−R)µ
,

(22)

where β2 is a constant. A sketch of the proof of this statement is given at the end of Section III-B. The result (22)
is a generalization of Theorem 1 in the sense that, instead of being an assigned constant, the error probability goes
to 0 polynomially fast in 1/N , while the scaling between block length and gap to capacity, i.e., the value of µ, stays
the same. On the other hand, as described in Section IV, if the error probability is O(2−N

β

) for some β ∈ (0, 1/2),
then the scaling between block length and gap to capacity changes and depends on the exponent β.
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B. From Fixed Function to Scaling Exponent: Proof of Theorem 1

The proof of Theorem 1 relies on the following two auxiliary results: Lemma 5, which is proved in Appendix A,
relates the number of synthetic channels with Bhattacharyya parameter small enough to an expected value over the
Bhattacharyya process; Lemma 6, which is proved in Appendix B, relates the expected value over the Bhattacharyya
process to the fixed function h(x).

Lemma 5 (From expectation to scaling exponent): Let Zn(W ) be the Bhattacharyya process associated to the
channel W . Pick any α ∈ (0, 1) and assume that, for n ≥ 1 and for some ρ ≤ 1/2,

E [(Zn(1− Zn))α] ≤ c12−nρ, (23)

where c1 is a constant which does not depend on n. Then,

P
(
Zn ≤ pe 2−n

)
≥ I(W )− c2 2−n(ρ−α), (24)

where c2 =
√

2pe + 2c1p
−α
e .

Lemma 6 (From fixed function to expectation): Let h(x) : [0, 1] → [0, 1] s.t. h(0) = h(1) = 0, h(x) > 0 for any
x ∈ (0, 1), and

sup
x∈(0,1),y∈[x

√
2−x2,2x−x2]

h(x2) + h(y)

2h(x)
≤ 2−ρ1 . (25)

for some ρ1 ≤ 1/2. Let Zn(W ) be the Bhattacharyya process associated to the channel W . Pick any α ∈ (0, 1).
Then, for any δ ∈ (0, 1), and for n ∈ N,

E [(Zn(1− Zn))α] ≤ 1

δ

(
2−ρ1 +

√
2

δ

1− δ
c3

)n
, (26)

where c3 is defined as

c3 = sup
x∈(ε1(α),1−ε2(α))

(x(1− x))α

h(x)
, (27)

and ε1(α), ε2(α) denote the only two solutions in [0, 1] of the equation

1

2

((
x(1 + x)

)α
+
(
(2− x)(1− x)1/3

)α)
= 2−ρ1 . (28)

If W is a BEC, a less stringent hypothesis on ρ1 is required for (26) to hold: the condition (25) is replaced by

sup
x∈(0,1)

h(x2) + h(2x− x2)

2h(x)
≤ 2−ρ1 . (29)

At this point, we are ready to put everything together and prove Theorem 1.
Proof of Theorem 1: Let us define

ρ1 = min

(
1

2
,− log2 sup

x∈(0,1),y∈[x
√

2−x2,2x−x2]

h(x2) + h(y)

2h(x)

)
, (30)

where h(x) is the fixed function of the hypothesis.
Set

α = log2

(
1 +

2−1/µ − 2−ρ1

2−1/µ + 2−ρ1

)
. (31)

By using (13) and the fact that µ > 2, we immediately realize that 2−1/µ − 2−ρ1 > 0, and, therefore, that α > 0. In
addition, one easily checks that α < 1.

Set

δ =
2−1/µ − 2−ρ1

2
√

2c3 + 2−1/µ − 2−ρ1
, (32)

where c3 is defined as in (27). Since 2−1/µ − 2−ρ1 > 0, we have that δ ∈ (0, 1).
In addition, ρ1 ≤ 1/2 and the condition (25) clearly follows from the definition (30). Consequently, we can apply

Lemma 6 which yields formula (26).
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Set
ρ = − log2

(
2−ρ1 +

√
2

δ

1− δ
c3

)
. (33)

Then, ρ ≤ ρ1 ≤ 1/2, and we can apply Lemma 5 with c1 = 1/δ which yields

P
(
Zn ≤ pe 2−n

)
≥ I(W )− c2 2−n(ρ−α) = I(W )− c2 2−n/µ, (34)

where c2 =
√

2pe + 2p−αe /δ and the last equality uses the definitions (33), (31) and (32).
Consider transmission of a polar code of block length N = 2n and rate R = I(W )− c2 2−n/µ over W . Then, by

combining (12) and (34), we have that the error probability under successive cancellation decoding is upper bounded
by pe. Therefore, the result (14) follows with β1 = cµ2 .

A similar proof holds for the specific case in which W is a BEC.

Eventually, let us briefly sketch how to prove the result stated in Remark 4. First, we need to generalize Lemma
5 by showing that, under the same hypothesis (23), we have that, for any ν > 0,

P
(
Zn ≤ 2−n(ν+1)

)
≥ I(W )− c4 2−n(ρ−(ν+1)α), (35)

where c4 =
√

2+2c1. Then, we simply follow the procedure described in the proof of Theorem 1 with the difference
that α is a factor 1 + ν smaller than in (31).

C. Valid Choice for Scaling Exponent: Proof of Theorem 2

Let W be a BMSC. The proof of Theorem 2 consists in providing a good candidate for the fixed function, i.e., in
finding a function h(x) : [0, 1]→ [0, 1] s.t. h(0) = h(1) = 0, h(x) > 0 for any x ∈ (0, 1) and (13) is satisfied with
a value of µ as small as possible. In particular, we will prove that µ = 4.714 is a valid choice.

The idea is to apply repeatedly the operator TBMSC defined in (19) until we converge to the fixed function h(x).
Hence, let us define hk(x) recursively for any k ≥ 1 as

hk(x) =
fk(x)

supy∈(0,1) fk(y)
, (36)

fk(x) = sup
y∈[x

√
2−x2,2x−x2]

hk−1(x2) + hk−1(y)

2
, (37)

with some initial condition h0(x) s.t. h0(0) = h0(1) = 0 and h0(x) > 0 for any x ∈ (0, 1). Note that the normalization
step (36) ensures that the function hk(x) does not tend to the constant function 0 in the interval [0, 1].

However, even if we choose some simple initial condition h0(x), the sequence of functions {hk(x)}k∈N is
analytically intractable. Hence, we need to resort to numerical methods, keeping in mind that we require a provable
upper bound for any x ∈ (0, 1) on the function

r(x) = sup
y∈[x

√
2−x2,2x−x2]

h(x2) + h(y)

2h(x)
. (38)

To do so, first we construct an adequate candidate for the fixed function h(x). This function is going to depend on
some auxiliary parameters. Then, we describe an algorithm to analyze this candidate and we present a choice of the
parameters that gives µ = 4.714. Let us underline that, despite the procedure is numerical, the resulting upper bound
and, therefore, the value of µ are rigorously provable.

As concerns the construction part, we observe numerically that, when k is large enough, the function hk(x) depends
weakly on the initial condition h0(x) and it does not change much after one more iteration, i.e., hk+1(x) ≈ hk(x).
In addition, let us point out that the goal is not to obtain an exact approximation of the sequence of functions
{hk(x)}k∈N defined in (36)-(37). Indeed, the actual goal is to obtain a candidate h(x) which satisfies (13) with a
value of µ as low as possible.
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Pick a large integer Ns and let us define the sequence of functions {ĥk(x)}k∈N as follows. For any k ∈ N, ĥk(x)
is the piece-wise linear function obtained by linear interpolation from the samples ĥk(xi), where xi = i/Ns for
i ∈ {0, 1, · · · , Ns}. The samples ĥk(xi) are given by

ĥk(xi) =
f̂k(xi)

maxj∈{0,1,··· ,Ns} f̂k(xj)
,

f̂k(xi) =
ĥk−1((xi)

2) + maxj∈{0,1,··· ,Ms} ĥk−1(yi,j)

2
,

(39)

where Ms is a large integer, and, for j ∈ {0, 1, · · · ,Ms}, yi,j is defined as

yi,j = xi

√
2− x2

i +
j

Ms
xi

(
2− xi −

√
2− x2

i

)
. (40)

The initial samples ĥ0(xi) are obtained by evaluating at the points {xi}Ns

i=0 some function h0(x) s.t. h0(0) = h0(1) = 0
and h0(x) > 0 for any x ∈ (0, 1).

It is clear that, by increasing Ns and Ms, we obtain a better approximation of the sequence of functions (36)-(37).
In addition, by increasing k we get closer to the limiting function limk→∞ ĥk(x). Set

r̂k = max
i∈{1,··· ,Ns−1}

ĥk((xi)
2) + maxj∈{0,1,··· ,Ms} ĥk(yi,j)

2ĥk(xi)
. (41)

We observe from numerical simulations that, when k increases, the sequence r̂k tends to the limiting value 0.86275.
Furthermore, this limit depends very weakly on the particular choice of the initial conditions {ĥ0(xi)}Ns

i=0.
Note that r̂k gives an indication of what is the smallest value of µ that we could hope for by using the samples

{ĥk(xi)}Ns

i=0, i.e., µ = − 1

log2 0.86275
= 4.695. Indeed, if we obtain h(x) by interpolating the samples {ĥk(xi)}Ns

i=0,

then r̂k = maxi∈{1,··· ,Ns−1} r(i/Ns), where r(x) is defined in (38). Therefore, r̂k ≤ supx∈(0,1) r(x), i.e., r̂k is a lower
bound on the desired sup, while we are looking for an upper bound to that quantity.

Fix a large integer k̄ and, before computing a provable upper bound on supx∈(0,1) r(x), let us describe the
interpolation method to obtain the candidate h(x) from the samples {ĥk̄(xi)}

Ns

i=0.
For x close to 0 and for x close to 1, linear interpolation does not yield a good candidate h(x). Indeed, assume

that h(x) = ĥk̄(x) for x ∈
[
0,

1

Ns

]
. Then, limx→0+ r(x) = 1, and, therefore, supx∈(0,1) r(x) ≥ 1. Similarly,

if h(x) = ĥk̄(x) for x ∈
[
1− 1

Ns
, 1

]
, then limx→1− r(x) = 1. On the other hand, if h(x) grows as xη in a

neighborhood of 0 for η ∈ (0, 1), then, it is easy to see that limx→0+ r(x) = 2η−1. Similarly, if h(x) grows as
(1 − x)η in a neighborhood of 1 for η ∈ (0, 1), then limx→1− r(x) = 2η−1. Consequently, the idea is to choose η

slightly smaller than 1− 1

4.695
, where 4.695 constitutes a good approximation to the target value of µ that we are

going to achieve. Motivated by this observation, set

b0(x) = ĥk̄

(
m̄

Ns

) (
m̄

Ns

)−η
xη, (42)

b1(x) = ĥk̄

(
1− m̄

Ns

) (
m̄

Ns

)−η
(1− x)η, (43)

for some integer m̄ ≥ 2. Then, sample b0(x) for x ∈
[

1

Ns
,
m̄

Ns

]
, sample ĥk̄(x) for x ∈

[
m̄

Ns
, 1− m̄

Ns

]
, and sample

b1(x) for x ∈
[
1− m̄

Ns
, 1− 1

Ns

]
. Note that it is better not to have a uniform sampling, but to choose the number of

samples according to the following rule: pick some δs small enough; then, for each couple of consecutive samples,
the bigger one has to be at most a factor 1 + δs larger than the smaller one. Let {x′i}

N ′s
i=1 denote the set of sampling

positions and {ĥi}N
′
s

i=1 denote the set of samples obtained with this procedure, where N ′s is the number of such



11

samples. Eventually, we define the candidate h(x) as

h(x) = b0(x), for x ∈
[
0,

1

Ns

]
,

h(x) = b1(x), for x ∈
[
1− 1

Ns
, 1

]
,

(44)

and, for x ∈
[

1

Ns
, 1− 1

Ns

]
, h(x) is obtained by linear interpolation from the samples {ĥi}.

As concerns the analysis of h(x), let us remind that the goal is to find a provable upper bound on supx∈(0,1) r(x).

First, consider the values of x in a neighborhood of 0. The following chain of inequalities holds for any x ∈
[
0,

1

Ns

]
,

r(x)
(a)
≤ h(x2) + h(2x)

2h(x)
(b)
≤ b0(x2) + b0(2x)

2b0(x)

(c)
=
xη

2
+ 2η−1

≤ H0 ,
(Ns)

−η

2
+ 2η−1,

(45)

where (a) uses that h(y) ≤ h(2x) for any y ∈ [x
√

2− x2, 2x − x2] since h(x) is increasing for x ∈
[
0,

2

Ns

]
, (b)

uses that h(x) = b0(x) for x ∈
[
0,

1

Ns

]
and h(x) ≤ b0(x) for x ∈

[
1

Ns
,

2

Ns

]
since in that interval h(x) is the linear

interpolation of samples taken from b0(x) and b0(x) is concave for any η ∈ (0, 1), and (c) uses the definition (42)
of b0(x).

Secondly, consider the values of x is a neighborhood of 1. The following chain of inequalities holds for any

x ∈
[
1− 1

Ns
, 1

]
,

r(x)
(a)
≤ h(x2) + h(x

√
2− x2)

2h(x)

(b)
≤ b1(x2) + b1(x

√
2− x2)

2b1(x)

(c)
=

(1 + x)η

2
+

1

2

(
1− x

√
2− x2

1− x

)η
(d)
≤ H1 , 2η−1 +

1

2

(
Ns − (Ns − 1)

√
1 +

2

Ns
− 1

(Ns)2

)η
,

(46)

where (a) uses that h(y) ≤ h(x
√

2− x2) for any y ∈ [x
√

2− x2, 2x − x2] since h(x) is decreasing for x ∈[
1− 1

Ns
, 1

]
, (b) uses that h(x) = b1(x) for x ∈

[
1− 1

Ns
, 1

]
and h(x) ≤ b1(x) for x ∈

[
1

Ns
,

2

Ns

]
since in that

interval h(x) is the linear interpolation of samples taken from b1(x) and b1(x) is concave for any η ∈ (0, 1), (c) uses

the definition (43) of b1(x), and (d) uses that
1− x

√
2− x2

1− x
is decreasing for any x ∈ (0, 1).

Finally, consider the values of x in the interval
[

1

Ns
, 1− 1

Ns

]
. For any i ∈ {1, · · · , N ′s − 1}, define

J+
i = {j : x′j ∈ [(x′i)

2, (x′i+1)2]},

J−i = {j : x′j ∈ [x′i

√
2− (x′i)

2, 2x′i+1 − (x′i+1)2]}.
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Then, since h(x) is piece-wise linear in the interval
[

1

Ns
, 1− 1

Ns

]
, we have that, for any x ∈ [x′i, x

′
i+1],

h(x) ≥ min
(
h(x′i), h(x′i+1)

)
,

h(x2) ≤ h+
i , max

(
h
(
(x′i)

2
)
, h
(
(x′i+1)2

)
,max
j∈J+

i

(
h(x′j)

))
,

sup
y∈[x

√
2−x2,2x−x2]

h(y) ≤ h−i , max

(
h

(
x′i

√
2− (x′i)

2

)
, h
(
2x′i+1 − (x′i+1)2

)
,max
j∈J−i

(
h(x′j)

))
,

which implies that, for any x ∈ [x′i, x
′
i+1],

r(x) ≤
h+
i + h−i

2 min
(
h(x′i), h(x′i+1)

) . (47)

As a result, by combining (45), (46), and (47), we conclude that

sup
x∈(0,1)

r(x) ≤ max

(
H0, H1, max

i∈{1,··· ,N ′s−1}

h+
i + h−i

2 min
(
h(x′i), h(x′i+1)

)) , (48)

which implies that (13) holds for any µ s.t. 2−1/µ is an upper bound on the RHS of (48).
Let us choose δs, η, the sampling positions {x′i}

N ′s
i=1, and the samples {ĥi}N

′
s

i=1 to be rational numbers. Then, the
RHS of (48) is the maximum of either rational numbers or sums of rational powers of rational numbers. Consequently,
we can provide a provable upper bound on the RHS of (48), and, therefore, on µ. In particular, by setting Ns = 106,
Ms = 104, h0(x) = (x(1− x))3/4, k = 100, δs = 10−4, η = 78/100, and m̄ = 13, we obtain µ = 4.714.

For the BEC the idea is to apply repeatedly the operator TBEC defined in (16). Hence, by adapting the procedure
described above and by setting Ns = 106, Ms = 104, h0(x) = (x(1− x))2/3, k = 100, δs = 10−4, η = 72/100, and
m̄ = 5, we obtain µ = 3.639.

IV. MODERATE DEVIATIONS: JOINT SCALING OF ERROR PROBABILITY AND GAP TO CAPACITY

The scaling exponent describes how fast the gap to capacity tends to 0 as a function of the block length, when
the error probability is fixed. Hence, it is natural to ask how fast the gap to capacity tends to 0 as a function of the
block length, when the error probability tends to 0 at a certain speed. The discussion of Remark 4 in Section III-A
points out that we can allow the error probability to go to 0 polynomially fast in N , while maintaining the same
scaling exponent. In this section, we show that, if we allow a less favorable scaling between gap to capacity and
block length, i.e. a larger scaling exponent, then the error probability goes to 0 sub-exponentially fast in N . More
specifically, Section IV-A contains the exact statement of this result together with some remarks, and Section IV-B
contains the proof.

A. Main Result: Statement and Discussion

Theorem 7 (Joint scaling: exponential decay of Pe): Assume that there exists a fixed function h(x) which satisfies
the hypotheses of Theorem 1 for some µ > 2. Consider transmission over a BMSC W with capacity I(W ) using a

polar code of rate R < I(W ). Then, for any γ ∈
(

1

1 + µ
, 1

)
, the block length N and the block error probability

under successive cancellation decoding Pe are s.t.

Pe ≤ N · 2−N
γ·h(−1)

2

(
γ(µ+1)−1

γµ

)
,

N ≤ β3

(I(W )−R)µ/(1−γ)
,

(49)

where β3 is a constant, and h(−1)
2 is the inverse of the binary entropy function defined as h2(x) = −x log2 x− (1−

x) log2(1 − x) for any x ∈ [0, 1/2]. If W is a BEC, the less stringent hypothesis (15) on µ is required for (49) to
hold.
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In short, formula (49) describes a trade-off between gap to capacity and error probability as functions of the block

length N . Indeed, let γ go from
1

1 + µ
to 1: on the one hand, the error probability goes faster and faster to 0, since

the exponent γ · h(−1)
2

(
γ(µ+1)−1

γµ

)
is increasing in γ; on the other hand, the gap to capacity goes slower to 0, since

the exponent
µ

1− γ
is increasing in γ. Before proceeding with the proof, it is useful to discuss three points. The first

remark concerns the possible choices for µ in (49). The second remark shows how to recover from Theorem 7 the
result [13] concerning the error exponent regime. The third remark adds the Bhattacharyya parameter Z(W ) to the
picture outlined in Theorem 7 and, in particular, it focuses on the dependency between Pe and Z(W ).

Remark 8 (Valid choice for µ in (49)): By constructing a fixed function h(x) as in the proof of Theorem 2 con-
tained in Section III-C, we immediately have that valid choices of µ in (49) are µ = 4.714 for any BMSC and
µ = 3.637 for the special case of the BEC.

Remark 9 (Error exponent regime and Theorem 7): By picking γ close to 1, we recover the result [13] concerning
the error exponent regime: if we allow the gap to capacity to be arbitrary small but independent of N , then Pe is
O(2−N

β

) for any β ∈ (0, 1/2)1. On the other hand, note that it is not possible to recover from Theorem 7 the

result of Theorem 1 concerning the scaling exponent regime. Indeed, pick γ close to
1

1 + µ
. Then, the exponent

γ · h(−1)
2

(
γ(µ+1)−1

γµ

)
tends to 0, i.e., we approach a regime in which the error probability is independent of N , but

N is O
(

1

(I(W )−R)µ+1

)
instead of O

(
1

(I(W )−R)µ

)
as in (14). We believe that this is only an artifact of

the proof technique used to show Theorem 7 and that it might be possible to find a joint scaling which contains as
special cases the error exponent and the scaling exponent regimes.

Remark 10 (Dependency between Pe and Z(W )): Consider transmission over a BMSC W with Bhattacharyya
parameter Z(W ). Then, under the hypotheses of Theorem 7, it is possible to prove that

Pe ≤ N · Z(W )
1

2
·N
γ·h(−1)

2

(
γ(µ+1)−1

γµ

)
,

N ≤ β4

(I(W )−R)µ/(1−γ)
,

(50)

where β4 is a constant. A sketch of the proof of this statement is given in Appendix C. In short, the error probability
scales as Z(W ) raised to some power of N , where the exponent follows the trade-off of Theorem 7. To see that this
is a meaningful bound, consider the case of transmission over the BEC in the error exponent regime. On the one
hand, formula (50) gives that Pe scales roughly as Z(W )

√
N . On the other hand, Pe ≥ maxi∈I Z

(i)
n , where I denotes

the set of information positions and Z
(i)
n is a polynomial in Z(W ) with minimum degree which scales roughly as√

N 2. The scaling between the error probability and the Bhattacharyya parameter will be further explored in Section
V.

B. Proof of Theorem 7

Proof: Let Zn(W ) be the Bhattacharyya process associated to the channel W . Then, by following the same
procedure that gives (34), we have that, for any n0 ∈ N,

P
(
Zn0
≤ 2−n0

)
≥ I(W )− c5 2−n0/µ, (51)

where c5 is a constant which does not depend on n and it is given by c5 =
√

2 + 2/δ, with δ defined as in (32).
Let {Bn}n≥1 be a sequence of i.i.d. random variables with distribution Bernoulli

(
1
2

)
. Then, by using (10), it is

clear that, for n ≥ 1,

Zn0+n ≤
{
Z2
n0+n−1, if Bn = 1,

2Zn0+n−1, if Bn = 0.

1Theorem 7 contains as a particular case also the stronger result in [21], where the authors prove that the block length scales polynomially
fast with the inverse of the gap to capacity and, at the same time, the error probability is upper bounded by 2−N0.49

.
2To see this, note that the minimum degree of Z

(i)
n seen as a polynomial in Z(W ) is equal to the minimum distance of the code, which

scales roughly as
√
N according to Lemma 4 of [22].
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Therefore, by applying Lemma 22 of [16], we obtain that, for n1 ≥ 1,

P
(
Zn0+n1

≤ 2−2
∑n1
i=1Bi | Zn0

= x

)
≥ 1− c6x(1− log2 x), (52)

with c6 =
2

(
√

2− 1)2
.

Consequently, we have that

P
(
Zn0+n1

≤ 2−2
∑n1
i=1Bi

)
= P

(
Zn0
≤ 2−n0

)
· P
(
Zn0+n1

≤ 2−2
∑n1
i=1Bi | Zn0

≤ 2−n0

)
(a)
≥ P

(
Zn0
≤ 2−n0

)
·
(
1− c6 2−n0(1 + n0)

)
(b)
≥
(
I(W )− c5 2−n0/µ

)
·
(

1− c6

√
2

ln 2
2−n0/2

)
(c)
≥ I(W )−

(
c5 + c6

√
2

ln 2

)
2−n0/µ,

(53)

where (a) uses (52) and the fact that 1− c6x(1− log2 x) is decreasing in x for any x ≤ 2−n0 ≤ 1/2, (b) uses (51)

and that 1− c6 2−n0(1 + n0) ≥ 1− c6

√
2

ln 2
2−n0/2 for any n0 ∈ N, and (c) uses that µ > 2.

Let h2(x) = −x log2 x− (1− x) log2(1− x) denote the binary entropy function. Then, for any ε ∈ (0, 1/2)

P
(

2−2
∑n1
i=1Bi > 2−2n1ε

)
= P

(
n1∑
i=1

Bi < n1ε

)

≤ P

(
n1∑
i=1

Bi ≤ bn1εc

)

=

bn1εc∑
k=0

(
n1

k

)(
1

2

)n1

(a)
≤
(

1

2

)n1

2n1h2(bn1εc/n1)

(b)
≤ 2−n1(1−h2(ε)),

(54)

where (a) uses formula (1.59) of [9], and (b) we uses that h2(x) is increasing for any x ≤ 1/2.
Note that, for any two events A and B, P(A ∩ B) ≥ P(A) + P(B)− 1. Hence, by combining (53) and (54), we

obtain that

P
(
Zn0+n1

≤ 2−2n1ε
)
≥ I(W )−

(
c5 + c6

√
2

ln 2

)
2−n0/µ − 2−n1(1−h2(ε)). (55)

Let n ≥ 1. Set n1 = dγne, n0 = n − dγne, and ε = h
(−1)
2

(
γ(µ+1)−1

γµ

)
, where h(−1)

2 (·) is the inverse of h2(x) for

any x ∈ [0, 1/2]. Note that if γ ∈
(

1

1 + µ
, 1

)
, then ε ∈ (0, 1/2). Consequently, formula (55) can be rewritten as

P

(
Zn0+n1

≤ 2−2
nγ h

(−1)
2

(
γ(µ+1)−1

γµ

))
≥ I(W )− c7 2−n

1−γ
µ , (56)

with c7 = 1 +
√

2

(
c5 + c6

√
2

ln 2

)
.

Consider transmission of a polar code of block length N = 2n and rate R given by the RHS of (56). Then, the
result (49) holds with β3 = cµ7 .
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V. ABSENCE OF ERROR FLOORS

The discussion of Remark 10 in Section IV-A studies the dependency between the error probability and the
Bhattacharyya parameter and considers a setting in which, as the channel varies, the polar code used for transmission
changes accordingly. In this section, we consider a different scenario in which the polar code stays fixed as the channel
varies and we prove a result about the speed of decay of the error probability as a function of the Bhattacharyya
parameter of the channel. By doing so, we conclude that polar codes are not affected by error floors. More specifically,
Section V-A formalizes and discusses this result, and Section V-B contains the proof.

A. Main Result: Statement and Discussion

Let C be the polar code with information set I designed for transmission over the BMSC W ′ with Bhattacharyya
parameter Z(W ′). Then, the actual channel over which transmission takes place is the BMSC W with Bhattacharyya
parameter Z(W ). In the error floor regime, the code C is fixed and W varies, and we study the scaling between the
error probability under SC decoding and the Bhattacharyya parameter Z(W ).

The main result is presented in Theorem 11 and it relates the Bhattacharyya parameter Z(i)
n (W ) obtained by

polarizing W to the Bhattacharyya parameter Z(i)
n (W ′) at the same position obtained by polarizing W ′. From

this, in Corollary 12 we relate the sum of the Bhattacharyya parameters at the information positions obtained by
polarizing W , i.e., P̃e(W ) ,

∑
i∈I Z

(i)
n (W ), to the sum of Bhattacharyya parameters obtained by polarizing W ′, i.e.,

P̃e(W
′) ,

∑
i∈I Z

(i)
n (W ′). Note that the indices of the information positions are the same in both sums, since the

information set I is fixed. The proof of Theorem 11 is in Section V-B, and the proof of Corollary 12 easily follows.
Theorem 11 (Scaling of Z(i)

n (W )): Consider two BMSCs W and W ′ with Bhattacharyya parameter Z(W ) and
Z(W ′), respectively. For n ∈ N and i ∈ {1, · · · , 2n}, let Z(i)

n (W ) be the Bhattacharyya parameter of the channel
W

(i)
n obtained from W via channel polarization and let Z(i)

n (W ′) be similarly obtained from W ′. If Z(W ) ≤ Z(W ′)2,
then

Z(i)
n (W ) ≤ Z(i)

n (W ′)
log2 Z(W )
log2 Z(W ′) . (57)

If W and W ′ are BECs, then (57) holds if Z(W ) ≤ Z(W ′).
Corollary 12 (Scaling of P̃e(W )): Let W ′ be a BMSC with Bhattacharyya parameter Z(W ′) and let C be the polar

code of block length N = 2n and rate R for transmission over W ′. Denote by P̃e(W
′) the sum of the Bhattacharyya

parameters at the information positions obtained by polarizing W ′, i.e., P̃e(W
′) ,

∑
i∈I Z

(i)
n (W ′), where I is the

information set of the polar code C. Now, consider transmission over the BMSC W with Bhattacharyya parameter
Z(W ) using the polar code C and let P̃e(W ) be the sum of the Bhattacharyya parameters at the information positions
obtained by polarizing W , i.e., P̃e(W ) ,

∑
i∈I Z

(i)
n (W ). If Z(W ) ≤ Z(W ′)2, then

P̃e(W ) ≤ P̃e(W
′)

log2 Z(W )
log2 Z(W ′) . (58)

If W and W ′ are BECs, then (58) holds if Z(W ) ≤ Z(W ′).
Now, let us discuss how the results above imply that polar codes are not affected by error floors. Denote by Pe(W )

the error probability under SC decoding for transmission of C over W and recall from (12) that Pe(W ) ≤ P̃e(W ).
Hence, formula (58) implies that

Pe(W ) ≤ Z(W )
log2 P̃e(W ′)
log2 Z(W ′) . (59)

Note that the upper bound (50) on Pe comes from an identical upper bound on the sum of the Bhattacharyya
parameters P̃e. Thus, P̃e(W

′) scales roughly as Z(W ′)
√
N and, therefore, from (59) we conclude that Pe(W ) scales

roughly as Z(W )
√
N , which excludes the existence of an error floor region.

Recall that in the error floor regime we fix a polar code and we let the transmission channel vary. From the
discussion above, it follows that the dependency between the error probability and the Bhattacharyya parameter
of the channel is essentially the same as if we designed the polar code for the actual transmission channel. As a
result, in terms of this particular scaling, nothing is lost by considering a “mismatched” code. On the other hand,
considering a “mismatched” code yields a loss in rate. Indeed, if W and W ′ are BECs, then (2) holds with equality
and Z(W ) ≤ Z(W ′) implies that I(W ) ≥ I(W ′). If W and W ′ can be any BMSC, by using (2) and (3) we
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easily deduce that Z(W ) ≤ Z(W ′)2 implies I(W ) ≥ I(W ′). Consequently, the rate of a polar code for W ′ is s.t.
R < I(W ′), while by constructing a polar code for W we have the less restrictive condition R < I(W ).

Before proceeding with the proof of Theorem 11, let us make a brief remark concerning the case Z(W ) ∈(
Z(W ′)2, Z(W ′)

]
.

Remark 13 (The case Z(W ) ∈ (Z(W ′)2, Z(W ′)]): If W and W ′ are BECs, then (57) and (58) hold for any
Z(W ) ≤ Z(W ′), i.e., for the whole range of parameters of interest as we think to W as a “better” channel than W ′.
On the other hand, if W and W ′ can be any BMSC, we require that Z(W ) ≤ Z(W ′)2. If there is no additional
hypothesis on W and W ′, the main result (57) cannot hold in the case Z(W ) ∈ (Z(W ′)2, Z(W ′)]. Indeed, if
Z(W ) = Z(W ′), we can choose W and W ′ s.t. I(W ) < I(W ′). If I(W ) < I(W ′), then the number of indices i1
s.t. limn→∞ Z

(i1)
n (W ) = 0 is smaller than the number of indices i2 s.t. limn→∞ Z

(i2)
n (W ′) = 0. Hence, (57) cannot

hold for any i ∈ {1, · · · , 2n}. A natural additional hypothesis consists in assuming that W ′ is degraded with respect
to W , i.e., W � W ′. In this case, we can at least ensure that Z(i)

n (W ) ≤ Z
(i)
n (W ′). However, it is possible to find

W and W ′ s.t. (57) is violated for n = 1 when Z(W ) ∈ (Z(W ′)2, Z(W ′)]. The questions concerning whether the
bound (58) is still valid or what kind of looser bound holds when W �W ′ and Z(W ) ∈ (Z(W ′)2, Z(W ′)] remain
open.

B. Proof of Theorem 11

Proof: Assume that for any j ∈ {1, · · · , 2n−1} and for some η ∈ R+,

Z
(j)
n−1(W ) ≤ Z(j)

n−1(W ′)η. (60)

Then, let us study for what values of η we have that (60) implies that, for any i ∈ {1, · · · , 2n},

Z(i)
n (W ) ≤ Z(i)

n (W ′)η. (61)

Recall from Section II that (b
(i)
1 , · · · , b(i)n ) denotes the binary representation of the integer i − 1 over n bits. Let

i be an even integer and set i+ =
i

2
. Then, b(i)n = 1 and the binary representation of i+ − 1 over n − 1 bits is

(b
(i)
1 , · · · , b(i)n−1). Hence, the following chain of inequalities holds for any BMSC W :

Z(i)
n (W )

(a)
=
(
Z

(i+)
n−1(W )

)2

(b)
≤
(
Z

(i+)
n−1(W ′)

)2η

(c)
=
(
Z(i)
n (W ′)

)η
,

(62)

where (a) uses (8) and (6), (b) uses the assumption (60) with j = i+, and (c) uses again (8) and (6). Consequently,
if i is even, then (61) holds for any BMSC W without any restriction on η.

Let i be an odd integer and set i− =
i− 1

2
. Then, b(i)n = 0 and the binary representation of i−− 1 over n− 1 bits

is (b
(i)
1 , · · · , b(i)n−1). Hence, the following chain of inequalities holds for any BMSC W :

Z(i)
n (W )

(a)
≤ Z(i−)

n−1(W )
(

2− Z(i−)
n−1(W )

)
(b)
≤
(
Z

(i−)
n−1(W ′)

)η (
2−

(
Z

(i−)
n−1(W ′)

)η)
(c)
≤
(
Z

(i−)
n−1(W ′)

)η (
2−

(
Z

(i−)
n−1(W ′)

)2
)η/2

(d)
≤
(
Z(i)
n (W ′)

)η
,

(63)

where (a) uses (8) and (5), (b) uses the assumption (60) with j = i−, (c) uses that 2 − xη ≤ (2 − x2)η/2 for any
x ∈ [0, 1] if and only if η ≥ 2, and (d) uses again (8) and (5). Consequently, if i is odd, then (61) holds for any
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BMSC W provided that η ≥ 2. If W is a BEC, a less restrictive condition on η is necessary. Indeed, the following
chain of inequalities holds when W is a BEC:

Z(i)
n (W )

(a)
= Z

(i−)
n−1(W )

(
2− Z(i−)

n−1(W )
)

(b)
≤
(
Z

(i−)
n−1(W ′)

)η (
2−

(
Z

(i−)
n−1(W ′)

)η)
(c)
≤
(
Z

(i−)
n−1(W ′)

)η (
2− Z(i−)

n−1(W ′)
)η

(d)
=
(
Z(i)
n (W ′)

)η
,

(64)

where (a) uses (8) and (7), (b) uses the assumption (60) with j = i−, (c) uses that 2 − xη ≤ (2 − x)η for any
x ∈ [0, 1] if and only if η ≥ 1, and (d) uses again (8) and (7). Consequently, if i is odd and W is a BEC, then (61)
holds provided that η ≥ 1.

By combining (62) and (63), we have that if (60) holds for η ≥ 2 after n− 1 steps of polarization, then the same
relation holds for η ≥ 2 after n steps of polarization, namely, the inequality stays preserved after one more step of
polarization. Clearly, as the Bhattacharyya parameter is between 0 and 1, a smaller value of η gives a tighter bound.

Since Z(1)
0 (W ) = Z(W ) and Z(1)

0 (W ′) = Z(W ′), the smallest choice for η is
log2 Z(W )

log2 Z(W ′)
. The condition η ≥ 2 is

equivalent to Z(W ) ≤ Z(W ′)2 and, for the case of the BEC, the condition η ≥ 1 is equivalent to Z(W ) ≤ Z(W ′).
Eventually, the result (57) follows easily by induction.

VI. CONCLUDING REMARKS

This paper presents a unified view on the scaling of polar codes by studying the relation among the fundamental
parameters at play, i.e., the block length N , the rate R, the error probability under Successive Cancellation (SC)
decoding Pe, the capacity of the transmission channel I(W ) and its Bhattacharyya parameter Z(W ). Let us summarize
the main results contained in this work, along with open questions and directions for future research.

First of all, we prove a new upper bound on the scaling exponent for any BMSC W . The setting is the following:
we fix the error probability Pe and we study how the gap to capacity I(W ) − R scales with the block length N .

In particular, N is O
(

1

(I(W )−R)µ

)
, where µ is the so-called scaling exponent whose value depends on W , and

we show a better upper bound on µ valid for any BMSC W . The proof technique consists in relating the value
of µ to the sup of a function which fulfills certain constraints. Then, we upper bound the sup by constructing and
analyzing a suitable candidate function. Let us underline that the proposed bound is provable and that the analysis
of the algorithm is not affected by numerical errors, since all the computations can be reduced to computations
over integers and, therefore, they can be performed exactly. The proposed proof technique yields µ ≤ 4.714 for any
BMSC, which essentially improves by 1 the existing upper bound. If W is a BEC, we obtain µ ≤ 3.639, which
approaches the value previously computed with heuristic methods. These bounds can be slightly tightened simply by
increasing the number of samples used by the algorithm. Possibly the most interesting open question concerning the
performance of polar codes consists in improving the scaling exponent, i.e., the speed of decay of the gap to capacity,
by changing the construction of the code and by devising better decoding algorithms. One promising method consists
in constructing a code which interpolates between a polar and a Reed-Muller code and in using the MAP decoder
or even the low-complexity SCL decoder [23].

Secondly, we consider a moderate deviations regime and we prove a trade-off between the speed of decay of the
error probability and that of the gap to capacity. The setting is the following: we do not fix either the error probability
Pe or the gap to capacity I(W )−R, but we study how fast both Pe and I(W )−R go to 0 at the same time as functions

of the block length N . In particular, we show that, if the gap to capacity is s.t. N is O
(

1

(I(W )−R)µ/(1−γ)

)
for

γ ∈
(

1

1 + µ
, 1

)
, then the error probability Pe is O(N · 2−N

γ·h(−1)
2

(
γ(µ+1)−1

γµ

)
). Note that, since the exponents

µ

1− γ
and γ · h(−1)

2

(
γ(µ+1)−1

γµ

)
are both increasing in γ, if the error probability decays faster, then the gap to capacity
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decays slower. This trade-off recovers the existing result for the error exponent regime, but it does not match the new
bound on the scaling exponent. An interesting open question consists in finding the optimal trade-off which provides
the fastest possible decay of the error probability, given a certain speed of decay of the gap to capacity. Note that
this optimal trade-off would match the existing results for both the error exponent and the scaling exponent regimes.

Thirdly, we prove that polar codes are not affected by error floors. The setting is the following: we fix a polar code
of block length N and rate R designed for a channel W ′, we let the transmission channel W vary, and we study how
the error probability Pe(W ) scales with the Bhattacharyya parameter Z(W ) of the channel W . In particular, we show

that Pe(W ) ≤ Z(W )
log2 P̃e(W ′)
log2 Z(W ′) , where P̃e(W

′) denotes the sum of the Bhattacharyya parameters at the information

positions obtained by polarizing W ′. In addition,
log2 P̃e(W

′)

log2 Z(W ′)
scales roughly as

√
N , which is the best possible

scaling according to the error exponent regime. Hence, the scaling between Pe and Z(W ) would have been the same
even if we “matched” the code to the channel. However, when W and W ′ can be any BMSC, the result holds only
if Z(W ) ≤ Z(W ′)2. An interesting open question is to explore further the case Z(W ) ∈ (Z(W ′)2, Z(W ′)], in order
to see whether a similar but perhaps less tight bound still holds.

Finally, let us point out that the techniques described in this paper could be useful in the analysis of polar codes

with kernels larger than the 2 × 2 matrix
[

1 0
1 1

]
. The study of polar codes with general ` × ` kernels aims at

improving the scaling behavior. As concerns the error exponent, in [24] it is proved that, as ` goes large, the error
probability scales roughly as 2−N . As concerns the scaling exponent, in [25] it is observed that µ can be reduced
when ` ≥ 8 and in [26] the author provides evidence that the µ→ 2 as `→∞.

APPENDIX

A. Proof of Lemma 5

Proof: First of all, we upper bound P(Zn ∈ [pe 2−n, 1− pe 2−n]) as follows:

P
(
Zn ∈

[
pe 2−n, 1− pe 2−n

]) (a)
= P

(
(Zn(1− Zn))α ≥ (pe 2−n(1− pe 2−n))α

)
(b)
≤ E [(Zn(1− Zn))α]

(pe 2−n(1− pe 2−n))α

(c)
≤ c1 2−nρ

(pe 2−n(1− pe 2−n))α

(d)
≤ 2c1p

−α
e 2−n(ρ−α),

(65)

where (a) uses the concavity of the function f(x) = (x(1 − x))α, (b) follows from Markov inequality, (c) uses the
hypothesis E[(Zn(1− Zn))α] ≤ c1 2−nρ, and (d) uses that 1− pe 2−n ≥ 1

2 for any n ≥ 1.
Let us define

A = P
(
Zn ∈

[
0, pe 2−n

))
,

B = P
(
Zn ∈

[
pe 2−n, 1− pe 2−n

])
,

C = P
(
Zn ∈

(
1− pe 2−n, 1

])
,

(66)

and let A′, B′, and C ′ be the fraction of A, B, and C, respectively, that will go to 0 as n→∞. More formally,

A′ = lim inf
m→∞

P
(
Zn ∈

[
0, pe 2−n

)
, Zn+m ≤ 2−m

)
,

B′ = lim inf
m→∞

P
(
Zn ∈

[
pe 2−n, 1− pe 2−n

]
, Zn+m ≤ 2−m

)
,

C ′ = lim inf
m→∞

P
(
Zn ∈

(
1− pe 2−n, 1

]
, Zn+m ≤ 2−m

)
.

(67)

In (67) we simply require that Zn+m goes to 0 as m goes large, and we do not have any requirement on the speed at
which it does so. Hence, we could substitute 2−m with any other function which is O(2−2βm) for any β ∈ (0, 1/2),
see [13].

It is clear that
A′ +B′ + C ′ = lim inf

m→∞
P
(
Zn+m ≤ 2−m

)
= I(W ). (68)
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In addition, from (65), we have that
B′ ≤ B ≤ 2c1p

−α
e 2−n(ρ−α). (69)

In order to upper bound C ′, we proceed as follows:

C ′ = lim inf
m→∞

P
(
Zn+m ≤ 2−m | Zn ∈

(
1− pe 2−n, 1

])
· P
(
Zn ∈

(
1− pe 2−n, 1

])
≤ lim inf

m→∞
P
(
Zn+m ≤ 2−m | Zn ∈

(
1− pe 2−n, 1

])
.

(70)

The last term equals the capacity of a channel with Bhattacharyya parameter in the interval (1− pe 2−n, 1]. Using
(3), we obtain that

C ′ ≤
√

1− (1− pe 2−n)2 ≤
√

2pe 2−n. (71)

As a result, we have that

P
(
Zn ∈

[
0, pe 2−n

))
= A ≥ A′

(a)
= I(W )−B′ − C ′

(b)
≥ I(W )− 2c1p

−α
e 2−n(ρ−α) −

√
2pe 2−n,

(c)
≥ I(W )−

(√
2pe + 2c1p

−α
e

)
2−n(ρ−α),

where (a) uses (68), (b) uses (69) and (71) and (c) uses that ρ ≤ 1/2. This chain of inequalities implies the desired
result.

B. Proof of Lemma 6

Proof: Let α∗ = min(1/2, ρ1/ log2(4/3)). As E
[(
Zn(1− Zn)

)α] is decreasing in α, we can assume that α < α∗

without loss of generality. Since h(x) ≥ 0 for any x ∈ [0, 1] and Zn ∈ [0, 1] for any n ∈ N, we have that

E
[(
Zn(1− Zn)

)α] ≤ 1

δ
E [(1− δ)h(Zn) + δ(Zn(1− Zn))α] =

1

δ
E [g(Zn)] , (72)

with
g(x) = (1− δ)h(x) + δ(x(1− x))α. (73)

Let

Lg = sup
x∈(0,1),y∈[x

√
2−x2,2x−x2]

g(x2) + g(y)

2g(x)
.

Then, by definition (10) of the Bhattacharyya process Zn, we have that

E [g(Zn) | Zn−1] ≤ g(Zn−1)Lg.

Consequently, by induction, one can readily prove that

E [g(Zn)] ≤ (Lg)
n g(Z(W )) ≤ (Lg)

n, (74)

where the last inequality follows from the fact that g(x) ≤ 1 for x ∈ [0, 1].
Now, by combining (72) with (74), we obtain that

E[(Zn(1− Zn))α] ≤ 1

δ
(Lg)

n. (75)

Hence, to conclude the proof it remains to find an upper bound on Lg (i.e., to show that Lg ≤ 2−ρ1 + 2
√

2δc3). By
using (25), after some calculations, we have that

g(x2) + g(y)

2g(x)
≤

(1− δ)h(x)2−ρ1 +
δ

2

((
x2(1− x)(1 + x)

)α
+ (y(1− y))α

)
(1− δ)h(x) + δ(x(1− x))α

. (76)
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For any y ∈ [x
√

2− x2, 2x− x2], we get

y(1− y) ≤ x(2− x)(1− x
√

2− x2). (77)

In addition, for any x ∈ (0, 1),
1− x

√
2− x2 ≤ (1− x)4/3. (78)

In order to prove (78), one strategy is the following: elevate the LHS and the RHS to the third power, isolate on one
side the terms which multiply

√
2− x2, and square again the LHS and the RHS. In this way, we have that (78) is

equivalent to
(1− x)4(2 + 8x+ 3x2 + 4x3 − 4x4 − 4x5 − x6) ≥ 0,

which is clearly satisfied when x ∈ (0, 1).
Therefore, by combining (76), (77), and (78), we obtain that

g(x2) + g(y)

2g(x)
≤ (1− δ)h(x)2−ρ1 + δ(x(1− x))α t(x)

(1− δ)h(x) + δ(x(1− x))α
, (79)

with
t(x) =

1

2

((
x(1 + x)

)α
+
(
(2− x)(1− x)1/3

)α)
. (80)

First of all, we upper bound the expression on the RHS of (79) when x is small. Clearly, t(0) < 2−ρ1 and
t(1/2) > 2−ρ1 , since ρ1 ≤ 0.5 and α < α∗. In addition, some passages of calculus show that the second derivative
of t(x) is given by

α

2

(x(1 + x))α

x2(1 + x)2

(
−1− 2x− 2x2 + α(1 + 2x)2

)
+
α

18

(
(2− x)(1− x)1/3

)α
(2− 3x+ x2)2

(
−21 + 30x− 12x2 + α(5− 4x)2

)
.

Since α < 1/2, we have that

−1− 2x− 2x2 + α(1 + 2x)2 ≤ −1− 2x− 2x2 +
(1 + 2x)2

2
< 0,

−21 + 30x− 12x2 + α(5− 4x)2 ≤ −1− 2x− 2x2 +
(5− 4x)2

2
< 0.

(81)

Hence, t(x) is concave for any x ∈ (0, 1) and, therefore, there exist ε1(α), ε2(α) ∈ (0, 1) s.t.

t(x) ≤ 2−ρ1 , ∀x ∈ [0, ε1(α)] ∪ [1− ε2(α), 1]. (82)

Indeed, the precise values of ε1(α) and ε2(α) can be found from (28). By combining (79) with (82), we have that,
for any x ∈ [0, ε1(α)] ∪ [1− ε2(α), 1] and for any y ∈ [x

√
2− x2, 2x− x2],

g(x2) + g(y)

2g(x)
≤ 2−ρ1 . (83)

Then, we upper bound the expression on the RHS of (79) when x is not too small, namely, x ∈ (ε1(α), 1− ε2(α)):

(1− δ)h(x)2−ρ1 + δ(x(1− x))α t(x)

(1− δ)h(x) + δ(x(1− x))α

(a)
≤ (1− δ)h(x)2−ρ1 + δ(x(1− x))α2α

(1− δ)h(x) + δ(x(1− x))α

(b)
≤ 2−ρ1 + δ

2α

1− δ
(x(1− x))α

h(x)
(c)
≤ 2−ρ1 +

√
2

δ

1− δ
c3,

(84)

where (a) uses that t(x) ≤ 2α for any x ∈ (0, 1), (b) uses that h(x) ≥ 0 and (x(1 − x))α ≥ 0, and (c) uses that
α ≤ 1/2, and the definition of c3 in (27). By putting (83) and (84) together, we have that

Lg ≤ 2−ρ1 +
√

2
δ

1− δ
c3. (85)

By combining (75) and (85), the result for a general BMSC follows.
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Finally, consider the special case in which W is a BEC. Clearly, (72) still holds, and, by using the definition (11)
of the Bhattacharyya process Zn for the BEC, in analogy to (74), we obtain that

E[(Zn(1− Zn))α] ≤ 1

δ
(L′g)

n, (86)

where we define

L′g = sup
x∈(0,1)

g(x2) + g(2x− x2)

2g(x)
.

By using (29), after some calculations, we have that

g0(x2) + g0(2x− x2)

2g0(x)
≤ (1− δ)h(x)2−ρ1 + δ(x(1− x))α t′(x)

(1− δ)h(x) + δ(x(1− x))α
,

with
t′(x) =

1

2

((
x(1 + x)

)α
+
(
(2− x)(1− x)

)α)
.

Since (1− x) ≤ (1− x)1/3 for any x ∈ (0, 1), we obtain that t′(x) ≤ t(x) defined in (80), and, therefore, the result
for the BEC easily follows.

C. Sketch of the Proof of (50)

Eventually, let us briefly sketch how to prove the result stated in Remark 10. The dependency on the Bhattacharyya
parameter Z(W ) first appears in formula (74). Hence, under the hypothesis of Lemma 6, one can easily prove that

E [(Zn(1− Zn))α] ≤ g(Z(W ))

δ

(
2−ρ1 +

√
2

δ

1− δ
c3

)n
, (87)

where g(x) is defined in (73). Consequently, by following passages similar to those in the proof of Lemma 5 in
Appendix A and of Theorem 1 in Section III-B, we conclude that

P
(
Zn0
≤ Z(W ) · 2−2n0

)
≥ I(W )− c8 2−n0/µ, (88)

where c8 is a constant. Note that in formula (52) Zn0+n1
is upper bounded by a quantity which does not depend on

x. In order to make this dependency appear, we use passages similar to those of the proof of Lemma 22 in [16],
thus obtaining that

P
(
Zn0+n1

≤ x
1

2
·2
∑n1
i=1Bi | Zn0

= x

)
≥ 1− c9

√
x(1− log2 x), (89)

where c9 is a constant. By combining (88) and (89), the result follows using the arguments similar to those of the
proof of Theorem 7 in Section IV-B.
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