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Abstract

We consider the problem of deploying sensors in a large water distribution net-

work, in order to detect the malicious introduction of contaminants. We show that

a large class of realistic objective functions – such as reduction of detection time and

the population protected from consuming contaminated water – exhibit an important

diminishing returns effect called submodularity. We exploit the submodularity of these

objectives in order to design efficient placement algorithms with provable performance

guarantees. Our algorithms do not rely on mixed integer programming, and scale well

to networks of arbitrary size. The problem instances considered in our approach are

orders of magnitude (a factor of 72) larger than the largest problems solved in the

literature. We show how our method can be extended to multicriteria optimization,
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selecting placements robust to sensor failures and optimizing minimax criteria. We pro-

vide extensive empirical evidence on the effectiveness of our method on two benchmark

distribution networks, and an actual drinking water distribution system of greater than

21,000 nodes.

Keywords: Water distribution networks, contamination detection, optimization, al-

gorithms.

Introduction

Accidental or malicious introduction of a contaminant into water distribution systems

could potentially have severe health effects on a population, as well as social and economic

impacts. Such intrusions can potentially be detected by deploying a number of sensing

devices into the water distribution system. Instrumenting every node of the network is

prohibitively expensive, and hence the optimal placement of the sensing devices becomes a

crucial issue. For large water distribution networks with tens of thousands up to millions

of nodes, solving this optimization becomes a difficult computational challenge.

To catalyze the development of new approaches, the Battle of Water Sensor Networks

(BWSN) challenge was organized by Ostfeld et.al. during the Water Distribution Systems

Analysis Symposium 2006. In this challenge, sensor placements were to be designed for

two realistic water distribution networks, and several intrusion settings as formalized in

Ostfeld et al. (2008). The contributed sensor placements were evaluated with respect to

four realistic objective functions – the time until an intrusion is detected (called Z1), the

expected population affected by an intrusion (Z2), the expected amount of contaminated

water consumed (Z3) and likelihood of detection (Z4).
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In this paper, we present our contribution to this challenge, along with several exten-

sions. Our approach is based on the key observation that the benefit of placing sensors,

evaluated according to the BWSN objectives, satisfies submodularity, an intuitive dimin-

ishing returns property. We use this property to develop fast algorithms with provable

guarantees which can handle all settings defined in BWSN, and actually scale far beyond

the problem instances defined in this challenge. The main advantages of our approach

include:

• A highly efficient algorithm, which scales to networks of tens of thousands of nodes

and beyond, and to millions of possible intrusion scenarios.

• We prove rigorous theoretical worst-case bounds about the performance of our al-

gorithm: The solutions produced are guaranteed to be within 63% of the optimal

solution, within computational time proportional to the number of nodes and sce-

narios considered.

• We can also compute online (problem instance dependent) bounds that show that

our solutions are usually within 95% of the optimal solution. These online bounds

can be applied to the sensor placements returned by any algorithm for BWSN.

• Our method naturally extends to the multicriterion optimization setting, and can

optimize both average case (where intrusions are selected at random) and worst case

placement scores (where intrusions are adversarially chosen after the sensors have

been deployed).

• Using our preprocessing, we can exhaustively simulate all 3.6 million intrusion sce-

narios defined for the large BWSN network, and include them in our optimization.

The problem instances considered in our approach are a factor of 72 larger than
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the largest problem instances reported in the literature, including those reported by

others in the BWSN competition.

• At BWSN, our approach obtained the highest number of non-dominated solutions.

Related work

A large number of approaches have been proposed for optimizing water sensor networks

(c.f., Berry et al. 2006b, Berry et al. 2005, Kessler et al. 1998, Kumar et al. 1997, Watson

et al. 2004, Ostfeld and Salomons 2006, Wu and Walski 2006, Dorini et al. 2006, Guan

et al. 2006, Berry et al. 2006a, Huang et al. 2006, Preis and Ostfeld 2006). Berry et al.

(2006b) present a concise overview of the prior literature on optimizing sensor networks for

contaminant detection. Most of these approaches are only applicable to small networks up

to approximately 500 nodes. Many approaches are based on heuristics that cannot provide

provable performance guarantees of the solutions.

Closest to ours is an approach by Berry et al. (2006b), who equate the placement

problem with a p-median problem. They consider two algorithms, one based on Mixed

Integer Programming (MIP), and a fast heuristic (GRASP). The MIP approach has high

memory consumption, so certain approximations had to be made to solve the BWSN

challenge on current hardware (like a coarser water reporting step, and reduced number

of contamination scenarios). Furthermore, due to the problem complexity, the approach

cannot be expected to find the optimal solution in polynomial time in general. The GRASP

heuristic, while faster, does not provide offline guarantees on the solution quality (although

LP-relaxations are used to get online bounds).

In contrast, our approach can handle networks of the same size (greater than 12,000

nodes), without requiring the same approximations (e.g., allowing 288 intrusion time steps

4



per node compared to 4, and 5 minute water quality reporting step compared to 1 hour on

comparable hardware). By exploiting the concept of submodularity, our approach can com-

pute online bounds on the quality of the sensor network deployment (in our experiments,

usually scores provably within 95% of the optimal score where achieved). Additionally, our

approach is the first efficient approximation algorithm for the water network placement

problem: It is guaranteed to efficiently provide solutions which are at least within 63% of

the optimal solution.

Sensor placement objectives

In order to optimize sensor placements, we need to quantify the benefit of a sensor network

deployment in reducing the adverse effects of malicious introductions of contaminants into

the municipal water network. Several quantitative criteria have been proposed in the

past, including volume of contaminated water consumed (Kessler et al., 1998), population

affected (Berry et al., 2005) and the time to detection (Kumar et al., 1997). In our work, as a

case study, we use criteria similar to those defined by the Battle of Water Sensor Networks

challenge (Ostfeld et al., 2008). These criteria include the expected time to detect an

intrusion (Z1), the expected total population affected by an intrusion prior to detection

(Z2), the expected total amount of contaminated water consumed prior to detection (Z3),

the likelihood of detecting an intrusion (Z4). Our approach however can handle a large

class of realistic criteria beyond those defined in BWSN.

An intrusion is defined by the introduction of a contaminant at a specified point in

time, for a certain attack duration, at a certain intrusion node. To describe our approach

more formally, consider a set of possible intrusion scenarios I. Each scenario i ∈ I is
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parameterized by intrusion node, time and duration as defined above. We assume there is

a probability distribution P over the possible scenarios, i.e., P (i) is the probability that

scenario i occurs. In our experiments we use the uniform distribution, but our approach

can handle arbitrary parametrization of the scenario likelihood. We also assume that there

is a set of possible sensor locations S we can choose from (e.g., all junctions in the network).

A sensor placement A ⊆ S is a subset of all possible sensor locations. With each sensor

s ∈ S we associate a nonnegative cost c(s). The cost of a placement c(A) is simply the sum

of the cost of the sensors, i.e., c(A) =
∑

s∈A c(s). For each scenario i ∈ I and sensor s ∈ S

we define the detection time T (s, i) as the time it takes for sensor s to detect the intrusion

defined by scenario i. If sensor s never detects intrusion i, we set T (s, i) =∞. We can define

the detection time for a sensor placement A and scenario i as T (A, i) = mins∈A T (s, i).

For each scenario i, we need to specify the effect of detecting scenario i at time t. To do

this, let πi be a penalty function, i.e., πi(t) is the penalty incurred by detecting intrusion

scenario i at time t (t =∞ is allowed). Our notion of penalties implies that upon detection,

immediate action is taken and no more contaminated water is consumed. This notion can

be easily relaxed, e.g., handling the case where the response is delayed by a fixed amount

of time. Intuitively, the later an attack is detected, the worse. Therefore we require πi

to be nondecreasing, i.e, for times t < t′ and an arbitrary intrusion i, it must hold that

πi(t) ≤ πi(t′). For example, πi(t) can measure the expected amount of population affected

by intrusion i at time t. πi(∞) is the maximum penalty incurred if the scenario i is not

detected at all. Using the concept of penalties, we can define the penalty reduction for

an attack scenario i as R(A, i) = πi(∞) − πi(T (A, i)). Since we do not know where the

attack will be, but have a probability distribution over possible scenarios, we optimize the
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expected penalty reduction R(A) of placement A given by R(A) =
∑

i∈I P (i)R(A, i). Note

that any placement maximizing the expected penalty reduction equivalently minimizes the

expected penalty
∑

i P (i)πi(T (A, i)).

Example. All four objective functions described above can be written in this form, with

appropriate choice of penalty functions. For example, if we want to minimize the time to

detection, we would choose πi(t) = t, and πi(∞) = tmax, where tmax is a large number, e.g.,

the number of time steps until the end of the simulation. The expected penalty reduction

R(A) is then the reduction in detection time, averaged over all scenarios. If we want to

model more complex penalties, such as the amount of contaminated water consumed, we

would, for scenario i, run an EPANET 2.0 simulation, and, for each simulation timestep

t, compute the contaminant concentration at every node. Multiplying with the demand at

every node and summing up, we would get the penalty πi(t). For πi(∞), we can choose the

amount of contaminant consumed at the end of the simulation. In Leskovec et al. (2007),

we describe how our formalism applies to a very different application domain, and how it

can be used to select informative weblogs on the Internet.

Properties of the penalty reduction. The expected penalty reduction has several

intuitive properties. It is nonnegative (i.e., R(A) ≥ 0) for all placements A, and we

generally want to maximize the penalty reduction. R(∅) = 0, i.e., if we place no sensors, the

penalty reduction is 0. We can also see that R is nondecreasing, i.e., for subsets A ⊆ B ⊆ S,

it holds that R(A) ≤ R(B), hence the penalty can only decrease if we place more sensors.

There is an additional intuitive property: If we add a sensor to a large deployment, we

would expect less penalty reduction than if we add the sensor to a small deployment.

This diminishing returns is formalized by the combinatorial concept of submodularity (c.f.,
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Nemhauser et al. 1978): A set function F is called submodular if for all subsets A ⊆ B ⊆ S

and elements s ∈ S it holds that F (A ∪ {s})− F (A) ≥ F (B ∪ {s})− F (B), i.e., adding s

to the smaller set A helps more than adding it to the larger set B. In fact, we can prove

that all penalty reduction functions as defined above are submodular:

Theorem 1. The penalty reduction function R is submodular.

The proof of this Theorem is given in the Appendix. Thus, the optimization of sensor

placements for water distribution networks can be cast as a submodular optimization prob-

lem. The penalty reduction objective R is similar to one of the examples of submodular

functions described by Nemhauser et al. (1978). Our objective, however, preserves addi-

tional problem structure (sparsity) which we exploit in our implementation, and which we

crucially depend on to solve large problem instances. We want to maximize the penalty re-

duction, subject to a constraint on the cost of the placement, i.e., solve maxA:c(A)≤B R(A).

Hereby, B is a budget we can spend for deploying sensors. Note that R(A) could be dif-

ficult to compute for any given placement, as for large networks we have to perform a

large number of simulations in order to accurately evaluate R(A). We also have to search

through an exponential number of possible placements A, which is not practical for large

real-world networks.

One can show that the optimization problem is computationally complex (NP-hard),

such that, even though in certain cases the optimal solution can be found efficiently (Berry

et al., 2006a), in general we cannot expect to find the optimal solution in reasonable time

(Garey and Johnson, 2003). A key result of our work is that by connecting monitoring

water networks and submodular function maximization, we can exploit existing algorithms

for optimizing submodular functions, leading to strong guarantees about the quality of the
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obtained solutions.

Multicriteria optimization

Often, we are interested in trading off several objective functions, for example, the affected

population and the detection likelihood. In this case, we have several objective functions

R1, . . . , Rm. In general, we cannot expect to find a placement that outperforms all other

placements in all criteria. Hence we will be interested in Pareto-optimal placements: A

placement A is called Pareto-optimal if it is not dominated, i.e., if there does not exist

another placement B such that Rj(B) ≥ Rj(A) for all 1 ≤ j ≤ m, whereby at least one

inequality is strict (i.e., B is better than A in at least one criterion, and at least as good in

all the others). In order to find Pareto-optimal placements, one can use scalarization (Boyd

and Vandenberghe, 2004). Let λ1, . . . , λm be positive real numbers. Then the solution to

the problem maxA
∑

j λjRj(A), subject to c(A) ≤ B is Pareto optimal. Different choices

of the weights λj will give us different Pareto optimal solutions. In fact, since nonnegative

linear combinations of submodular functions are submodular, the new objective R(A) =∑
j λjRj(A) is again submodular. Hence, solutions obtained by scalarization provide us

with rigorous bounds on the location of the true Pareto optimal surface. To facilitate

comparison and simplify the interpretation of the weights λi, we normalize the Ri. Let

π̄j =
∑

i∈I P (i)π(j)
i (∞), i.e., π̄j is the average penalty incurred for not detecting any

scenario. Then R′
j(A) = Rj(A)/π̄j is normalized between 0 and 1, where the optimum, 1,

is attained if all intrusions are detected early enough such that no penalty is incurred for

any scenario.
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Algorithms for optimization

Above, we have shown that a large class of important sensor placement objectives (reduc-

tion in detection time and population affected, etc.) is submodular and nondecreasing.

Let us first consider the case where each sensor has equal cost, and we can place k sensors.

There are
(|S|

k

)
possible placements, in general far too many to be searched exhaustively.

For this reason, many heuristic approaches have been developed, which try to find good

solutions through a search procedure (e.g., genetic algorithms (Guan et al., 2006; Ostfeld

and Salomons, 2004; Wu and Walski, 2006; Preis and Ostfeld, 2006), cross-entropy selec-

tion (Dorini et al., 2006), predator-prey heuristics (Gueli, 2006), etc.). We are not aware

of any existing method that can provide provable guarantees about the performance of the

search procedure. The only exception are the mixed integer programming solutions (c.f.,

(Berry et al., 2005, 2006a; Propato and Piller, 2006)), which provide bounds (or compute

the optimal solution), but which do not have any runtime guarantees. Since sensor de-

ployments are expensive, we want to find an optimization procedure, which finds provably

near-optimal sensor placements. In the following, we present several algorithms that have

such strong theoretical guarantees.

The greedy algorithm

A natural approach to finding approximate solutions is the greedy algorithm: This algo-

rithm starts with the empty placement, A = ∅, and proceeds iteratively. At the j-th

round, it selects the sensor s = argmaxs∈S R(A ∪ {s}) − R(A), i.e., the sensor which will

decrease the expected penalty the most, and adds it to the current set, A ← A ∪ {s}.

Perhaps surprisingly, a fundamental result by Nemhauser et al. (1978) shows that this in-
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tuitive procedure is near-optimal for the class of nondecreasing submodular functions: The

greedy algorithm always picks a set AG such that R(AG) ≥ (1−1/e)R(A∗), where A∗ is the

optimal placement of k sensors. Hence, the greedy solutions achieve a penalty reduction of

at least 1 − 1/e ≈ 63% times the optimal penalty reduction over all placements of size k.

The greedy algorithm has been considered previously by Uber et al. (2004), albeit without

providing theoretical guarantees. The running time of the algorithm is proportional to the

number of locations |S|, the number of sensors to be placed k and the time Teval it takes

to evaluate R(A) for any placement A. More formally, the running time is O(k · |S| ·Teval).

Location-specific placement costs

There are many realistic scenarios in which different sensor locations might have a different

cost. For example, certain locations in the network might be more expensive to instrument

than others because they are less accessible. We might also have several sensor models to

choose from, e.g., a high cost-high accuracy sensor, and a low-cost low-accuracy sensor.

When sensing locations can have different costs, the simple greedy algorithm does not have

theoretical quality guarantees. However, a slightly more complex algorithm, combining the

greedy algorithm with partial enumeration, also achieves a 1−1/e approximation guarantee

by exploiting submodularity (Sviridenko, 2004; Krause and Guestrin, 2005).

Online bounds

The 63% of the optimal bound on the greedy algorithm is an offline bound, i.e., we guarantee

this performance even before running the algorithm. In addition, the submodularity of the

penalty reduction R allows us to compute online bounds on the quality of our solution,

i.e., once we obtain a solution, we can provide an often much tighter bound on its quality.
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These online bounds apply to the solution obtained by the greedy algorithm, or by any

other algorithm for optimizing sensor placements. Let A be a solution, and for each sensor

location s which is not in A, let δs = R(A ∪ {s}) − R(A) be the improvement in penalty

reduction we would get by adding a sensor at location s. Assume we want to place k

sensors. Let s1, . . . , sk be the k locations for which δs is largest. Then it holds that

R(A∗) ≤ R(A) +
∑k

j=1 δsj . This bound directly follows from the submodularity of R,

since R(A∗) ≤ R(A ∪A∗) ≤ R(A) +
∑

s∈A∗ δs ≤ R(A) +
∑k

j=1 δsj , and it allows us to get

guarantees about arbitrary placements A.

Mixed integer programming

The submodularity of R also allows us to adopt a mixed-integer programming approach

developed by Nemhauser and Wolsey (1981). The mixed integer program (MIP) is given

by:

max η;

η ≤ R(B) +
∑

si∈S\B

αi[R(B ∪ si)−R(B)], ∀B ⊆ S; (1)∑
i

αi ≤ k, ∀i; (2)

αi ∈ {0, 1}, ∀i;

where αi = 1 means that location si should be selected. Note that this MIP can also handle

the case in which each location can have a different cost, by replacing the constraint (2)

by
∑

i αici ≤ B, where B is the budget and ci = c(si).

Unfortunately, this MIP has exponentially many constraints of type (1). Nemhauser

and Wolsey (1981) proposed the following constraint generation algorithm: Let ᾱA denote

an assignment to α1, . . . , αn such that αi = 1 iff si ∈ A. Starting with no constraints of

type (1), the MIP is solved, and one checks whether the current solution (η, ᾱB) satisfies
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η ≤ R(B)). If the solution does not, a violated constraint has been found. Since solving

individual MIP instances (even with only a small number of constraints) is a complex (NP-

hard) problem, we need to resort to search heuristics such as Branch and Bound and Cut

during the constraint generation process.

Improving solutions through search

If solving the optimization problem using mixed integer programming is intractable, we

can run the greedy algorithm to find a (provably) good initial solution, and improve on

this solution using local search. Any existing sensor placement technique can be used here.

In our experiments, we used a variant of simulated annealing (Kirkpatrick et al., 1983).

This stochastic approach, in each round, proposes an exchange of a selected location s ∈ A

and an unselected location s′ /∈ A. The algorithm then computes the difference in scores

δ = R(A∪{s′}\{s})−R(A). If this difference is positive (i.e., the new solution has a higher

score), the proposal is accepted. If the difference is negative, the proposal is accepted with

probability exp(δ/ϑt), where ϑt is the annealing temperature at round t. We use a harmonic

annealing schedule, where ϑt = C/t, for some constant C. Intuitively, large temperatures

allow exploring new sensor locations, which might locally decrease the score R, but might

lead out of a local minimum. The more rounds the algorithm goes through, the smaller

ϑt gets, and eventually, proposals that decrease the score become very unlikely. Here, our

online bounds can again be used to provide bounds on the quality of the solution obtained.

A note on minimizing the expected penalty

While maximizing the expected penalty reduction is equivalent to minimizing the expected

penalty, the (1 − 1/e) offline guarantee does not transfer from one setting to the other.
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More formally, we have the following result:

Theorem 2. Unless P=NP, no polynomial time algorithm can give any offline approxi-

mation guarantee on the penalty minimization problem.

It is widely believed that P is not equal to NP (Garey and Johnson, 2003). Thus it

is unlikely that any algorithm can be developed to efficiently minimize penalties directly,

further motivating our focus on penalty reduction maximization. Nonetheless, any online

bounds we obtain for the penalty reduction case can be turned into bounds for the penalty

minimization problem. For example, suppose we have an approximate solution A′, and

that the optimal penalty reduction OPT is upper-bounded by R(A′) ≤ OPT ≤ M for

some value M . Then we know that the optimal penalty π∗ is lower-bounded by π̄ −M ,

where π̄ is the expected penalty if no sensors are placed. We illustrate the usefulness of

this observation in our experimental results.

Extensions

Adversarial objective functions

The definition of our penalty reduction is an average case objective. We believe that the

likelihood of any particular intrusion i is specified by its probability P (i), and R(A) =∑
i∈I P (i)R(A, i).

Instead of optimizing this average case performance, we might be interested in the

worst case performance. Here, we would define Rw(A) = mini∈I R(A, i); the score of a

placement is the minimum penalty reduction over all scenarios. Unfortunately, Rw(A) is

not a submodular function in general.

In order to optimize this objective, we can perform the following transformation. In-

stead of using the penalty reduction R(s, i) directly, we apply the monotonic transfor-
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mation, R′(s, i) = 1 − exp(−R(s, i)/ϑ), for some positive real number ϑ, and then opti-

mize R′(A) =
∑

i P (i)R′(s, i) instead of the minimum. After transformation, R′(A) =∑
i P (i)R′(s, i) is again a submodular function, and all proposed techniques apply. In or-

der to understand why this transformation makes sense, we can look at the derivative of

the function g(x) = 1 − exp(−x/t), ∂
∂xg(x) = exp(−x/t)/t. The smaller x, the more any

improvement δ helps. By placing a sensor, some of the scenario specific penalty reduc-

tions R(A, i) increase. After transformation, this increase is largest for scenarios for which

R(A, i) is smallest. Hence the algorithm has an incentive to increase the penalty reduc-

tion of the worst case scenario. Hence, when optimizing the transformed criterion, a good

placement will try to uniformly increase the penalty reductions over all scenarios. This

approach effectively approximates the non-submodular adversarial score by a submodular

set function. In very recent work, we have developed an algorithm for directly optimizing

adversarial scores, such as Rw(A) = mini R(s, i), (Krause et al., 2007); the application of

this new approach to water distribution systems will be the focus of future work.

Robustness of sensor placements

As with any physical device, sensor nodes are susceptible to failures. Loss of power for

example could stop a sensor from making further measurements. Additionally, especially

if the contaminant concentration is low, the sensor might not detect an intrusion. Our

approach can be extended to handle such failures. With each location s ∈ S, we associate

a discrete random variable Fs such that Fs = 0 indicates that a sensor placed at location s

has failed and will not produce any measurements, and Fs = 1 indicates that the sensor is

working correctly. Similarly, we could use a continuous random variable Fs which models

the minimum contaminant concentration required for detecting a contamination at location
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s. For a placement A ⊂ S, denote by Af the subset of locations s ∈ A such that Fs = 1,

or, respectively, the subset of locations where the contaminant concentration exceeds the

minimum concentration specified by Fs. Hence Af denotes the subset of functional sensors.

Then, the robust penalty reduction R(A) = EF[Af ] =
∑

f P (f)R(Af ), is an expectation

of the penalty reduction achieved for placement A where all possible failure scenarios are

considered. Since the class of submodular functions is closed under non-negative linear

combinations, we can see that R(A) is again a nondecreasing submodular function.

Unfortunately, the number of possible failure scenarios grows exponentially in |S|. How-

ever, if the Fs are independent and identically distributed, and if the failure probability

P (Fs = 0) = θ is low enough, R can be approximated well, for example, by only taking

into account scenarios where none or at most one sensor fails. This simplification often

works in practice (Lerner and Parr, 2001).

System Implementation

In order to implement any of the algorithms discussed above, we need to evaluate the

penalty reduction function R. Looking at the definition, R(A) =
∑

i∈I P (i)R(A, i) =∑
i∈I P (i)[πi(∞) − πi(T (A, i))], we need to compute a sum over all possible intrusion

scenarios, and evaluate the time to detection T and the corresponding penalty πi for

each scenario i and each possible set of sensors A. The water distribution networks we

considered had 129, 12,527 and around 21,000 nodes, where a sensor could be possibly

placed, and where an intrusion could potentially happen. In order to compute the penalties,

we perform water quality simulations using the EPANET 2.0 software (Rossman, 1999),

with a temporal resolution of 5 minutes. We run our simulations for a 48 hour period,

which amounts to 576 water quality time steps. We assume that an intrusion can happen
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at an arbitrary point in time within the first 24 hours, which amounts to 288 different

starting times for an intrusion at every node in the network. Hence, the total number

of intrusion scenarios as defined in the BWSN challenge amounts to 3.6 million. If we

consider storing the contaminant concentration for every scenario, for every node and

every simulation time step, we need to process a volume of roughly 47 Terabytes of data,

just to evaluate a single sensor placement. Considering this amount of data, one might

conclude that it is necessary to subsample the number of simulated scenarios (Ostfeld and

Salomons, 2006; Wu and Walski, 2006), or decrease the temporal or spatial resolution of

the simulations (Berry et al., 2006b; Dorini et al., 2006; Guan et al., 2006). However, these

simplifications decrease the accuracy of the computed score, and incur variance (and hence

uncertainty) in the prediction, which is undesirable in a critical application such as securing

water networks. Also, one might conclude that optimizing even larger water distribution

networks is intractable for current computers. In the following, we present how we were

able to reduce the amount of data by several orders of magnitude (from 47 Terabytes to 16

Gigabytes) without losing any information, thereby reducing the evaluation time Teval of

the penalty reduction R over all scenarios for any given placement to fractions of a second.

Fast computation of the score function

Considering the running time of an EPANET 2.0 simulation on our network (roughly 4

seconds on a current Pentium 4 3GHz), the time required for exhaustive simulation of

all 3.6 million scenarios would require roughly 170 days. The simulations however are

easily distributable on a cluster of several machines, where each machine performs a subset

of the simulations. Using 20 ordinary desktop computers, the computation time reduces

to roughly 9 days, which is very small compared to the time required for deploying a
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water sensor network. Even though running all simulations once is realistic, running all

simulations for every network design we want to evaluate is intractable. Hence, we need to

store enough information during our single run of the simulations, such that we are able

to evaluate the score R(A) for every placement A very quickly. Storing all 47 Terabytes of

data is prohibitive, especially since the entire data set needs to be scanned once in order

to evaluate each placement. Looking at the definition of R, we can conclude that the only

information we need is the following: (i) For each potential sensor location s ∈ S and

intrusion scenario i ∈ I, we need the time to detection T (s, i), and (ii), for each scenario

i ∈ I, we need the maximum penalty πi(∞), and the penalty for each detection time, πi(t).

The data required to store T (s, i) is at most 84 Gigabytes, and the information to store

πi is at most 8 Gigabytes. In our experiments we also noticed that most scenarios are

only detected by very few sensor locations, hence T (s, i) is a very sparse matrix. Using an

appropriate sparse representation, the relevant results from all simulations required roughly

16.3 Gigabytes. Note that in order to exploit this sparsity, the interpretation of scores as

penalty reductions is crucial, since this interpretation allows us to ignore all undetected

scenarios (as their contribution to the score is 0). Hence, by exploiting problem structure

(penalty reduction representation and sparsity), we were able to reduce the original data

footprint of 47 Terabytes down to 16 Gigabytes, without losing any information. This is

small enough that our HP 64-bit server with 32 Gigabytes of main memory can have access

to all the relevant information without having to rely on harddisk accesses. Since memory

accesses are several orders of magnitudes faster than harddisk accesses, this greatly speeds

up computation.

The following describes how we quickly compute the score R for arbitrary sensor place-
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ments A.

1. For each sensor s ∈ A, retrieve the set of detected scenarios B, and for each detected

scenario i, compute the penalty reduction R(s, i) = πi(∞)− πi(T (s, i)).

2. For each scenario i, compute the overall penalty reduction R(A, i) = maxs∈A R(s, i).

3. Sum up all penalty reductions R(A) =
∑

i P (i)R(A, i).

Notice that the sum in step 3 is only over the detected scenarios (since the penalty reduction

of all undetected scenarios is 0 by definition). Other researchers (c.f., Dorini et al. 2006

and Berry et al. 2006b) have used similar data structures and preprocessing procedures.

Fast implementation of the greedy algorithm

Even if we can quickly evaluate the score R(A) of any given placement, we still need to

perform a large number of these evaluations in order to run the greedy algorithm. If we

select k sensors among n locations, we roughly need kn function evaluations. We can use a

computational trick to require far fewer function evaluations in practice. Assume we have

computed the greedy improvements δs = R(A ∪ {s}) − R(A) for all s ∈ S \ A. The key

idea is to realize that adding a sensor s′ to a placement A often does not change the scores

δs for many sensor locations s, and – more importantly – can never increase any scores δs

due to submodularity of R(A). So instead of recomputing δs for every sensor after adding

s′ (and hence requiring n−|A| evaluations of R), we perform lazy evaluations: Initially, we

mark all δs as invalid. When finding the next location to place a sensor, we go through the

locations in decreasing order of their δs scores. If the δs for the top location s is marked

as invalid, we recompute it, and insert it into the existing order of the δs. In many cases,
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the recomputation of δs will lead to a new value which is not much smaller, and hence

often, the top element will stay the top element even after recomputation. In this case,

we found a new sensor to add, without having reevaluated δs for every location s. This

lazy procedure can be shown to be correct due to the submodularity of R, and leads to far

fewer evaluations of R. In our experiments, we often achieve a factor 30 improvement in

speed when placing 20 sensors, hence allowing us to run the greedy algorithm within an

hour on an Intel Xeon 3GHz processor.

Results

Networks analyzed

We considered both the small network on 129 nodes (BWSN1), and a large, realistic, 12,527

node distribution network (BWSN2) provided as part of the BWSN challenge (Ostfeld et

al., 2008). In addition to the two networks defined by the BWSN challenge, we consider a

third water distribution network (NW3) of a large metropolitan area in the United States.

The network (not including the household level) contains around 21,000 nodes and 25,000

pipes. To our knowledge, this is the largest water distribution network considered for

sensor placement optimization so far. Due to security concerns, we cannot provide actual

placements for this network. As the purpose of the experiments is to show the scalability

of our method, we will mainly provide running time analyses.

Impact analysis

In the small network (BWSN1), there are a total of 37,152 intrusion scenarios, and for the

large network (BWSN2), a total of 3.6 million scenarios. Among these scenarios, one would

expect some of them to have significant effect on the network, whereas in other scenarios,
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only a few nodes would be affected. In order to understand this variability, we computed

a histogram (for BWSN2): Fig. 1 shows the frequency of scenarios that affect a specific

number of nodes in the network. We can see that the vast majority of scenarios are highly

localized, i.e., only affects a small number of nodes. However, the distribution is heavy

tailed: There are a few scenarios that affect a large part of the network. These are the

scenarios that are potentially most dangerous, and network deployments should take these

scenarios into account. Thus, since the number of scenarios that affect the entire network

is small, a significant limitation of methods that randomly pre-select a smaller number of

intrusion scenarios on which to base optimization is that a small random subset of intrusion

scenarios is not likely to contain these high impact scenarios.

Single objective optimization

We performed several experiments in order to analyze the performance of our placement

algorithms. We first optimized placements using the greedy algorithm. Figures 2a and 2b

show the diminishing returns effect when optimizing each of the BWSN objective functions

on the small (BWSN1) and large (BWSN2) network. They show the penalty reductions

(scores) achieved when using the greedy algorithm to optimize the different criteria (e.g.,

time to detection). Interestingly, the behavior is very different, depending on which func-

tion we optimize. For (BWSN1), when trying to minimize the contaminated water con-

sumed (Z3), only two sensors suffice to achieve a score very close to 1, the optimal penalty

reduction. When optimizing the time to detection (Z1), however, the score increases very

quickly at the beginning, but continues to slowly increase later on. Intuitively, this is

the case because no matter where the contaminant is introduced, it spreads rather slowly

across the network. In order to achieve instantaneous detection, a very dense deployment
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is required. Also the plot shows that the detection likelihood (Z4) achieves its maximum

already when placing 15 sensors. Note that this maximum value is less than 1, as some

intrusion scenarios never have an effect on the network, i.e., never lead to a nonzero con-

taminant concentration at any node in the network, as the contaminant is drained from

the network instantaneously. For (BWSN2), the contaminated water consumed (Z3) score

flattens out most quickly, similarly to the previous experiment. The time to detection (Z1)

achieves the lowest penalty reduction, and keeps increasing roughly linearly after 10 sen-

sors have been placed. The explanation for this effect is that there are a few high impact

scenarios that need to be detected in order to achieve high scores for Z2 and Z3. Most

scenarios are very local and not detected by most sensor locations, hence the detection

likelihood (Z4) and time to detection score (Z3) stay very low, unless a large number of

sensors is placed. Tab. 1 compares memory use and run time on all networks.

Comparison with random placements and heuristics. In order to see how the

optimized placements compare against random placements, we selected 100 placements

of increasing sizes uniformly at random, and compared them with the scores obtained

by the greedy algorithm. Figure 2c presents the results of this experiment for the large

network (BWSN2) when optimizing Z1 (panel a). In addition to the median score, we

present minimum, maximum, 10%, 25%, 75% and 90%-iles. Even the maximum over 100

random placements is worse than the greedy solution. We also compared the optimized

selection with various heuristics, like selecting the nodes with highest degree (number of

pipes connecting to a node), population at a node, average flow and average diameter of

connected pipes. Figure 2d presents the results of this comparison for Z2 on BWSN2.

None of the heuristics performs significantly better than random selection. Interestingly,
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even though our objective Z2 attempts to minimize the affected population, simply placing

sensors at high population nodes leads to bad performance.

Online and offline bounds. In order to study the approximation quality of the greedy

algorithm, we computed both the online and offline bounds on the penalty reduction,

as described above. Figure 3 shows the results of this experiment on the large network

(BWSN2), when optimizing the time to detection (Z1) and contaminated water consumed

(Z3). For Z3 (see Fig. 3b), we can see that the offline bound of (1 − 1/e)−1 times the

achieved penalty reduction score quickly becomes meaningless when placing more than

3 sensors, since the maximum score attainable is 1. The online bound however quickly

becomes very tight as we increase the number of sensors to place. From the online bounds

we can see that the greedy algorithm achieves scores, for example, within 95% of optimum,

when placing 20 sensors. For Z1 (see Fig. 3a), we can see that the offline bound does

not become meaningless (as the magnitude of the penalty reduction for Z1 is less than for

Z3). However, the online bound again is much tighter, showing that the greedy solution is

within at least 80% of the optimum solution when placing 20 sensors. Note that even this

online bound can be loose, and we expect that this greedy solution is significantly better

than 80% of optimal.

Mixed Integer Programming and local search. We also used the mixed integer

program described above, in order to compute the optimal solution for placing up to 6

sensors in the small network (BWSN1) of 129 nodes, when optimizing time to detection.

The MIP was able to find the best placement of 6 sensors within 6 minutes on a Pentium

Mobile processor. Our estimates show that exhaustive search for the optimal placement

would take approximately 430 days. We also found that for placements up to size 6,
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the greedy algorithm actually found the optimal solution. Fig. 3c compares the running

times for exhaustive search, mixed integer programming, the greedy algorithm and the

fast (lazy) greedy algorithm, when optimizing placements up to size 6. We can observe an

improvement by orders of magnitude in the sequence of these approaches.

We performed the same experiment on the expected population affected (Z2). Here,

we could not solve the MIP instances (which were harder due to the complex nature of the

Z2 penalty function) exactly, but we still used the MIP to get tight bounds on the optimal

solution. Fig. 3d presents the result of the greedy algorithm and the best solution found

by simulated annealing with 10,000 iterations (which always was at least as good as the

solutions obtained by the MIP solver). We also plot the tightest bound obtained from the

MIP within 5 minutes of computation time. The greedy algorithm always found solutions

within 98% of optimal, for placements up to size 10. We can convert the normalized

penalty reduction back into the expected population affected. For BWSN1, the expected

population affected when not placing any sensors is 899.7. After greedily placing 10 sensors,

the expected population affected is reduced to 899.7*(1-.8985) = 91.3, since the normalized

penalty reduction is .8985. The bounds obtained from the MIP solver guarantee that even

under the optimal solution, the expected population affected is at least 73.8.

Multicriteria optimization and results from BWSN

Watson et al. (2004) suggested that the objective functions considered (Z1 through Z4), are

not strongly correlated. We designed an experiment to quantitatively analyze the tradeoff

between the objectives by performing multicriteria optimization. In this experiment, we

computed the (approximate) Pareto frontiers for trading off pairs of objective functions

(see Fig. 4). In order to approximate the Pareto curve, we used different scalarization
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parameters. When trading off objective functions R1 (for Z1) and R2 (for Z2), we optimized

R(A) = pR1(A) + (1 − p)R2(A) for various choices of p, such that 0 ≤ p ≤ 1. Fig. 4b

shows the approximate Pareto frontier for trading off the detection likelihood (Z4) and the

expected population affected (Z2), for placements of various sizes, on the large network

(BWSN2). The tradeoff curves have a knee, a point where a small increase in either

objective leads to a strong decrease in the other objective. This knee indicates that if we

maximize Z2 we will get a bad score for Z4 and vice-versa. However, these two objectives

are not incompatible: at the knee point we get near-optimal values for both objectives. For

example, when placing 20 sensors, by picking a point on the knee, we can detect 42% of all

contamination events, while reducing the affected population by 78% (from 1534 to 334).

If only optimizing for Z2, the affected population can be reduced by 83%, but only 34% of

the contaminations are detected. If optimizing only for Z4, 45% of the contaminations are

detected, but only 50% reduction of the affected population is achieved. The solution at

the knee is only 7% worse with respect to the best Z2 and Z4 achievable (using greedy),

when only optimizing for Z2 and Z4 respectively.

Fig. 4a shows the same experiment, but for trading off the detection likelihood (Z4) and

the expected contaminated water consumed (Z3). Again, we can see very pronounced knees

in the tradeoff curve. We also traded off the expected contaminated water consumed (Z3)

and expected population affected (Z2). Fig. 4c shows that while there is some variability in

the Pareto frontier for very small placements, the Pareto-curves become very dense clusters

if we have more than five sensors available. Thus, there is little difference in optimizing

for Z2 or for Z3. This is not surprising, as we expect correlation between the amount of

contaminated water consumed (Z3) and the population affected (Z2) by an intrusion, since
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both are based on the demand at the nodes.

We submitted our placements with equally weighted objective functions to BWSN,

where Ostfeld et al. (2008) independently evaluated the contributed solutions of 15 partici-

pants. Since many solutions were non-dominated (and hence incomparable), the organizers

of BWSN did not select a winner. However, in the conclusion of their analysis, for a collec-

tion of comparisons, they counted the number of non-dominated solutions. Our approach

achieved the highest number with 26 out of 30 non-dominated solutions. The next best

set of placements according to their evaluation using this metric was the one by Berry et

al. with 21 out of 30 non-dominated solutions.

Adversarial objectives

We also optimized adversarial scores for the large network (BWSN2). Here, a large number

of scenarios affects only a small number of nodes. In fact, more than 2,000 sensors (2,263

in our experiment) would be needed to detect all 3.6 million scenarios. Fig. 5a plots the

detection likelihood for an increasing number of optimally chosen sensors. We can see that

we need exponentially more sensors to detect the scenarios that have low impact than to

detect scenarios that have large impact. This indicates that optimizing the adversarial

score is not a reasonable objective for the large network (BWSN2). However, if we make

the assumption that the adversary will only choose scenarios which affect a significant part

of the network (e.g., at least 500 nodes), 23 sensors suffice to detect all scenarios. Fig. 5b

shows that when optimizing the average score, the adversarial score remains 0 even when

placing 50 sensors. When optimizing the adversarial score however, it increases to 40%

when placing 23 sensors and to 60% when placing 50 sensors. The average score achieved

is almost high as when optimizing the average score directly.
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Real 21,000 node network

In order to see how our methods scale, we performed experiments on an actual metropolitan

area network (NW3), which has more than 21, 000 nodes. We chose the same parameters

as in the BWSN challenge. We sampled 150,000 scenarios; on 6 threads in parallel, the

simulations completed in 4 days. The compressed data requires approximately 2 GB of

memory. Greedily optimizing a set of 30 sensors takes approximately 12 minutes on our

4 GHz HP 64-bit server. Fig. 5c presents the greedy scores obtained when optimizing a

scalarization with equal weight on all four objectives, Z1, . . . , Z4. The figure also shows the

offline bound, and the online bound which becomes quite tight when placing more than 20

sensors. The bounds guarantee that when placing 30 sensors, the achieved solution is within

91% of the optimum score. Fig. 5c also compares the greedy solution with 100 random

placements. Hence even the maximum score achieved among 100 random placements is

less than 84% of the penalty reduction achieved by the greedy algorithm. Equivalently,

one would need to place 21 sensors at random to achieve a median score which is as high

as the greedy score for 5 sensors. These results show that our presented methodology is

both tractable and applicable to large-scale water distribution sensor placement problems.

Conclusions

We presented an efficient approach towards optimizing sensor placements for securing water

distributions against contaminant intrusions. Unlike previous work in this area, our algo-

rithm provides both rigorous approximation and running time guarantees. By exploiting

submodularity, our approach allows us to compute tight online bounds that can be used

to verify the proximity to the optimal solution. Our approach is able to handle placement
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problems which are a factor of 72 larger than problems previously considered. Our method

also naturally extends to multicriterion optimization and adversarial scoring functions.
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Proofs

Proof of Theorem 1. Our proof is similar to the analysis of Nemhauser et al. (1978). Fix

scenario i. We first show that the function Ri(A) = πi(∞) − πi(T (A, i)) is submodular.

Consider A ⊆ B ⊆ S. Let s ∈ S \ B. We have three cases. (i) T (s, i) ≥ T (A, i). Then

T (A ∪ {s}) = T (A) and T (B ∪ {s}) = T (B) and hence Ri(A ∪ {s}) − Ri(A) = 0 =

Ri(B ∪ {s})−Ri(B). (ii) T (B, i) ≤ T (s, i) < T (A, i). In this case, Ri(A ∪ {s})−Ri(A) ≥

0 = Ri(B∪{s})−Ri(B). Finally, (iii), T (s, i) < T (B, i). In this case, Ri(A∪{s})−Ri(A) =

[πi(∞)−πi(T (s, i))]−Ri(A) ≥ [πi(∞)−πi(T (s, i))]−Ri(B) = Ri(B∪{s})−Ri(B), where the

inequality is due to the nondecreasingness of Ri(·). Hence, for each scenario i, the function

Ri is submodular. Now, R(A) =
∑

i P (i)Ri(A) is a nonnegative linear combination of

submodular functions, and hence submodular too.

Proof of Theorem 2. By reduction from set cover. Let a set S be given, along with a

collection of subsets B1, . . . ,Bm ⊆ S. It is NP-hard to decide whether, for a constant k,

there exists a collection of subsets Bi1 , . . . ,Bik such that their union covers S (Garey and

Johnson, 2003). We can turn such an instance into a sensor placement problem, where we

have a contamination scenario for each element i ∈ S, and a sensor corresponding to each

subset Bi. For a constant k, the penalty minimization problem is the problem of selecting

a set of sensors which minimize the number of undetected scenarios. Hence, there exists a

set cover of size k if and only if there exists a sensor placement with expected penalty of

0. If we had a sensor placement algorithm which, for a constant k, would be guaranteed to

obtain a solution whose expected penalty is some multiple α(n) of the minimum penalty,

where α(n) only depends on the problem size n, then we could use this algorithm to decide
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the set cover problem, implying that P = NP .
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Figure 2: Four different penalty reduction functions optimized for the small (a) and large
(b) network. The diminishing returns property results in a concave performance curve.
Comparison of optimized and random placements (100 random trials). (c) Minimizing
detection time (Z1), (d) minimizing the contaminated water consumed (Z3).
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Figure 4: Multicriteria analyses, trading off pairs of objective functions on (BWSN2).
Higher values on both axes are better.
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Figure 5: (a) For the large network (BWSN2), we need an exponentially increasing num-
ber of sensors to eventually detect all intrusions. (a) Results on optimizing adversarial
objectives on the large network (BWSN2). (c) Greedy scores, bounds and 10, 25, 50, 75,
90 percentiles of 100 random placements when optimizing the sum of equally weighted Z
scores on NW3.

39



Network BWSN1 BWSN2 NW3
# Scenarios 37,152 3,602,776 120,000
Memory use 14.7 MB 16.3 GB 2.0 GB
Run time (min) 0.05 41.2 2.73

Table 1: Memory use and running time for placing 10 sensors using greedy algorithm with
lazy evaluations.
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