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Abstract

Projection pursuit is the search for interesting low-dimensional projections of high-dimensional data.

It optimizes projection indices, which increase with the interestingness of the projection image. Most

classical approaches equate interestingness with non-gaussianity. However, in cluster analysis one should

more be interested in departure from unimodality. The dip is an efficient nonparametric test measuring

the distance of distributions from the class of unimodal distributions with respect to the maximum norm.

In this paper, we demonstrate how the dip can be used in projection pursuit. We establish continuity and

differentiability properties and develop efficient algorithms to search for projections maximizing the dip

and extend them to find multiple interesting projections. Our algorithms are empirically evaluated on

several surrogate and real-world data sets.
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1 Introduction

Projection pursuit is the systematic search for interesting low-dimensional linear projections of high-

dimensional data. Dimension reduction is an important problem in exploratory data analysis and visualiza-

tion – the human ability for pattern recognition can only be exploited for very low dimensional data. Ma-

chine learning methods can also take advantage of this method since it provides a viable way to overcome

the “curse of dimensionality” problem [Bellman, 1961]. Projection pursuit also enables non-parametric

approaches towards regression and density estimation and provides a unifying framework for well-known

techniques in multivariate analysis, such as principal component analysis (PCA) or discriminatory tech-

niques such as linear discriminant analysis (LDA). An excellent introduction into theory and applications

of projection pursuit can be found in [Huber, 1985].
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Projection index Mixture of Pareto Normal 95 percent

Gaussians distribution distribution quantiles

Negative Entropy −1.23 −0.952 − log
√

2πe ≈ −1.42 -1.38

Friedman’s Index 0.0511 0.326 0 0.017

Dip 0.0516 0.0084 0 0.016

Table 1: Projection indices for samples from distributions. The sample further from normality is empha-

sized in bold.

Projection pursuit seeks to optimize functionals – projection indices – over projections of the data dis-

tribution. These indices are designed to respond tointerestingdistributions. Of course, the definition of

interestingness is strongly application-specific. In previous investigations of projection pursuit, interest-

ingness has mostly been equated with non-normality [Huber, 1985, Friedman, 1987]. In the case of PCA,

projections are sought which maximize the variance within their image, and in discriminant analysis, pro-

jections are selected which achieve an optimal separation of classified sample data. In his dissertation

Nason [1992] discusses the design and analysis of projection indices.

In the context of cluster analysis, one is interested in finding low-dimensional projections which pre-

serve the cluster structure in the projected data. For one-dimensional data, unimodal distributions per de-

finition have no such structure, thus the farther a distribution is from unimodality, the more likely it is to

bear clusters. Departure from unimodality implies departure from normality, but since the converse is not

true in general, it is appropriate for cluster analysis to define interestingness by multimodality.

To motivate the necessity of a projection index focused on multimodality consider the following exam-

ple: We generated two datasets of 500 samples each, one from a Pareto distribution (a = 2) and another

from a mixture of two unit-variance Gaussians with equal weight, centered at -2 and +2. Both data sets were

standardized to have unit variance and the results are depicted as violin plots in Figure 1. A commonly used

test for normality is the differential entropy of a (standardized) distribution, since the normal distribution

is the unique maximizer of this functional among all distributions of unit variance and zero mean. Interest-

ingly, the entropy of the mixture of Gaussians is much closer to the entropy of a standard normal distribu-

tion than the entropy of the unimodal Pareto distribution. Friedman’s index [Friedman, 1987], which was

specifically designed to measure departure from normality in the body of the distribution as discussed in

Section 2, is also much lower for the mixture of Gaussians than for the Pareto distribution. Thedip test for

unimodality [Hartigan & Hartigan, 1985] however significantly rejects the unimodality hypothesis for the

mixture of Gaussians and correctly classifies the sample from the Pareto distribution as unimodal. Table 1

presents the values of the projection indices along with the empirically determined 95 percent quantiles for

rejecting the non-normality or non-unimodality hypotheses.
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Figure 1: Unimodal distributions can be farther from normality than multimodal distributions.

In this paper, we propose to use the dip as a projection index in projection pursuit. We present an ef-

ficient algorithm to search for projections which maximize the dip. The algorithm is based on a gradient

ascent scheme, for which we establish necessary differentiability properties of the dip in Section 3. We then

demonstrate, how an efficient search algorithm can exploit these properties to find interesting projections

(Section 4). In Section 5 we extend the procedure to find higher dimensional projections by discussing two

approaches: The first method is based on an iterative orthogonal search, where one fixesk − 1 orthogonal

directions already found and optimizes the selection of thek-th orthogonal direction in the remaining sub-

space. The second method removes the interesting structure among each interesting direction, resulting in a

recursive procedure. In case of the dip, this means making the distribution unimodal along these directions.

To demonstrate the effectiveness of our method, we evaluate our algorithms on surrogate and real-world

data. Our experiments indicate that the dip is a highly robust projection index, successfully identifying

interesting directions, even in very high dimensional spaces, with a minimum of data preprocessing.

2 Projection Indices

This section presents a brief overview on common projection indices, and how the dip relates to them. We

argue that projection indices can be classified intoparametricindices measuring departure from a particular

parametric family of distributions, andnonparametricindices targeted at detecting multimodality.

A k-dimensional linear projectionfrom Rd to Rk is a linear mappingΨ represented by ak × d matrix

A of rankk. Ψ is anorthogonal projectionif A ·AT = Ik, whereIk is thek× k unit matrix. In projection

pursuit, in most cases very low-dimensional projections are sought, where low usually means 1, 2 or 3. A

projection indexis a functionalϕ : Ω→ R whereΩ ⊆ D(Rk) is a subset of the set of distribution functions

onRk. For one dimensional projections, we will occasionally use the termdirection. Furthermore when we

speak about properties of projections, we will in general refer to the distribution of the projected data (e.g.

“non-normal projections”).
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Parametric statistical tests assume the data is sampled from a known family of distributions, of which

the members can be selected by providing a finite set of parameters. On the contrary, non-parametric

tests assume the data follows an arbitrary distribution. Although they are in general more difficult to han-

dle analytically, they often appear to work in cases where the parametric approach fails (c.f. Cox et.al.

[Cox & Hinkley, 1974]). Since projection indices can be considered as statistical tests for interestingness,

these tests can be designed both as parametric and as non-parametric.

Parametric indices measuring departure from a distribution Two common tests for normality are

Shannon’s negative entropyand theFisher information. Both indices are affine invariant, and have the

normal distribution as unique minimizer, are differentiable with respect to the projection parameters and

can be efficiently computed. Details can be found in Huber [Huber, 1985].

Since projection indices are repeatedly evaluated in iterative procedures,Θ(N) operations can be ex-

pensive for very large data sets. Using summary statistics, the computational effort can be reduced to a con-

stant depending only on the dimension of the data. Jones et.al. [Jones & Sibson, 1987] propose a method

based on the unbiased estimators of the third and fourth outer product moment tensors. They develop their

index for one and two dimensions, and Nason [Nason, 1992] presents a generalization to three dimensions.

The time complexity per iteration for these methods isΘ(d4), hence for applications whered is low andN

is high, this index might be computationally more efficient than theΘ(N) alternatives. Unfortunately, the

cumulant approach is highly sensitive to outliers and heavy tails of the distributions [Friedman, 1987].

Friedman [Friedman, 1987] devised a projection index with the goal of computational efficiency and

reduced sensitivity for heavy tails and outliers. To address robustness problems of moment methods, Fried-

man proposes to first transform the projected data byR = 2Φ(X)− 1 whereΦ is the distribution function

of the standard normal, after whichR will be distributed uniformly on[−1, 1]. To measure departure from

normality, Friedman computes theL2 distance ofR to the uniform on[−1, 1]. He argues that by this trans-

formation, central departure from normality is emphasized relatively to tail departure. To allow efficient

computation, Friedman uses a moment approximation, expanding the index in terms of Legendre poly-

nomials. For optimization, Friedman proposes a combination of global search and gradient ascent. Since

Friedman requires spheredness of the data, he enforces the constraint‖a‖2 = 1 by using Lagrange multi-

pliers. A rotationally invariant two-dimensional version has been proposed by Morton [Morton, 1989].

Motivated by the observation that most non-normal projection indices tend to be sensitive to outliers

and favor distributions with heavy tails, Nason [Nason, 1992] proposed a projection index measuring the

departure from a Student-t distribution withn degrees of freedom.

Non-parametric indices for measuring multimodality For an e.c.d.f.Fn, thedepthof Fn is defined

as depth(Fn) = sup (min{Fn(x6)− Fn(x5), Fn(x2)− Fn(x1)} − (Fn(x4)− Fn(x3))) where thesup is
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taken over all pointsx1 ≤ x2 ≤ x3 ≤ x4 ≤ x5 ≤ x6 such thatx4 − x3 ≥ max(x2 − x1, x6 − x5)

(c.f. [Hartigan, 1977] ). This functional identifies three intervals such that the middle interval is the largest

and allocates relatively little mass compared to the outer intervals. Hartigan [Hartigan & Hartigan, 1985]

argues that the depth, considered as a statistical test for unimodality, can in general be expected to have

less power than the dip. Furthermore, it is of computational complexityΘ(n2) to compute the depth for

empirical distribution functions ofn points.

Wegman [Wegman, 1970] defines thelikelihood ratio L(Fn) for an e.c.d.f.Fn as L(Fn) =(
supf∈U1,C

∑n
i=1 log f(xi)

)
/

(
supf∈U2,C

∑n
i=1 log f(xi)

)
whereU1,C and U2,C respectively denote

the classes of one-dimensional unimodal and bimodal densities, constrained to be bounded byC. The

constraint on the densities is necessary, becausesupf∈U

∑n
k=1 log f(xi) = ∞ whereU is the class of

unimodal densities, independent from the selection ofxi. It is always possible to allocate the mass of the

unimodals up toε between two arbitrary data points. Hartigan [Hartigan & Hartigan, 1985] argues that the

likelihood ratio is less robust than the dip, and critically depends on the choice of the constraintC on the

densities.

Silverman [Silverman, 1981] constructs a test for multimodality, calledk-critical windows, based on

the following idea: A sample from a density with more thank modes will require more smoothing to

exhibit k or less modes in the density estimate than a sample from a density with exactlyk modes. Na-

son [Nason, 1992] argues that this test would not be an appropriate projection index since the analytical

properties, such as continuity of the index with respect to the data are not clear, and furthermore it would

be computationally expensive to compute. Additionally, it is not clear howk should be chosen, since the

number of clusters in the data will in general not be known in advance.

In designing their statistical test for multimodality, Müller et.al. [Müller & Sawitzki, 1991] note that

the analytical definition of a mode – being a local maximum – does not necessarily coincide with the

statistical idea of a “high probability point”. They define, study and estimate theexcess mass functionalof

the data density. Nason [Nason, 1992] argues that the use of this test in the context of projection pursuit is

again problematic due to the high computational complexity and the necessity for specifying an assumed

number of modesk. The advantage of this test is however that it can be defined in an arbitrary number of

dimensions.

Nason et.al. [Nason & Sibson, 1992] use a similar idea in constructing a projection index for mea-

suring multimodality. Their design is based on the number of the connected components of the function

graph, weighted by their respective volume. They argue that their index would work well in the context of

projection pursuit, since it is rotation- and scale-invariant and responds weakly to outliers and strongly to

clustering structure. However, the computation of this index is again computationally complex. The authors

suggest to use a finite element approximation to the density and identify the number of connected compo-

nents on the approximation grid. In addition to the computational complexity, their index again depends on
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the selection of a kernel width.

Thedip [Hartigan & Hartigan, 1985] measures the departure of arbitrary distribution functions from the

class of unimodal distribution functions with respect to the supremum norm. It is efficiently computable,

robust against outliers and location and scale-invariant. This index is the main focus of this paper and will

be explored in detail in the subsequent sections.

3 The dip statistic

The dip is a statistical test for unimodality [Hartigan & Hartigan, 1985], defined as the distance of empirical

distribution functions to the class of unimodal distribution functions with respect to the maximum norm.

Hartigan proposed an algorithm to compute the dip inO(n) operations on sorted data. Since the gradient

computations which we discuss in the following depend on quantities computed by the algorithm, it is

presented as Algorithm 1 for reference in Section 3.1.

Definition 3.1. A distribution functionF overR is calledunimodalwith modem (which is not necessarily

unique) ifF is convex in(−∞,m] and concave in[m,∞).

A unimodal distribution functionF has a densityf everywhere but at most one point.f is monotoni-

cally non-decreasing in(−∞,m) and monotonically non-increasing in(m,∞), wherem is the mode of

F . If F does not have a density inm′, thenm′ must be the unique mode ofF . If the mode is not unique, the

set of modes forms a closed interval[ml,mu], themodal intervalof F . In this case, the density is constant

within the modal interval and thus the distribution function restricted to[ml,mu] is a line segment. Let

D(Rk) be the class of distribution functions onRk, and we will useD to representD(R). We will use

B(Rk) to denote the class of bounded functions onRk, abbreviatingB(R) with B. D is a complete metric

space with the metricρ(F,G) := ‖F −G‖∞ := supx∈R |F (x)−G(x)| which is sometimes referred to as

Kolmogorov distance.

Definition 3.2. Denote byU ⊂ D the class of unimodal distribution functions overR. The dip of a

distribution functionF is defined to be D(F ) = ρ(F,U), where for a subsetC ⊂ D we defineρ(F, C) :=

infG∈C ρ(F,G).

The closedness ofU with respect toρ immediately implies that the dip measures departure from uni-

modality, i.e. D(F ) = 0 ⇔ F ∈ U. Furthermore, the observation that D(F1) ≤ D(F2) + ρ(F1, F2)

immediately proves that the mapping D: D → [0,∞) is continuous with respect to the uniform topology

induced byρ.

In fact, the dip is even Skorohod-continuous [Billingsley, 1968], a result which was established in

[Krause, 2004]:
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Theorem 3.3 ([Krause, 2004]). The mappingF 7→ D(F ) is continuous with respect to the Skorohod

topology onS.

In the context of projection pursuit, we only need continuity for empirical distribution functions. More

specifically, in Corollary 3.18 we will show that the dip is continuous a.e. with respect to the locations of

the masses. This result will be used later in order to show that the dip is also continuous a.e. with respect

to linear projections of the data, an important property of a projection index.

3.1 Computing the dip

Since we are interested to find projections of high-dimensional data which maximize the dip, we need

to be able to compute it at least for empirical distribution functions. In [Hartigan & Hartigan, 1985] a

geometric characterization of the elements of best approximation is given, which directly leads to an ef-

ficient algorithm for computing the dip. Thegreatest convex minorant(g.c.m.) ofF ∈ B in (−∞, a] is

x 7→ sup{G(x), G ∈ B convex in(−∞, a], G ≤ F}. The least concave majorant(l.c.m.) ofF ∈ B in

[a,∞) is x 7→ inf{L(x), L ∈ B concave in[a,∞), G ≥ F}. The following theorem by Hartigan uses

these concepts to characterize the elements of best-approximation:

Theorem 3.4([Hartigan & Hartigan, 1985]). LetF ∈ D be a distribution function. Then D(F ) = d only if

there exists a nondecreasing functionG such that, for somexL ≤ xU , (i) G is the greatest convex minorant

ofF+d in (−∞, xL), (ii) G has constant maximum slope in(xL, xU ), (iii) G is the least concave majorant

of F − d in [xU ,∞) and (iv)d = supx/∈(xL,xU ) |F (x)−G(x)| ≥ supx∈(xL,xU ) |F (x)−G(x)|.

As noted in [Hartigan & Hartigan, 1985], Theorem 3.4 suggests the following approach to computing

the dip: LetF be an empirical distribution function for the sorted samplesx1, . . . , xn. There aren(n−1)/2

possible candidates for the modal interval. Compute for each candidate[xi, xj ], i ≤ j the greatest convex

minorant ofF in (−∞, xi] and the least concave majorant ofF in [xj ,∞) and letdij be the maximum

distance ofFn to these computed curves. Then2D(Fn) is the minimum value ofdij for all candidate modal

intervals, for which the line segment from[xi, F (xi)+ 1
2dij ] to [xj , F (xj)− 1

2dij ] lies in the tube of width

dij centered around the graph ofF over the interval[xi, xj ].

Since the minorant and majorant computations can be done in advance inO(n), this algorithm is clearly

of orderO(n2). Key to efficiency is to reduce the number of candidate modal intervals. For lower endpoints

xi, only thosexj need to be considered, for which the least concave majorant ofF in [xi,∞) touchesF .

Hartigan presents the following algorithm:

Consider a taut string stretched between the points(x1, F (x1) + d) and (xn, F (xn) − d). Assume

the graphs ofF (x) + d andF (x) − d are solid and bound a tube of width2d. As d decreases, the string

bends to form a convex minorant fromx1 to xL and a concave majorant fromxU to xn. Both xL and
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xU move towards each other withd decreasing. D(F ) is the minimum value ofd such that any further

decrease forces the stretched string out of its unimodal shape. This idea is formalized in Algorithm 1. A

concrete implementation of orderO(n) is given in [Hartigan, 1985]. To see thatO(n) is possible, note that

the supremum computations in lines 1, 2 and 5 need to examine each index only once during all iterations

of thewhile-loop.

Algorithm 1: Computation of the dip statistic

Input : x1, . . . , xn sorted

Output : Dip D and modal interval[xL, xU ]
begin

xL ← x1;xU ← xn; d← 0;

while TRUEdo

compute the g.c.m.G and l.c.m.L for F in [xL, xU ];

compute the points of contactg1, . . . , gk of G andl1 . . . lm of L with F ;

1 dG ← supi |G(gi)− L(gi)|;

2 dL ← supi |G(li)− L(li)|;

if dG > dL then

3 assume thesup occurs atlj ≤ gi ≤ lj+1; x0
L ← gi;x0

U ← lj+1;

else

4 assume thesup occurs atgi ≤ lj ≤ gi+1; x0
L ← gi;x0

U ← lj ;

end

d← max(dG, dL); xU ← x0
U ;xL ← x0

L;

if d ≤ D then

D ← D
2 ; break;

else

5 D = max(D, supxL≤x≤x0
L
|G(x)− F (x)|, supx0

U≤x≤xU
|L(x)− F (x)|);

end
end

end

3.2 Differentiability of the dip

We already mentioned that the dip is a continuous functional on the space of empirical distribution func-

tions. This subsection will investigate the differentiability of the dip for this function class.

Definition 3.5. Let F denote the space of empirical distribution functions, i.e. those which can be repre-

sented as a finite sumF = 1
n

∑n
i=1 χ[xi,∞) of characteristic functions, wheren > 0, xi ≤ xj for i < j,

i, j ∈ {1, . . . , n}.
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Definition 3.6. Let I = {(x1, . . . , xn), x1 ≤ · · · ≤ xn, n ∈ N0}. The mapping j: I → F, (x1, . . . , xn) 7→
1
n

∑n
i=1 χ[xi,∞) is a mapping fromI into F with the conventionα0 = 0. If F = j(ξ), thenξ is called a

natural representationof F . If ξ = (x1, . . . , xn), we write|ξ| = n.

It can be seen that the mapping j is surjective, i.e. anyF ∈ F can be naturally represented. In the

following we will require the locations of the masses to be distinct. If this requirement is violated, we

cannot even expect continuity of the dip:

Example 3.7. Let ξ = (0, 0), and forε > 0 let δ = (−ε, ε). Then D(j(ξ)) = 0 and D(j(ξ + δ)) = 1
4 , no

matter how smallε has been chosen.

Definition 3.8. Let ξ ∈ I, ξ = (x1, . . . , xn). The difference quotient Qξ,i of the dip atξ with respect to

xi is Qξ,i(h) = (D(j(x1, . . . , xi + h, . . . , xn))−D(j(x1, . . . , xn))) /h. The dip ispartially differentiable

with respect toxi at ξ, if the limit limh→0 Qξ,i(h) exists. If the limit isd, we write ∂D
∂xi

(F ) = d. If only

the one-sided limits exist, we write∂D
∂+xi

if the limit exists forh → 0+ and ∂D
∂−xi

if the limit exists for

h→ 0−.

One approach towards proving local differentiability results is to analyze how Algorithm 1 computes

the dip. The only place where the estimate of the dip is updated is line 5. From the fact that the distance

betweenF and the g.c.m. or l.c.m. can be maximized only on the locations of the masses, and that the

g.c.m. and l.c.m. have piecewise linear structure, it is clear, that the dip is computed as vertical distance

between somexi and a line segment between somexj andxk.

Definition 3.9. Let F = j(x1, . . . , xn). The indexi is calledactive if for every ε > 0 there exists a

δx, |δx| < ε such that forF̂ = j(x1, . . . , xi + δx, . . . , xn, αn) it holds that D(F ) 6= D(F̂ ). The index

i is calledstrongly activeif there exists anε > 0 such that for allδx, |δx| < ε it holds that forF̂ =

j(x1, . . . , xi + δx, . . . , xn), D(F ) 6= D(F̂ ). The indexi is calledinactiveif there exists anε > 0 such that

for all δx, |δx| < ε it holds that forF̂ = j(x1, . . . , xi + δx, . . . , xn), D(F ) = D(F̂ ).

It can be seen that the dip cannot be differentiable with respect to an index which is neither inactive

nor strongly active. In the following, we will only consider natural representations of empirical distribu-

tion functions containing at least three indices. The definition of inactive indices immediately implies the

following lemma:

Lemma 3.10. Let F = j(ξ), and i an inactive index ofξ. Then D is partially differentiable atF with

respect toxi and ∂D
∂xi

(F ) = 0.

Definition 3.11. Let F = j(ξ). A touching triangleof ξ is a triple (i1, i2, i3) of indices ofξ such that

i1 ≤ i2 ≤ i3, i1 < i3 andxi1 andxi3 are touching points ofF and its greatest convex minorant or

least concave majorant, on(−∞, xi3 ] or [xi1 ,∞) respectively, depending on whether(xi2 ,
i2
n ) lies above

(computed in Line 3 of Algorithm 1) or below (Line 4) the line segment between(xi1 ,
i1
n ) and(xi3 ,

i3
n ).
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Figure 2: Height of the modal triangle

The casei1 = i2 or i2 = i3 is degenerate and might void some uniqueness statements valid for the

non-degenerate case. This does not affect the following proofs in any way and will not be considered in the

subsequent subsections for the sake of clarity.

Definition 3.12. LetF = j(ξ) and∆ = (i1, i2, i3) be a touching triangle ofξ. Then theheightof ∆ is

hξ(∆) =
1
N

∣∣∣∣i2 − i1 − xi2 − xi1

xi3 − xi1

(i3 − i1)
∣∣∣∣ +

1
N
. (1)

If additionallyhξ(∆) = 2D(F ), then∆ is calledmodal triangle.

Figure 2 visualizes the concept of the height of a touching triangle.The next lemma establishes the

existence of modal triangles for all empirical distribution functions with at least three indices. Its proof is

based on the computation of the dip in Algorithm 1.

Lemma 3.13. LetF = j(ξ). Theni is an active index ofξ only if it is part of a modal triangle(i1, i2, i3).

Furthermore,ξ has at least one modal triangle.

The following lemma establishes the relationship between touching and modal triangles. It essentially

states that the modal triangle is the second highest touching triangle.

Lemma 3.14. Let F = j(ξ), and Θ denote the set of touching triangles ofF . Then D(F ) =
1
2 min∆∈Θ

(
max∆̂∈Θ\{∆} hξ(∆̂)

)
with the convention thatmax(∅) = 0.

The next lemma presents sufficient conditions for partial differentiability of the dip with respect to the

location of the masses:

Lemma 3.15. LetF = j(ξ), ∆ = (i1, i2, i3) be the only modal triangle ofξ, and assume that the corner

i2 does not lie exactly on the line segment betweeni1 and i3. Then the dip is partially differentiable with
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respect toxi2 . If in addition i1 or i3 are strongly active, then the dip is additionally differentiable with

respect toxi1 or xi3 respectively.

Lemma 3.15 implies the following corollary about sufficient conditions for total differentiability:

Corollary 3.16. LetF = j(ξ), ∆ = (i1, i2, i3) be the only modal triangle ofξ, and assume that the corner

i2 does not lie exactly on the line segment betweeni1 and i3. Furthermore assume thati1, i2 and i3 are

strongly active. Then the dip is totally differentiable with respect toxi1 , xi2 andxi3 .

Even if the conditions of Lemma 3.15 are violated, we are guaranteed one-sided differentiability, which

is the main result of our analysis:

Theorem 3.17. The dip has one-sided partial derivatives, i.e. forF = j(ξ) there exists anMξ > 0 such

that for any indexi of ξ it holds that
∣∣∣ ∂D
∂±xi

(F )
∣∣∣ ≤ Mξ. If M : ξ → [0,∞) is the function assigning toξ

the infimum possible boundMξ, thenM is locally bounded onI.

Theorem 3.17 allows to prove the following Corollary on the continuity of the dip as a function of the

locations of masses.

Corollary 3.18. Let ξ ∈ I andε > 0. Then there exists aδ, 0 < δ < min{xi+1 − xi, i ∈ {1, . . . , n− 1}}

such that for everyδξ = (δx1 , . . . , δxn
) with ‖δξ‖∞ < δ it holds that|D(j(ξ))− D(j(ξ + δξ))| < ε.

Note that Corollary 3.18 only applies to empirical distribution functions where masses are not collo-

cated. It is straight-forward to generalize the results to the case of varying weights, e.g. for reasons of

robustness, but this is not done here for the sake of clarity. Details are presented in [Krause, 2004].

4 Multimodal Projection Pursuit

This section explains how the dip can be used to guide the search for multimodal projections. According

to the terminology established in Section 2, we investigate the use of the dip as a projection index. In

Section 4.1, an overview over the chosen approach is given and it is sketched how a local search can be

performed to find local maxima of the dip. Differentiability results required for this approach are proved

in Section 4.2. Details on algorithms are presented in Section 4.3, and Section 4.4 explains how multi-

dimensional projections can be chosen based on the (one-dimensional) dip.

4.1 Approach

In Section 3.2 it was shown that for empirical distribution functions, the one-sided partial derivatives with

respect to the natural representation exist. These results suggest that it is possible to increase the dip by ap-

propriately moving the masses of the empirical data. For one-dimensional projections of multi-dimensional
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data, the choice of the projection allows certain degrees of freedom regarding the positioning of the masses.

The key notion in Section 3.2 was the concept ofmodal trianglesas proposed in Definition 3.12. A modal

triangle is a triple of sample indices directly influencing the dip statistic, whose value is determined by

the height of the modal triangle. The height is a continuously differentiable function, although modifying

its parameters might cause the triangle’s modality to cease. In the context of linear projection pursuit, the

height can also be considered a piecewise differentiable function of theprojection parameters, keeping the

empirical data fixed. This idea leads to a gradient ascent method explained in detail in Section 4.2.

4.2 The gradient of the dip

One-dimensional projections ofd-dimensional data{x1, . . . , xN} ⊂ Rd can be specified by a single vector

a ∈ Rd and the standard scalar productyi = 〈a, xi〉 = aTxi for 1 ≤ i ≤ N . For fixed dataX ∈ RN×d,

its projectiona 7→ Xa can be considered as a linear function ina. From Section 3.2 we know that for

empirical distribution functionsF = j(ξ) it holds that2D(F ) = hξ(∆) where∆ is a modal triangle of

ξ which is guaranteed to exist. The analysis in Section 3.2 required that the locations of the masses were

distinct, otherwise the one-sided partial derivatives do not necessarily exist (c.f.Example 3.7).

Example 4.1. Consider the data setX consisting of two pointsx1 = (1, 0)T and x2 = (2, 0)T . Any

projection onto a unit vectora = (a1, a2) will mapx1 to a1 andx2 to 2a1. Thus ifa = (0, 1), both points

will be mapped onto the same image. Hence DX(a) = 0 if a is orthogonal to(1, 0)T and DX(a) = 1
4

otherwise.

Thus, even if all data points inX are distinct, two data points can be projected onto the same image. In

this case we cannot guarantee differentiability or even continuity of the dip with respect to the projection.

Despite this negative result, the search technique presented below appears to perform well both on surrogate

and empirical data.

Definition 4.2. Let X ∈ RN×d and denote byx1, . . . , xN the rows ofX. A vector a ∈ Rd is called

X-singular, if there exist1 ≤ i < j ≤ N such thatxi 6= xj and〈a, xi〉 = 〈a, xj〉.

It is clear that0 is X-singular for any non-trivialX. In the following we will always assume that the

data points ofX are all distinct.

Definition 4.3. LetX ∈ RN×d anda ∈ Rd. Let (y1, . . . , yN ) be the ordered sequence of the elements of

ψX(a) and letξX(a) := (y1, . . . , yN ) be the empirical distribution function of the projected dataψX(a).

Then denote by DX(a) := D(j(ξX(a))) the dip of the projection ofX with respect toa.

Utilizing the continuity established in Corollary 3.18, we arrive at the following continuity result:
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Figure 3: Dip elevation over a half-circle on the plane spanned by the two optimum dip axes from the

sphered mixture of 20 Gaussians sample.

Theorem 4.4. LetX ∈ RN×d. Then the mappinga 7→ DX(a) is continuous at all points ofRd which are

notX-singular.

Theorem 4.4 immediately implies that the dip is continuous almost everywhere, if the projections

are chosen randomly from any density on the unit sphere. Further continuity properties are described in

[Krause, 2004].

To implement a gradient ascent method, we need to compute the partial derivatives of the dip with

respect to the projection parameters. Let∆ = (i1, i2, i3) be the modal triangle ofξX(a). From Defini-

tion 3.12 we have that

hξX(a)(∆) =
1
N

∣∣∣∣i2 − i1 − aTβ

aT γ
(i3 − i1)

∣∣∣∣ +
1
N

(2)

using the abbreviationsβ = (β1, . . . , βd) := xi2−xi1 andγ = (γ1, . . . , γd) = xi3−xi1 . After computation

of the partial derivatives we arrive at the following result:

Theorem 4.5. LetX ∈ RN×d anda ∈ Rd notX-singular such thatξX(a) has exactly one modal triangle

∆ = (i1, i2, i3) such thati1, i2 andi3 are strongly active. Then DX is continuously differentiable ina with

the partial derivatives

∂DX

∂ai
(a) =

 − i3−i1
N · aia

T (βiγ−γiβ)
(aT γ)2

if η > 0
i3−i1

N · aia
T (βiγ−γiβ)
(aT γ)2

if η < 0

whereη = i2 − i1 − (i3 − i1)(aTβ)/(aT γ) andβ, γ as above.

Note that the caseaT γ = 0 can only occur ifa isX-singular. Figure 3 presents the change of the dip

statistic for the projection axes rotating on the plane spanned by the first two coordinate axes of the Mixture

of 20 Gaussians data set discussed in Section 6. This indicates that even for a highly clustered data set with

N = 985 samples, the dip changes very smoothly with changing projection direction.
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4.3 Search strategies

The differentiability considerations from Section 4.2 allow us to implement a gradient ascent algorithm.

Such an approach will most likely not find global but rather local maxima, which is a common problem in

multivariate analysis. However, there are various ways to avoid getting trapped in local maxima. The sim-

plest possibility is to do restarts with random initial values. More sophisticated methods include simulated

annealing and initialization with directions estimated from existing clustering results.

For the local search with random restarts, our algorithm picks the starting directiona uniformly at

random from the sphere. It then computes the gradient∇ of the dip, and performs a line search: It tries out

all step sizes1 through2·10−16, decreasing the step size by a factorγ of 2 per try, computingaγ := a+γ∇,

normalizing and choosing the step sizeaγ maximizing the dip.

4.4 A note on efficient sorting

In the context of projection pursuit for large samples, the requirement of Algorithm 1 to receive ordered

input in order to guaranteeO(n) performance becomes a problem. It is a well known fact that comparison

based sorting strategies have anΩ(n log n) lower bound time complexity [Heun, 2000], which is asymp-

totically slower than the linear time dip computation. To overcome this problem and guarantee linear time

computation of the dip, there are several possibilities. First it has to be noted that apparently the data only

has to be sorted anew if the change in the projection parameters is so large, that the order of the projected

data changes. Since linear projection is continuous, there is an upper bound for the parameter change below

which sorting anew is not necessary.

Lemma 4.6. Leta, δ ∈ Rd andxi ∈ Rd\{0}, εi = min{|aTxj−aTxi|, j ∈ {1, . . . , N}\{i}} for 1 ≤ i ≤

N . If ‖δ‖2 < εi

2‖xi‖2 for 1 ≤ i ≤ N and(aTx1, . . . , a
TxN ) is sorted, then((a+ δ)Tx1, . . . , (a+ δ)TxN )

is also sorted.

Lemma 4.6 provides a boundδ for which smaller changes do not disturb the sort order on the projected

data. It is clear thatδ can be computed in linear time once the data is initially sorted, since theεi are just

the minimum absolute difference to the immediate neighbors of theaTxi, and since the norms‖xi‖2 can

be pre-computed inO(d) time once and for all at the beginning of the projection pursuit.

Although this result can be used for optimizing the local search performance, apparently the data will

still have to be sorted anew from time to time. A way to keep the linear time performance of the dip

computation is to resort on using a non-comparison based sorting method. Commonly used algorithms

for sorting numbers in real time are forward and backward radix sort as well as radix sort with groups

[Heun, 2000]. These scale linearly with the number of samples and with the number of digits in the input

data, which can normally be considered as constant.
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5 Generalization to multiple dimensions

The literature on how to find several interesting one-dimensional projections [Huber, 1985] considers basi-

cally two approaches

1. Iterativemethods fix thek − 1 directions already found and then optimize among projections onto

thek-dimensional space spanned by the fixedk − 1 directions plus one additional direction. These

methods only give a nested sequence of subspaces instead of an ordered list of directions. This

technique is explained in Section 5.1.

2. Recursivemethods find the most interesting direction, remove the interesting structure along this

direction and iterate. Details on this technique are given in Section 5.2.

In this section, we will specialize these two approaches to the dip projection index.

5.1 Orthogonal directions

This section discusses the iterative approach on finding multi-dimensional orthogonal projections of high

dip. Our local search algorithm is used to compute an initial directiona1 ∈ RD. The local search algo-

rithm then finds another interesting projectiona2 for the data projected onto the orthogonal complement

of a1. This procedure is continued until the desired number of directions(a1, . . . , ad), d ≤ D, have been

computed.P = [a1, . . . , ad] is the desired multidimensional projection.

5.2 Unimodalization of the data

In [Friedman, 1987] a method for structure removal for non-normal projection pursuit is proposed. The

method renders the projection along the directions found normal. In the case of non-unimodal projection

pursuit, we substitute thenormalizationof the data byunimodalization. It is however desirable to modify

the data as little as possible. This suggests modifying the data such that the projection along the directions

found after the modification is as close as possible to the best fitting unimodal of the original projection.

The best fitting unimodal can be directly read off from the data structures used in Algorithm 1.

Unimodalization along directiona is done by computing the appropriate quantiles of the best-fitting

unimodal distributionG of j(ξX(a)). Then, the necessary displacementδ ∈ RN with respect to the original

one dimensional projection is computed. This effectively determines a monotone mappingτ : R→ R such

thatF ◦ τ = G. The unimodalized dataX ′ is then computed fromX byX ′ ← X + δ · aT .

The computation of the quantiles by evaluatingG−1 is very simple, since the best fitting unimodalG is

piecewise linear, and the appropriate piece can be found by simple index computations. Empirical evidence
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Figure 4: Effect of unimodalization

indicates that usually almost no additional multimodality is induced in directions which are non-orthogonal

to the direction of unimodalization.

5.3 Problems with a multidimensional generalization of the dip

In general it can be expected that higher-dimensional projections bear more information than those of

lower-dimension. These have the advantage that structure can be identified which lower-dimensional in-

dices are oblivious about (e.g. “holes” in the data, cf. [Huber, 1985]). There is however no agreement in

the literature on how unimodality should be generalized to multiple dimensions [Wells, 1978]. Hartigan

[Hartigan & Hartigan, 1985] suggests several ways to generalize the dip two multiple dimensions. One

possibility is to define the multidimensional dip as the maximum dip over all one-dimensional directions.

This idea however does not help for thesearchfor interesting multi-dimensional projections: If the dip is

defined this way, then no matter which subspace is chosen, the projection onto it is assigned the same dip

as long as it contains the direction of maximum dip with respect to the original data. Hence this criterion

cannot act as a guide for selecting interesting multi-dimensional projections. The two other linearizations

proposed are based on a minimum spanning tree on the data, but it is not clear if the continuity and differ-

entiability properties are preserved in this approach.

6 Experimental Results

This section provides empirical evidence about the performance of the proposed algorithms on several

surrogate and real-world data sets. These data sets are described and analyzed in detail in Sections 6.1 and

6.2.
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(a) RANDU triples projected on the first two dimensions
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(b) RANDU triples projected on the first two orthogonal direc-

tions optimizing the dip

Figure 5: RANDU planes sample data

6.1 Results on surrogate data

Surrogate data is an important tool in empirically evaluating projection pursuit techniques. Instead of us-

ing noisy real-world data, data is sampled from distributions which are “hand-designed” and thus well-

understood. We first evaluate the proposed algorithms on data generated by a well-known, poorly designed

random number generator. In another experiment we point out, how high variability within one variable of

the data can make it impossible to find clustering structure with the commonly used technique of Principal

Component Analysis. In our last surrogate data set experiment, we study a mixture of 20 Gaussian distrib-

ution in a 10 dimensional space. This experiment was designed to analyze how various projection indices

achieve cluster separation.

RANDU. RANDU is an infamous example of a poorly designed random number generator. It is based

on the recurrence relationxi+1 = axi mod m for a = 216 + 3 = 65539 andm = 231, and an arbi-

trary integer seedx0 > 0. It was employed in this form in the IBM SYSTEM/360 machines. Marsaglia

[Marsaglia, 1968] observed that fori ∈ N it holds that9xi−6xi+1+xi+2 ≡ 0 mod 231. Hence the triples

lie on planes,15 of which have nonempty intersection with the cube[1..231]3 containing the triples. Figure

5 (a) presents a scaled scatter plot obtained from1000 RANDU samples with seedx0 = 10000. Although

this plot appears to depict a sample of the uniform on the square, Figure 5 (b) shows the projection obtained

from the application of our local search algorithm.

A PCA trap. Occasionally, the projections of the data which explain most of the sample variance bear

little information. Figure 6 presents a scatter plot for the200 point sample obtained from the normal mixture

FT =
1
2
N

[−1
2
, 0]T ,

 0.22 0

0 32

 +
1
2
N

[
1
2
, 0]T ,

 0.22 0

0 32





6 EXPERIMENTAL RESULTS 18

0−2−4 2 4

−2

0

2

4

−4

Figure 6: Comparison of the direction which maximizes the dip and the first principal component

It can be seen that the projection along the dip axis provides a clear separation of the two clusters, whereas

the projection along the first principal component will conceal this structure. Nason [1992] refers to this

phenomenon asswitching point– for moment methods such as PCA, a single outlier can solely determine

the maximum of the projection index. Since the dip works on distributions instead of densities, it appears

to be more robust with respect to these issues.

Mixture of 20 Gaussians in [−1, 1]10. To empirically analyze how various projection indices achieve

cluster separation for a highly clustered, relatively low dimensional data set, a surrogate data set was created

as described in the following. The experimental data was sampled from a mixture of Gaussian distributions,

where the meansµ1, . . . , µ8 where sampled uniformly from the cube[−1, 1]10 in R10, and the square roots

of the diagonal entriesσi,j , 1 ≤ i ≤ 20, 1 ≤ j ≤ 10 of the diagonal covariance matrices where sampled

uniformly from the interval[ 1
10 ,

1
6 ] – all parameters were sampled in advance. The number of samples of

each component varied uniformly between40 and60.

Here and in the following, in addition to the iterative and recursive dip algorithms and PCA, three other

projection indices were used: Negative Entropy, Friedman’s index [Friedman, 1987] and Posse’s index, a

method based on theχ2 test [Posse, 1990]. Figure 7 visualizes the results. For each projection index, the

top scoring two-dimensional projection was used (or the two top-scoring one-dimensional projections were

combined).

For this data set, the non-robust sphering procedure lead to distortions, resulting in inferior results for all

projection indices based in on the sphered data Figure 7 (d), (e), (f). The very low within-class variance lead

to very good results of the simple PCA procedure (c). Both dip maximization procedures (a), (b) resulted

in highly structured projections – the typical segmentation of the data in the directions of the coordinate

axes can be perceived.
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Figure 7: Mixture of 20 Gaussians in[0, 1]10

6.2 Results on real-world data

In this section we present exploratory data analyses of three real-world data sets. In our analyses, we

compare the dip statistic with several other projection indices.

Human movement data. In [Krauseet al., 2003], a method for unsupervised and dynamic identifica-

tion of physiological and activity context was proposed. Their unsupervised machine learning algorithms

require dimension reduction techniques such as PCA. Although PCA worked reasonably well in their ap-

proach, it is interesting to compare their results with the application of the dip maximization procedure.

In their experiments, they used the SenseWear armband from BodyMedia Inc. to measure activity and

physiological sensory information.

In their motion classification experiment, several distinct kinds of movements were performed over a

period of about three minutes (1632 samples in total), in the following order: Walking, running, walking,

sitting, knee-bends, walking, waving his arms, walking, climbing up and down stairs, one stair a step. For

this experiment, only the raw sensor values of the armband’s accelerometers were used. The sampling rate

was set to8 Hz. On the sphered data, a non-windowed64 sample Fast Fourier Transform was computed,

individually for each axis. This128 dimensional data – of which only half the components are unique due

to aliasing effects – was then given as input the clustering algorithms described in [Krauseet al., 2003],

and to the iterative and recursive versions of the dip-maximizer.

Figure 8 presents the results of several dip projection pursuit algorithms. Again, the dip maximiza-

tion methods are less influenced by the variance in the sample data and appear to give robust clustering
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Figure 8: SenseWear accelerometer sample data

results. For the indices requiring sphered data, only the first ten principal components were used, which

explained more than 95% of the variance. In our experiments without preselecting these components, the

projection pursuit results could not be distinguished from noise. The projections obtained from the nega-

tive entropy, Friedman’s and Posse’s index (Figure 8 (d), (e), (f)) appear more structured than the results

obtained from PCA (c), but seem to be attracted more to heavy tailed marginals than the dip maximization

procedures. This experiment also shows that the dip maximization algorithms can operate well on very

high-dimensional data.

Iris data. We also analyzed the popular Iris benchmark data set from the UCI machine learning repos-

itory (c.f. Figure 9). For this four-dimensional data set, all projection indices achieved a clear separation

of the three classes Iris Setosa, Iris Versicolor and Iris Virginica. The most compact and well-separated

clusters were produced by the unimodalized dip – the only method not necessarily producing orthogonal

projections. This experiment shows that the relaxation of orthogonality for the selected projections can

result in more compactly clustered projections.

Pima Indians data. Additionally, we visualized the Pima Indians Diabetes benchmark data set from the

UCI machine learning repository (c.f. Figure 10). This data set is eight-dimensional, and contains data

for two classes of subjects – partitioned into whether the subjects tested positive for diabetes. The dip

maximization procedures detect two clusters in the orthogonal case and three clusters in the unimodalized

case. Again, the other projection indices prefer heavy tailed marginals to compactly clustered projections.

The projections identified using Posse’s index do not exhibit any clustering structure.
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Figure 9: Iris data set
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Figure 10: Pima Indians data set
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7 Conclusions

In this paper, we investigated the dip, a statistical test for unimodality, as a projection index in the context

of projection pursuit. We established continuity and differentiability properties of the dip as a functional

on the space of empirical distribution functions. These results were exploited for the design of a gradient

ascent based local search algorithm. To enable the search for multi-dimensional projections, two methods

– orthogonalization and unimodalization – were proposed. We furthermore presented extensive empirical

evidence that the dip is a viable projection index both for surrogate and real-world data. The dip does not

require sphered data, eliminating a highly non-robust preprocessing step. It is also insensitive to the oc-

currence of outliers and prefers compactly clustered projections to heavy tailed distributions. Compared

to classical indices such as PCA, negative entropy, Friedman’s and Posse’s index, the dip appears to pro-

vide comparable and in several cases superior performance. Combining their empirical performance with

attractive analytical and computational properties, we hope that our proposed methods provide a valuable

contribution to the field of exploratory data analysis.

Acknowledgements. Volkmar Liebscher and Andreas Krause were employed at GSF – National Re-

search Center for Environment and Health during part of this work.

A Proofs

Proof of Lemma 3.10.The definition of inactivity guarantees the existence of anε > 0 such that

Qξ,i(h1, h2) = 0 for |h1| ≤ ε and|h2| ≤ ε.

Proof of Lemma 3.14.This can be seen from the computation of the dip in Algorithm 1 – the active triangle

with maximum height determines the modal interval returned by the algorithm, the active triangle with

second largest height determines the dip, and thus must be modal.

Proof of Lemma 3.13.Sincei can only be active if there exists a local deformation ofi which changes the

dip, and since the dip can only change if the height of a modal triangle changes,i must participate in a

modal triangle. The existence of at least one triangle∆ such thathξ(∆) = 2D(j(ξ)) can be directly seen

from the computation of the dip in Algorithm 1 in line 5.

Proof of Lemma 3.15.If ∆ is the only modal triangle, then, by continuity, forxi2 there exists an

open neighborhoodO2 such that deformations within this environment render this situation unchanged,

i.e. ∆ remains the only modal triangle. Consider the mappingγ : R3 → R, (δxi1
, . . . , δxi3

) 7→

hξ+(0,...,δx1 ,...,δx3 ,...,0)(∆). From the construction it is clear thatγ is differentiable with respect toi2 in
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O2−x2 := {x : x+x2 ∈ O2}. If additionallyi1 or i3 are strongly active, then there exist also open neigh-

borhoodsO1 of xi1 orO3 of xi3 such that for perturbations within these environments,∆ remains the only

modal triangle ofξ andγ is differentiable with respect toi1 or i3 within O1 − x1 orO3 − x3 respectively.

The observation that D(j(ξ + (. . . , δxi1
, . . . ))) = 1

2γ(δxi1
, . . . ) within the respective environments proves

the claim.

Lemma A.1. Let F = j(ξ) and let i be an active index ofξ. Then there exists anε > 0 such that for

0 < δxi
< ε, δx = (0, . . . , 0, δxi

, 0, . . . ) it holds that the dip is partially differentiable at j(ξ + δx) with

respect to indexi. An analogous statement holds for−ε < δxi < 0.

Proof. From Lemma 3.13 we know thati is part of a modal triangle. Without loss of generality we only

consider the caseδxi > 0. If xi is perturbed a little,i can become either inactive or remain active. In the

first case, Lemma 3.10 guarantees differentiability of the dip. The key observation in the second case is that

there exists anε > 0 such that as soon asxi is moved by no more thanε, i remains part of only a single

modal triangle which can be seen by a basic geometry consideration. Furthermore,i becomes strongly

active. Thus Lemma 3.15 proves the claim.

Proof of Theorem 3.17.Again, the statement is trivial for inactive indices. Consider the case thati is active

and hence is part of a modal triangle. By adding a small positive or negative offset toxi, the member-

ship of i in modal triangles can change. Without loss of generality we consider the case of increasingxi.

Again there exists aδ > 0 such that for0 < δxi
< δ, i is either part of a single modal triangle, or in-

active. In the first case,i becomes strongly active. Lemma 3.15 can be used to compute the one-sided

partial derivative ∂D
∂+xi

and to show that it is locally bounded onI. Thus all one-sided partial deriva-

tives with respect to the locations of the masses exist, are locally bounded, andMξ can be chosen as

Mξ = max
{∣∣∣ ∂D

∂±xi
(F )

∣∣∣ , i ∈ {1, . . . , n}}. By construction,M(ξ) = Mξ holds and since the maximum is

taken over a finite number of locally bounded functions, it is clear thatM is locally bounded.

Proof of Corollary 3.18.From Theorem 3.17 it follows that for arbitraryξ, the dip is continuous with

respect to relocation of a single index within an open neighborhood aroundξ. Letδ1 be such that for|δx1 | ≤

δ1 andx1 +δx1 < x2 it holds that|D(j(ξ+(δx1 , 0, . . . , 0)))−D(j(ξ))| < ε
21 . Now let0 < δ2 ≤ δ1 be such

that for|δx2 | < δ2 it holds that|D(j(ξ + (δx1 , δx2 , 0 . . . , 0)))−D(j(ξ + (δx1 , 0, . . . , 0)))| < ε
22 regardless

of the choice ofδx1 which is possible due to a compactness argument using the local boundedness ofM(ξ)

from Theorem3.17. Proceeding in the same manner, we arrive at a monotonically decreasing sequence of

δk such thatδ2n

2 is the constantδ promised in the claim. The sequence of changes in dip converges, since

it is bounded by the geometric seriesε
∑∞

k=1
1
2k = ε.

Proof of Theorem 4.4.This is an immediate consequence of the observation that Corollary 3.18 applies to

all locations of masses generated by a projection which is notX-singular.
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Proof of Lemma 4.6.It is clear by the Cauchy-Schwarz inequality that|(a + δ)Txi − aTxi| = |δTxi| ≤

‖δ‖2‖xi‖2. Let i < j. Then(a + δ)Txj − (a + δ)Txi ≥ aTxj − aTxi − εj+εi

2 ≥ 0 sinceaTxj ≥ aTxi

andmax(εi, εj) ≤ (aTxj − aTxi) per definition.
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