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ABSTRACT

We consider the problem of monitoring spatial phenomena, such
as road speeds on a highway, using wireless sensors with limited
battery life. A central question is to decide where to locate these
sensors to best predict the phenomenon at the unsensed locations.
However, given the power constraints, we also need to determine
when to selectively activate these sensors in order to maximize the
performance while satisfying lifetime requirements. Traditionally,
these two problems of sensor placement and scheduling have been
considered separately from each other; one first decides where to
place the sensors, and then when to activate them.

In this paper, we present an efficient algorithm, ESPASS, that si-
multaneously optimizes the placement and the schedule. We prove
that ESPASS provides a constant-factor approximation to the opti-
mal solution of this NP-hard optimization problem. A salient fea-
ture of our approach is that it obtains “balanced” schedules that
perform uniformly well over time, rather than only on average. We
then extend the algorithm to allow for a smooth power-accuracy
tradeoff. Our algorithm applies to complex settings where the sens-
ing quality of a set of sensors is measured, e.g., in the improve-
ment of prediction accuracy (more formally, to situations where the
sensing quality function is submodular). We present extensive em-
pirical studies on several sensing tasks, and our results show that
simultaneously placing and scheduling gives drastically improved
performance compared to separate placement and scheduling (e.g.,
a 33% improvement in network lifetime on the traffic prediction
task).
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1. INTRODUCTION

When monitoring spatial phenomena, such as road speeds
on a highway, deciding where to place a small number of
sensors to obtain best prediction accuracy is an important
task. Fig. [I] shows a Sensys Networks wireless traffic sen-
sor [12], that provides 30 second aggregate speed, flow and
vehicle density measurements. Currently the system is be-
ing deployed by Caltrans at different sites in California, in-
cluding highways and arterial roads. When using such wire-
less sensor networks, power consumption is a key constraint,
since every measurement drains the battery. For applications
such as road speed monitoring, a minimum battery lifetime
is required to ensure feasibility of the sensor network deploy-
ment. One approach to meeting such lifetime requirements
is to deploy few nodes with large batteries. However, such
an approach can be sensitive to node failures. Additionally,
packaging constraints can limit the size of the battery de-
ployed with the nodes. For these and other reasons, it can
be more effective to deploy a larger number of nodes with
smaller batteries, that are activated only a fraction of the
time. Hence, to improve the lifetime of such a sensor net-
work, the problem of scheduling becomes of crucial impor-
tance: Given a fixed placement of sensors, when should we
turn each sensor on in order to obtain high monitoring per-
formance over all time steps? One approach that has been
found effective in the past is to partition the sensors into &
groups [|1,|8, [14]. By activating a different group of sensors
at each time step and cyclicly shifting through these groups,
the network lifetime can effectively be increased by a factor
of k. In the traffic network application, current studies indi-
cate that an increase by a factor of £ = 4 would be required
to make sensor deployment an economically feasible option
(c.f., Sec.[p]for more details).

Traditionally, sensor placement and sensor scheduling have
been considered separately from each other — one first de-
cides where to place the sensors, and then when to activate
them. In this paper, we present an efficient algorithm, ES-
PASS (for efficient Simultaneous Placement and Scheduling
of Sensors), that jointly optimizes the sensor placement and
the sensor schedule. We prove that our algorithm provides a
constant factor approximation to the optimal solution of this
NP-hard optimization problem.



Figure 1: Sensys Networks wireless traffic sensor. (left)
encased unit, (middle) sensor deployed in pavement, (right)
GPRS/CDMA base station.

Most existing approaches to sensor placement and schedul-
ing associate a fixed sensing region with every sensor, and
then attempt to maximize the number of regions covered in
every group of sensors (c.f., [[1} |8, [13]). In complex appli-
cations such as traffic or environmental monitoring however,
the goal of sensor placement is a prediction problem, where
one intends to predict the sensed phenomenon at the loca-
tions where no sensors are placed. Our algorithm applies to
such settings where the sensing quality of a set of sensors
is measured, e.g., in the improvement of prediction accuracy
(more formally, our algorithm applies whenever the sensing
quality function satisfies submodularity, an intuitive dimin-
ishing returns property).

In contrast to most existing algorithms that optimize schedul-
ing for average case performance, our approach furthermore
provides a schedule that performs uniformly well over time,
hence leading to a well-balanced performance of the sensor
network. For security-critical applications such as outbreak
detection, such balanced performance is a crucial require-
ment not met by existing algorithms. In fact, our experi-
mental results show that average-case optimal solutions can
lead to arbitrarily unbalanced performance, but optimizing
for balanced performance (using ESPASS) typically leads
to good average-case performance.

Deploying a large number of scheduled sensors has the ad-
ditional benefit that it allows trading off power and accuracy.
The deployed network might have several modes of oper-
ation: a scheduled mode of operation, where only a small
fraction of sensors is turned on, and a “high density” mode
where all (or a larger fraction of) sensors are activated. For
example, in traffic monitoring, once a traffic congestion is
detected (during scheduled mode), the high density mode
could be used to accurately identify the boundary of the con-
gestion. We show how our algorithm can be extended to
support such a power-accuracy tradeoff.

We present extensive empirical studies on several case stud-
ies, illustrating the wversatility of our algorithm.
These case studies include sensing tasks such as traffic and
environmental monitoring and placing sensors for outbreak
detection. Our results show that simultaneously placing and
scheduling results in drastically improved performance com-
pared to the setting where optimization over the placement
and the scheduling are performed separately.

In summary, our main contributions are:

e We study the simultaneous placement and scheduling

of sensors as a novel optimization problem.

o We develop ESPASS, an efficient approximation algo-

rithm for this problem, that applies to a variety of real-
istic sensing quality functions (such as area coverage,
variance reduction, outbreak detection, etc.). Our algo-
rithm is guaranteed to provide a near-optimal solution,
that obtains at least a constant fraction of the optimal
sensing quality. ESPASS furthermore allows to trade
off power consumption and accuracy.
We perform several extensive case studies on real sens-
ing problems in traffic and environmental monitoring
as well as outbreak detection, demonstrating the effec-
tiveness of our approach.

2. PROBLEM STATEMENT

We will first separately introduce the sensor placement and
scheduling problems, and then formalize the problem of si-
multaneous placement and scheduling.

2.1 Sensor Placement

In sensor placement, we are given a finite set ) of possible
locations where sensors can be placed. Our goal is to select
a small subset A C V of locations to place sensors at, that
maximizes a sensing quality function F'(A). There are sev-
eral different notions of sensing quality that we might want to
optimize, each depending on the particular sensing task. For
example, we can associate sensing regions with every sensor,
and F'(A) can measure the total area covered when placing
sensors at locations .A. In complex applications such as the
traffic monitoring problem, we are interested in optimizing
the prediction accuracy when obtaining measurements from
locations 4. In this setting, we can model the state of the
world (e.g., the traffic condition at different locations) us-
ing a collection of random variables Xy,, one variable X
for each location s € V. We can then use a probabilis-
tic model (such as a Gaussian Process which is frequently
used in geostatistics [|5]) that models a joint probability dis-
tribution P (X)) over the possible locations. Upon acquiring
measurements X4 = X 4 at a subset of locations A, we can
then predict the phenomenon at the unobserved locations us-
ing the conditional distribution P(Xy\ 4 | X4 = x4). We
can then use the expected mean squared error,

Var(.){y | XAZXA)ZT;ZE [(Xs - E[Xs | XA])Q | XA]
seV

to quantify the uncertainty in this prediction. Since we do
not know the values x 4 before placing the sensors, a natural
choice of the sensing quality function F'(.A) is to measure the
expected reduction in variance at the unobserved locations,

F(A) = Var(Xy) — /P(XA)Var(Xv | X4 =x4)dx4.

This sensing quality function has been found useful for sen-
sor selection [7}|16] and experimental design [4].

It can be shown that both the area covered and the vari-
ance reduction objective, as well as many other notions of
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Figure 2: In the stage-wise approach, sensors are first deployed (a), and the deployed sensors are then scheduled (b, sensors assigned
to the same time slot are drawn using the same color and marker). In the simultaneous approach, we jointly optimize over placement
and schedule (c). (d) Multicriterion solution to Problem (5.1) (A = .25) that performs well both in scheduled and high-density mode.

sensing quality, satisfy the following intuitive diminishing
returns property [6, ZOﬂ Adding a sensor helps more if we
have placed few sensors so far, and less if we already have
placed lots of sensors. This intuition can be formalized using
the combinatorial concept of submodularity: A set function
F is called submodular, if forall A C BC Vands € V\ B

F(AU{s}) — F(A) > F(BU{s}) — F(B),

i.e., adding s to a small set .4 helps more than adding s to the
superset B. In addition, these sensing quality functions are
monotonic: For all A C B it holds that F'(A) < F(B), i.e.,
adding more sensors can only improve the sensing quality.

Based on this notion of a monotonic, submodular sensing
quality function, the sensor placement problem isE]

max F(A) such that | A| <m,

i.e., we want to find a set A of at most m locations to place
sensors maximizing the sensing quality F'.

2.2 Sensor Scheduling

In sensor scheduling, we are given a sensor placement
(i.e., locations A), and our goal is to assign each sensor
s € A one of k time slots. This assignment partitions the
set A into disjoint sets Ajq, ..., Ay, where A, C A is the
subset of sensors that have been assigned slot . A round-
robin schedule can then be applied that cycles through the
time slots, and activates sensors A; at time ¢. Since each
sensor is active at only one out of k time slots, this proce-
dure effectively increases the lifetime of the network by a
factor of k. How can we quantify the value of a schedule
A = (Ay,..., Ax)? For each group A:, we can compute
the sensing quality F' (At)ﬂ One possibility would then be

"Variance reduction has been shown to be submodular for Gaussian
distributions under certain assumptions about the covariance [|0].
>This formulation does not address network connectivity con-
straints. If sufficient communication infrastructure is available such
that no multi-hop communication is required, such as in traffic mon-
itoring where sensors communicate via GPRS, communication con-
straints can be ignored. In settings where connectivity is limited,
one would need to extend this formulation, for example, by using
the techniques of Krause et al. [[15].

Note that we assume the same sensing quality function F for each
time step. This assumption has been made in the past (c.f., [14}[1]),
and is reasonable for many sensing tasks.

to optimize for the average performance over time,

L
However, as we show in our experiments, if we optimize for
the average case performance, it can happen that a few of the
time slots are very poorly covered, i.e., there is a time ¢ such
that F'(A;) is very low. For security-critical applications,
this can be problematic. Instead, we can also optimize for a
balanced schedule,

in F(A
e, 1 Pl

that performs uniformly well over time.

Note that the above formulation of the scheduling problem
allows to handle settings where each sensor can be active at
r > 1 timesteps. In this setting, we simply define a new
ground set A" = A x {1,...,r} where the pair (s,7) € A’
refers to the ¢-th activation of sensor s. The sensing quality
function is modified as F"(A}) = F'({s : 3i(s,7) € A}}).

2.3 Simultaneous placement and scheduling

Both sensor placement and sensor scheduling have been
studied separately from each other in the past. One approach
towards placement and scheduling would be to first use an
algorithm (such as the algorithm proposed by [20]) to find a
sensor placement .4, and then use a separate algorithm (such
as the mixed integer approach of [14]]) to find a schedule
A1, ..., Ar. We call this a stage-wise approach, and illus-
trate it in Figures [2(a)]and [2(b)]

Instead of separating placement and scheduling, we can
simultaneously optimize for the placement and the schedule.
Suppose we have resources to purchase m sensors, and we
would like to extend the network lifetime by a factor of k.
Our goal would then be to find k disjoint sets Aq, ..., Ay C
V), such that together these sets contain at most m locations,
ie., U, A:] < m. We call this problem the SPASS prob-
lem, for simultaneous placement and scheduling of sensors.
Again, we can consider the average-case performance,

1 e g
max E;F(At) st. AiNA;=0ifi#j and | LtJAt| <m

and the balanced objective: @D
max min F(A4;) s.t. 4, NA; =0ifi # jand |UA¢| < m.
A ARt t

(2.2)



By performing this simultaneous optimization, we can ob-
tain very different solutions, as illustrated in Fig. In
Sec. [l we will show that this simultaneous approach can
lead to drastically improved performance as compared to the
traditional, stage-wise approach. In this paper, we present
ESPASS, an efficient approximation algorithm with strong
theoretical guarantees for this problem.

The placement and schedule in Fig. has the property
that the sensors selected at each time step share very similar
locations, and hence perform roughly
equally well. However, if activated all at the same time, the
“high-density” performance F'(A; U- - -U.Ay) is much lower
than that of the placement in Fig.[2(a)] We also develop an al-
gorithm, MCSPASS, that leads to placements which perform
well both in scheduled and in high-density mode. Fig. 2(d)|
presents the solution obtained for the MCSPASS algorithm.

Note that instead of fixing the number of time slots, we
could also specify a desired accuracy constraint ) and then
ask for the maximum lifetime solution, i.e., the largest num-
ber k of time slots such that a solution with minimum (or av-
erage) sensing quality () is obtained. Clearly, an algorithm
that solves Problem (2.2) (or Problem (2.I))) could be used
to solve this alternative problem, by simply binary searching
over possible values for AfY]

3. A NAIVE GREEDY ALGORITHM

We will first study the problem of optimizing the average
performance over time, i.e., Problem , for a fixed mono-
tonic submodular sensing quality function F'. Considering
the fact that simultaneously placing and scheduling is a strict
generalization of sensor placement, which itself is NP-hard
(c.f., [20]), we cannot expect to efficiently find the optimal
solution to Problem (2.1} in general.

Instead, we will use the following intuitive greedy algo-
rithm that we call GAPS for Greedy Average-case Place-
ment and Scheduling. At every round, GAPS picks a time
slot ¢ and location s which increases the total sensing quality
the most, until m location/time-slot pairs have been picked.
It is formalized as Alg.[T}

Algorithm GAPS (F, V, k, m)
A — ( for all ¢;
for i = 1to mdo
foreachs e V\ (41 U---UA,), 1 <t <kdo

1 bt,s — F(A U {s}) — F(Ay);
(t*,s*) « argmax, ; 0y s;
At* — .At* U {S*};

Algorithm 1: The greedy average-case placement and
scheduling (GAPS) algorithm.

“However, in case an approximate algorithm is used, such as the
ESPASS algorithm developed in this paper, its guarantees are not
necessarily preserved.

3.1 Theoretical guarantee

Perhaps surprisingly, we can show that this simple algo-
rithm provides near-optimal solutions for
Problem (2.I). In fact, it generalizes the distributed Set-
k Cover algorithm proposed by [1]] to arbitrary submodular
sensing quality functions F', and to the setting where at most
m sensors can be selected in total.

THEOREM 3.1. For any monotonic and submodular func-
tion F', GAPS returns Ay, ..., Ag s.t.

1 171 )
E;F(At) 2 if%X%ZtIF(At)-
GAPS requires at most O (kmn) evaluations of F.

The proofs of Theorem [3.1]and all other results are given in
the longer version of this paper [19]. The key observation is
that Problem (2.1)) is an instance of maximizing a submod-
ular function subject to a matroid constraint (c.f., the longer
version [19] for details). A fundamental result by Fisher et
al. [10] then proves that the greedy algorithm returns a solu-
tion that obtains at least one half of the optimal average-case
score. Matroids for sensor scheduling have been considered
before by [22].

3.2 Greedy can lead to unbalanced solutions

If a sensor placement and schedule is sought that performs
well “on-average” over time, GAPS performs well. How-
ever, even though the average performance over time,
+3°, F(Ay), is high, the performance at some individual
timesteps ¢’ can be very poor, and hence the schedule can
be unfair. In security-critical applications, where high per-
formance is required at all times, this behavior can be prob-
lematic. In such settings, we might be interested in optimiz-
ing the balanced performance over time, min; F'(A;). This
optimization task was raised as an open problem by []1].

A first idea would be to try to modify the GAPS algorithm
to directly optimize this balanced performance, i.e., replace
Line[T)in Alg.[T]by

G0 min F(ATY) — min F(4;),

where AT (%) is the solution obtained by adding location s to
time slot A; in solution A = A;U- - -UA},. We call this mod-
ified algorithm the GBPS algorithm (for Greedy Balanced
Placement and Scheduling). Unfortunately, both GAPS and
GBPS can perform arbitrarily badly. Consider a simple sce-
nario with three locations, V = {a, b, ¢}, and the monotonic
submodular function F'(A) = |.A|. We want to partition V
into three timesteps, i.e., K = 3 and m = 3. Here, the op-
timal solution would be to pick A} = {a}, A5 = {b} and
A% = {c}. However, both GAPS and GBPS would (ties
broken unfavorably) pick A; = {a,b, c} and Ay = A3 = ),
obtaining a minimum score of 0.

Unfortunately, this poor performance is not just a theoreti-
cal example — in Sec. [6] we demonstrate it empirically on real
sensing tasks.



4. THE ESPASS ALGORITHM

In the following, we will develop an efficient algorithm,
ESPASS (for efficient Simultaneous Placement and Schedul-
ing of Sensors), that, as we will show in Sec.[4.2] is guaran-
teed to provide a near-optimal solution to the Problem (2.2).
To the best of our knowledge, our algorithm is the first algo-
rithm with theoretical guarantees for this general problem,
hence partly resolving the open problem described by []1]].

4.1 Algorithm overview

We start with an outline of our algorithm, and then proceed
to discuss each step more formally.

Our high-level goal will be to reduce the problem of op-
timizing the balanced objective into a sequence of modified
optimization problems involving an average-case objective,
which we can approximately solve using GAPS. This idea is
based on the following intuition: Consider a truncated objec-
tive function F,.(A) = min{F(A), c}. The key observatior|
is that, for any constant c, it holds that

k
mtinF(.At) >c& % ;FC(.At) =g,
i.e., the minimum score is greater than or equal to c if and
only if the average truncated score is c.
Now suppose someone tells us the value ¢* attained by
an optimal solution, i.e., max 4 min; F'(A;) = ¢*. By the
above observation we would then need to solve

k
1
max ; F,-(Ay).

It can be shown (c.f., [[11]) that for ¢ > 0, the truncated objec-
tive function F, remains monotonic and submodular. Hence,
Problem (&.1) is an instance of the average-case Problem (2.1).
Now we face the challenge that we do not generally know
the optimal value c*. However, if we could optimally solve
the monotonic submodular average-case Problem (2.1)), we
could use a simple binary search procedure to find ¢*, and
hence the optimal solution to the balanced Problem (2.2).
Unfortunately, as shown in Sec. 3.0} solving the
average-case problem is NP-hard, and, using GAPS, we can
only solve it approximately, obtaining a solution that achieves
at least half of the optimal value. In the following, we will

4.1)

show how we can turn this approximate solution for the average-

case problem into a near-optimal solution for the balanced
problem.

Our algorithm will maintain one “bucket” A4; C V for each
time slot £. Since our goal is to develop an approximation
algorithm achieving at least a fraction 3 > 0 of the optimal
sensing quality, we need to allocate m elements s € ) to
the k buckets such that F'(A4;) > Sc* for all buckets A;.
Hereby, (3 is a constant that we will specify later. We call a
bucket “satisfied” if F'(A;) > [c¢*, “unsatisfied” otherwise.
Here is an outline of our ESPASS algorithm, Fig. [3| presents
an illustration.

Krause et al. used this observation to develop an algorithm for
robust optimization of submodular functions [18]]. See [19] for a
detailed comparison between this paper and [|18].

1. “Guess” the optimal value c.

2. Call an element s € V “big” if F.({s}) > B¢ and
“small” otherwise. Put each big element into a separate
bucket (c.f:, Fig. B(a)). From now on, we ignore those
satisfied buckets, and focus on the unsatisfied buckets.

3. Run GAPS to optimize F, and allocate the small ele-
ments to the unsatisfied buckets (c.f., Fig. 3(b)).

4. Pick a “satisfied” bucket A; that contains sufficiently
many elements, and reallocate enough elements to an
“unsatisfied” bucket to make it satisfied (c.f., Figures[3(c)|
and [3(d)). Repeat step 3 until no more buckets are un-
satisfied or no more reallocation is possible. We will
show that this reallocation will always terminate.

5. If all buckets are satisfied, return to step 1 with a more
optimistic (higher) “guess” for c. If at least one bucket
remains unsatisfied, return to step 1 with a more pes-
simistic (lower) guess for c.

ESPASS terminates with a value for ¢ such that all buck-
ets t have been assigned elements .4, such that F'(A;) > (c.
It guarantees that upon termination, c is an upper bound on
the value of the optimal solution, hence providing a 3 ap-
proximation guarantee. In Sec. we will show that § = %
suffices. In summary, we have the following guarantee about
ESPASS:

THEOREM 4.1. For any monotonic, submodular function
F and constant € > 0, ESPASS, using GAPS as subroutine,
returns a solution Ay, . .., Ay, such that

. 1 . 7
min F(A) > g Max min F(A}) — ¢,
requiring O ((1 + log, F(V)/e)kmn) evaluations of F.

Hereby, ¢ is an tolerance parameter that can be made arbi-
trarily small. The number of iterations increases only loga-
rithmically in 1/e.

4.2 Algorithm details

We will now analyze each of the steps of ESPASS in de-
tail. The pseudocode is given in Alg.[2}

Removing big elements. The main challenge when ap-
plying the GAPS algorithm to the truncated Problem (.1
is exemplified by the following pathological example. Sup-
pose the optimal value is c¢. GAPS, when applied to the
truncated function F, could pick k/2 elements s, .. ., 55 /2,
with F({s;}) = c each. While this solution obtains an
average-case score of ¢/2 (one half of optimal as guaranteed
by Theorem [3.1)), there is no possibility to reallocate these
k/2 elements into k buckets, and hence some buckets will
remain empty, giving a balanced score of 0.

To avoid this pathological case, we would like to eliminate
such elements s € V with high individual scores F'({s}),
to make sure that we can rearrange the solution of GAPS
to obtain high balanced score. Hence, we distinguish two
kinds of elements: Big elements s with F({s}) > Se¢, and
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Algorithm ESPASS (F, V, k, m, €)
Cmin < 0; Cmax < F(V), /8 — 1/6,
while ¢,.x — Cmin > € do
C (Cmax + Cmin)/Q;
1 B—{seV:F.{s}) > pc};
k' — k;
1) foreach s € B do
A — {sh k' — kK —1;
if ¥’ = 0 then ¢, — ¢
-Abest — (-/417 s 7-/4k:);
continue with while loop;
V' —V\B;m' —m—|B,
Ay — GAPS(F., V' K ,m');
if >°, F(A;) < k'c/2 then cpax < c; continue;
else

s while 3i, j < k': F.(A;) < B¢, F.(A) > 38c¢
do
foreach s € A; do
Aj = A; U{sh A — A\ {sh
if F.(A;) > [Bc then break;
Cmin < C; Abest — (Ala cee 7V4k);

Algorithm 2: The ESPASS algorithm for simultaneously
placing and scheduling sensors.

small elements s with F'({s}) < Be. If we intend to ob-
tain a 3 approximation to the optimal score ¢, we realize that
big elements have high enough value to each satisfy an in-
dividual bucket. Let B be the set of big elements (this set
is determined in Line [T). If |[B| > k, we already have a
(-approximate solution: Just put one big element in each
bucket. If | B| < k, put each element in 3 in a separate bucket
Aty ..., Ap) (cf, Line ). We can now set these satisfied
buckets aside, and look at the reduced problem instance with
elements V' = V\ B, m' = m — |B|and k¥’ = k — |B|.
Our first lemma shows that if the original problem instance
(F,V,k,m) has optimal value ¢, the reduced problem in-
stance (F, V', k', m') still has optimal value c.

LEMMA 4.2. The optimal value on the new problem in-
stance (F, V' k', m') is still c.

Hence, without loss of generality, we can now assume that
forall s € V, F({s}) < Be.

Solving the average-case problem. In the next step of ES-
PASS, we run an a-approximate algorithm (such as GAPS
where o = %), using the truncated objective F., on the
reduced problem instance containing only small elements
(Line[3). This application results in an allocation Ay, . . ., A/
of elements into buckets. If ), Fi.(A;) < ack’, then we
know that c is an upper bound to the optimal solution, and it
is safe to set a4 to c (c.f., LineEl]) and continue with the bi-
nary search. Otherwise, we have a solution where
>+ Fe(Ar) > ack’. However, as argued in Sec. this
a-approximate solution could still have balanced score 0, if
all the elements are allocated to only the first ack’ buckets.
Hence, we need to reallocate elements from satisfied into un-
satisfied buckets to obtain a balanced solution.

Reallocation. We will transfer elements from satisfied
buckets to unsatisfied buckets, until all buckets are satisfied.
Let us define a “reallocation move" as follows (c.f., Line E])
Pick a bucket A; = {ay,...,a;} for which F.(A;) > 30c
(we will guarantee that such a bucket always exists), and a
bucket A, that is not satisfied, i.e., F.(A;) < Bec. Choose ¢
such that F({a1,...,a,-1}) < Bcand F.({a1,...,ae}) >
Bc. Let A = {aq,...,a;}. Note that A is not empty since
each a; is small (i.e., Fy({a;}) < B¢). We reallocate the
elements A by removing A from 4; and adding A to A;.

LEMMA 4.3. It holds that
F.(Aj UA) > e, and F.(A; \ A) > F.(A;) — 2fc.

Hence, removing elements A does not decrease the value of
A; by more than 2/3¢c, and thus A; remains satisfied. On the
other hand, the previously unsatisfied bucket .4; becomes
satisfied by adding the elements A. We want to make sure
that we can always execute our reallocation move, until all
buckets are satisfied. The following result shows that if we

set 3 = %, this will always be the case:
LEMMA 4.4. Ifweset 3 = 3, then, after at most k reallo-

cation moves, all buckets will be satisfied, i.e., F.(A;) > Be
forall i.

Binary search. Since the optimal value c is generally not
known, we have to search for it. This is done using a sim-
ple binary search strategy, starting with the interval [0, F'(V)]
which is guaranteed the optimal value due to monotonicity.
At every step, we test the center ¢ of the current interval. If



all buckets can be filled to (¢, then the truncation thresh-
old c can be increased. If the algorithm for maximizing the
average-case score (such as GAPS) does not return a solu-
tion of value at least ac, then that implies that the optimal
value has to be less than ¢, and the truncation threshold is
decreased (c.f., Line ).

5. TRADING OFF POWER AND ACCURACY

As argued in Sec. [I] in addition to selectively activating
sensors according to a schedule (to conserve power), it might
be appropriate to occasionally activate all sensors, in order
to provide higher resolution sensor data (e.g., to localize the
boundary of a traffic congestion in our running example).
For a fixed solution Ay, ..., Ay to the SPASS problem, the
(balanced) scheduled-mode sensing quality is min; F'(A4;),
whereas the high-density sensing quality is F'(A4; U --- U
Ay). Note that optimizing for the scheduled sensing qual-
ity does not necessarily lead to good high-density sensing
quality. Hence, if both modes of operation should be sup-
ported, then we should simultaneously optimize for both per-
formance measures. One such approach to this multicriterion
optimization problem is to define the scalarized objective
F (A1, ..., Ag) = dmin F(A;)+(1-N)F(A1U---UAL),
and then solve the probllem
AIPai{u F)\(Al, . ,Ak) st. AiNA; = 0ifs #+7, | LtJ.At| <m.

(5.1)

Note that if A = 1, we recover the SPASS problem. Fur-
thermore, as A — 0, the high-density sensing quality F'(.4;U
.-+ U Aj) dominates, and the chosen solution will converge
to the stage-wise approach, where first the set A of all sen-
sors is optimized, and then this placement is partitioned into
A = A1U- - -UA;. Hence, by varying X between 1 and 0, we
can interpolate between the simultaneous and the stage-wise
placement and scheduling.

We modify ESPASS to approximately solve Problem (5.1,
and call the modified algorithm MCSPASS (for multicrite-
rion Simultaneous Placement and Scheduling of Sensors).
The basic strategy is still a binary search procedure. How-
ever, instead of simply picking all available big elements (as
done by ESPASS), MCSPASS will also guess (search for)
the number ¢ of big elements used in the optimal solution.
It will pick these big elements in a greedy fashion, resulting
in a set Ay;; C V. For a fixed guess of c and £, MCSPASS
will again use GAPS as a subroutine. However, the objec-
tive function used by GAPS will be modified to account for
the high-density performance:

Gl At A) = A ST Fa(A) + (1= V(AU Ayy),

where A = A1 U... Ay, and k' = k — £. This modified ob-
jective function combines a component (weighted by \) that
measures the scheduled performance, as well as a compo-
nent (weighted by 1 — ) that measures the improvement in
high-density performance, taking into account the set Ay
of big elements that have already been selected. The real-
location procedure remains the same as in ESPASS. Due to

space limitations, the remaining details of our MCSPASS ap-
proach are presented in the longer version of this paper [[19].
The following holds:

THEOREM 5.1. For any monotonic, submodular function
F and constants ¢ > 0 and 0 < X\ < 1, MCSPASS will
efficiently find a solution Ay, . .., Ay such that

~ 1 ~
F)\(.Al,...,.Ak) > gH}L‘a;XF)\(All,...,Ak)—E.

6. EXPERIMENTS

We performed several case studies, applying ESPASS to
real-world sensing problems. See the longer version of this
paper [19]] for more experimental results.

6.1 Case study I: Highway monitoring

The California highways are currently monitored by over
10,000 traffic sensors based on older technologies. As these
loops fail, they are being replaced by novel wireless sen-
sor networks technologies, and it is an important problem
to identify economic deployment strategies. PeMS [3] is a
project that integrates, cleanses and tracks real time traffic
information for the whole state. The sensors typically report
speed, flow and vehicle counts every 30 seconds, and PeMS
aggregates the data further into 5 minute blocks. For this
case study, we use data from highway I-880 South, which
extends for 35 miles in northern California (Figure [5) and
has between 3 and 5 lanes. This highway experiences heavy
traffic, and accurate measurements are essential for proper
resource management. Measurement variation is mainly due
to congestion and events such as accidents and road closures.
There are 88 measurement sites along the highway, on aver-
age every 2 miles, which comprise 357 sensors covering all
lanes. We use speed information from lanes, for all days of
the week in a single month, excluding weekends and holi-
days. We choose the period from 6AM to 11AM, which is
the time when the highway is congested. This is the most
difficult time for making predictions, as when there is no
congestion, even a free flow speed prediction of 60 mph is
accurate.

The number and locations of sensors are limited by costs
and physical deployment constraints. Typically at each lo-
cation, it is only possible to place one sensor at each lane.
Furthermore, lane closures for sensor installations are very
costly. Given these constraints, California requires that sen-
sor technologies have a target lifetime of 10 years. This im-
plies that most wireless sensor solutions require intelligent
scheduling in order to extend the lifetime by four times, since
most sensor network solutions batteries are expected to last
2 to 3 years. Including more batteries in a single sensor is
not viable, as sensors have physical constraints to avoid dis-
rupting the existing pavement structure and keep installation
costs at a minimum.

As wireless sensors displace existing loop technologies,
it is desirable to place as few sensors as possible, without
trading off too much sensing quality. To achieve these goals
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in a principled manner, historical loop data from the current
deployment should be used. ESPASS provides a solution
which can balance these conflicting requirements, by com-
bining scheduling and placement: more sensors are placed
initially, still keeping road closures at a minimum, and schedul-
ing is used to extend the lifetime of the network, keeping
sensing quality balanced. In this section we explore this so-
Iution and compare ESPASS to other simultaneous place-
ment and scheduling solutions.

Simultaneous vs. stage-wise optimization. In our first
experiment, we study the benefit of simultaneously placing
and scheduling sensors. For varying numbers m of sensors
and k of time slots, we use different strategies to find k& dis-
joint sets Aq, ..., Ak, where A; is the sensors active at time
slot ¢. We compare the simultaneous placement and schedule
(optimized using ESPASS and GAPS) with solutions ob-
tained by first placing sensors at a fixed set of locations, and
then scheduling them. We consider both optimized and ran-
dom sensor placements, followed by optimized and random
scheduling, amounting to four stage-wise strategies. For ran-
dom placements and schedules, we report the mean and stan-
dard error over 20 random trials.

Fig. presents the performance of the five strategies
when optimizing the average-case performance, for a fixed
number of m = 50 sensors and a number of time slots &
varying from 1 to 20. GAPS performs best, followed by
the stage-wise optimized placement and schedule (OP/OS).

Of the two strategies where one component (either the place-
ment or the schedule) is randomized (OP/RS and RP/OS), for
small numbers (< 3) of time slots OP/RS performs slightly
better, and for large numbers of time slots (> 10), RP/OS
performs slightly better. The completely randomized solu-
tion performs significantly worse.

Fig. presents the same results when optimizing the
balanced criterion. ESPASS outperforms the stage-wise strate-
gies and the completely randomized strategy RP/RS performs
worst as expected. Interestingly, for the balanced criterion,
OP/RS performs drastically worse than RP/OS for £ > 4
time slots. We hypothesize this to be due to the fact that a
poor random placement can more easily be compensated for
by using a good schedule than vice versa: When partition-
ing a sensor placement of 50 sensors randomly into a large
number of time slots, it is fairly likely that at least one of the
timeslots exhibits poor performance, hence leading to a poor
balanced score. This insight also suggests that the larger the
intended improvement in network lifetime (number of time
slots), the more important it is to optimize for a balanced
schedule.

To summarize this analysis, we see that simultaneous place-
ment and scheduling drastically outperforms the stage-wise
strategies. For example, if we place 50 sensors at random,
and then use ESPASS to schedule them into 4 time slots, we
achieve an estimated minimum reduction in Mean Squared
error by 58%. If we first optimize the placement and then use
ESPASS for scheduling, we can achieve the same amount of
variance reduction by scheduling 6 time slots (hence obtain-
ing a 50% increase in network lifetime). If instead of stage-
wise optimization we simultaneously optimize the placement
and the schedule using ESPASS, we can obtain the same
variance reduction by scheduling 8 time slots, hence an in-
crease in network lifetime by 100%.

Average vs. balanced performance. We have seen that si-
multaneously placing and scheduling can drastically outper-
form stage-wise strategies, for both the average-case and the
balanced objective. But which of the objectives should we
use? In order to gain insight into this question, we performed
the following experiment. For varying k and m, we obtain
solutions to the SPASS problem using both the ESPASS and
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Figure 6: Example placements and schedules for contamination detection in water networks [W].

the GAPS algorithm. We then evaluate the respective solu-
tions both using the average-case and the balanced criterion.
Fig. presents the results of this experiment for k vary-
ing from 1 to 10, and fixed ratio of 5 sensors per time slot.
As expected, ESPASS outperforms GAPS with respect to
the balanced criterion, and GAPS outperforms ESPASS ac-
cording to the average-case criterion. However, while ES-
PASS achieves average-case score very close to the solution
obtained by GAPS, the balanced score of the GAPS solu-
tions are far worse than those obtained by ESPASS. Hence,
optimizing for the balanced criterion performs well for the
average case, but not vice versa.

Online bounds. = We also perform an experiment to see
how close the ESPASS solutions are to the optimal solu-
tion. In addition to the bound guaranteed by Theorem H.1]
we compute a data-dependent bound based on a linear pro-
gramming relaxation. Details about this bound are presented
in the longer version of this paper [19]. Fig.[#(d)|presents the
bounds on the maximum variance reduction achievable when
placing 50 sensors and partitioning them into an increasing
number of groups. We plot both the factor 6 bound due to
Theorem [4.1] as well as the data-dependent bound. We can
see that the data dependent bounds are much tighter. For ex-
ample, if we partition the sensors into 2 groups, our solution
is at least 78% of optimum, for 5 groups it is at least 70% of
optimum (rather than the 17% of Theorem [.T).

6.2 Case study II: Contamination detection

Consider a city water distribution network, delivering wa-
ter to households via a system of pipes, pumps and junc-
tions. Accidental or malicious intrusions can cause contam-
inants to spread over the network, and we want to select a
few locations (pipe junctions) to install sensors, in order to
detect these contaminations as quickly as possible. In Au-
gust 2006, the Battle of Water Sensor Networks (BWSN) [9]
was organized as an international challenge to find the best
sensor placements for a real (but anonymized) metropolitan
water distribution network, consisting of 12,527 nodes. In
this challenge, a set of intrusion scenarios is specified, and
for each scenario a realistic simulator provided by the EPA
is used to simulate the spread of the contaminant for a 48

hour period. An intrusion is considered detected when one
selected node shows positive contaminant concentration.

The goal of BWSN was to minimize impact measures,
such as the expected population affected, which is calculated
using a realistic disease model. In [17], Krause et al. showed
that the function F'(.A) which measures the expected popu-
lation protected by placing sensors at location .4 is a mono-
tonic submodular function. Water quality probes can oper-
ate for a fairly long amount of time on battery power. For
example, the YSI 6600 Sonde can sample 15 water quality
parameters every 15 minutes for 75 days. However, for the
long-term feasibility it is desirable to considerably improve
this battery lifetime by sensor scheduling. On the other hand,
high sampling rates are desirable to ensure rapid response
to possible contaminations. For a security-critical sensing
task such as protecting drinking water from contamination,
it is important to obtain balanced, uniformly good detection
performance over time. Also, deployment and maintenance
cost restrict the number of sensors that can be deployed.
Hence, the problem of deploying battery powered sensors
for drinking water quality monitoring is another instance of
the SPASS problem.

We reproduce the experimental setup detailed in [[17]. How-
ever, instead of only optimizing for the sensor placement, we
simultaneously optimize for placement and schedule using
the ESPASS algorithm. Fig. compares ESPASS with
the stage-wise approaches. We report the population pro-
tected by placing sensors, normalized by the maximum pro-
tection achievable when placing sensors everywhere in the
network.

Simultaneous vs. stage-wise optimization. ESPASS ob-
tains drastically improved performance when compared to
the stage-wise approaches. For example, when scheduling 3
time slots, in order to obtain 85% protection, ESPASS re-
quires 18 sensors. The fully optimized stage-wise approach
(OP/OS) requires twice the number of sensors. When plac-
ing 36 sensors, the stage-wise approach leaves 3 times more
population unprotected as compared to the simultaneous ES-
PASS solution with 36 sensors. ESPASS solved this large
scale optimization task (n = 12,527, k = 3, m = 30) in 26
minutes using our MATLAB implementation.
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Trading off power and accuracy. We also applied MC-
SPASS in order to trade off scheduled mode and high den-
sity mode performance. For a fixed number of m = 30 sen-
sors and k = 3 time slots, we solve Problem for values
of A\ varying from O to 1. For each value of A\, we obtain
a different solution, and plot the normalized expected popu-
lation protected (higher is better) both in scheduled- and in
high-density mode in Fig. We can see that this trade-
off curve exhibits a prominent knee, where solutions are ob-
tained that perform nearly optimally with respect to both cri-
teria. Figures [6(a)] [6(b)] and show the placements and
schedules obtained for A = 1 (i.e., ignoring the high-density
sensing quality), A = 0 (ignoring the schedule, effectively
performing a stage-wise approach) and a value A = 0.25
(from the knee in the trade-off curve) respectively. Note how
the solution for A = 1 clusters the sensors closely together,
obtaining three very similar placements A;, A5, A3 for each
time slot (as in Fig. [2). The solution for A = 0 spreads out
the sensors more, having to leave, e.g., the Western part of
the network uncovered in the time slot indicated by the green
triangle. The multicriterion solution (A = 0.25) is a compro-
mise between the former two solutions: The sensors are still
clustered, but spread out more — the Western part of the net-
work can be covered in this solution.

6.3 Comparison with existing techniques

We also compare ESPASS with several existing algorithms.
Since the existing algorithms apply to the scheduling prob-
lem only, we call ESPASS with m = |V| (i.e., allow it to
select all sensors).

Set covering. Most existing algorithms for sensor schedul-
ing assume that sensors are associated with a fixed sensing
region that can be perfectly observed by the sensor (c.f, [1}
8]). In this setting, we associate with each location s € A a
set Ry C V of locations that can be monitored by the sen-
sor, and define the sensing quality F'(A) = |J,c4 Rs| to
be the total area covered by all sensors. Since set coverage
is an example of a monotonic submodular function, we can
use ESPASS to optimize it.

We compare ESPASS to the greedy approach by [1], as
well as the the approach by [8] that relies on solving a semidef-
inite program (SDP). We use the synthetic experimental setup

defined by [[8] to compare the approaches. A set of n sensors
is used to cover M regions. Each sensor s is associated with
a set R, of regions it covers. The objective is to divide the
n sensors into k groups (buckets), such that the minimum or
the average number regions covered by each group is maxi-
mized.

For the SDP by [8], we solve the SDP using SeDuMi to get
a distribution over possible schedules, and then pick the best
solution out of 100 random samples drawn from this distri-
bution. For the random assignment approach (Rand100) of
[1]], we sample 100 random schedules and pick the best one.
In addition, we run the GAPS and the ESPASS algorithms.
We apply those four algorithms to 50 random set cover in-
stances as defined by [8]]: for each sensor, a uniform random
integer r between 3 and 5 is chosen, and then the first 7 re-
gions from a random permutation of the set of M regions is
assigned to that sensor. The sensor network size is n = 20,
the number of desired groups & = 5 and the number of re-
gions is M = 50.

Fig.[7(c)| presents the average performance of the four ap-
proaches. In this setting, the SDP performs best, closely fol-
lowed by GAPS and ESPASS. Fig.
presents the balanced performance of the four
approaches. Here, ESPASS significantly outperforms both
the SDP and the GAPS solution.

Building monitoring. As argued in the introduction, for
complex spatial monitoring problems, the sensing region (set
covering) assumption is unrealistic, and we would rather like
to optimize prediction accuracy directly. The approach by
[14] is designed to schedule sensors under constraints on the
prediction accuracy. Their approach, given a required pre-
diction accuracy, constructs a prediction graph that encodes
which sensors can predict which other sensors. They then
solve a domatic partitioning problem, i.e., selecting a maxi-
mal number of disjoint subsets that can predict all other sen-
sors with the desired accuracy. In order to determine the
domatic partitioning, their algorithm relies on the solution
of a Mixed Integer Program (MIP). However, solving MIPs
is NP-hard in general, and unfortunately, we could not scale
their approach to the traffic data application. Instead, we use
data from 46 temperature sensors deployed at Intel Research,
Berkeley (c.f., [7]]).



100

e o 9o
o o g9
& I &
o o
(R
5 o

e 9
o 9
R &

=)
S e
"

"8

o

=)

@
o
=)
®

0.06

=4
Q
N

28

o
°
R

Avg. fraction of locations not covered
Max. fraction of locations not covered

o

9

2
=4
Q
S

0

0
Rand Rand100 SDP MIP  GAPS eSPASS Rand Rand100 SDP

(b) [B] Balanced performance

MIP  GAPS eSPASS

(a) [B] Average performance

Time (seconds)

Avg. score
80 eSPASS

Avg. score
GAPS
60

Balanced score

40 7 GAPS

Variance reduction

Balanced score

20 6 eSPASS

0 0 10 20 30 40
MIP SDP eSPASS  GAPS Lifetime improvement (#time slots k)

(¢) [B] Running time (d) [B] Avg. vs. balanced

Figure 8: Results on temperature data from Intel Research Berkeley [B]. (a,b) compares ESPASS with existing solutions. (c)
compares running time. (d) compares average-case and balanced performance.

On this smaller data set, we first apply the MIP for domatic
partitioning, with a specified accuracy constraint. The MIP
was very sensitive with respect to this accuracy constraint.
For just slightly too small values of ¢, the MIP returned a
trivial solution consisting of only a single set. For slightly
too large values, the MIP had to consider partitions into a
large number of possible time slots, increasing the size of
the MIP such that the solver ran out of memory. Requir-
ing that sensors can predict each other with a Root Mean
Squared (RMS) error of 1.25 Kelvin leads to a selection of
m = 19 sensors, partitioned into k = 3 time slots. Using
this setting for m and k, we run the GAPS and ESPASS al-
gorithms, which happen to return the same solution for this
example. In order to compare these solutions with the SDP
and random selection from the previous section, we apply
them to the prediction graph induced by the required pre-
diction accuracy. We first randomly select 19 locations, and
then partition them into 3 groups using the SDP and Rand100
approach, respectively. As a baseline, we randomly select
3 groups totaling 19 sensors (Rand). For these randomized
techniques, we report the distribution over 20 trials. All ap-
proaches are evaluated based on the variance reduction ob-
jective function.

Fig. presents the result for optimizing the average
variance reduction, and Fig. @] for the minimum variance
reduction. In both settings, GAPS and ESPASS perform
best, obtaining 23% less remaining maximum variance when
compared to the MIP solution of [[14]. Furthermore, using
YalMIP in Matlab, solving the MIP requires 95 seconds, as
compared to 4 seconds for the SDP and 3.8 seconds for ES-
PASS (Fig.[8(c)). Even though the MIP returns an optimum
solution for the domatic partition of the prediction graph,
ESPASS performs better since it uses the fact that the combi-
nation of multiple sensors can lead to better prediction accu-
racy than only using single sensors for prediction. Even the
best out of 20 random trials for the SDP performs worse than
the MIP, due to the approximate nature of the algorithm and
the random selection of the initial 19 sensors. The Rand100
approach performs only slightly worse than the SDP based
approach.

7. RELATED WORK

Many approaches for optimizing sensor placements assume
that sensors have a fixed (e.g., circular) region [[13| [2]]. Fur-

thermore, it is assumed that everything within this region
can be perfectly observed, and everything outside cannot be
measured by the sensors. For complex applications such as
traffic monitoring however, such assumptions are unrealistic,
and the direct optimization of prediction accuracy is desired.
The problem of selecting observations for monitoring spatial
phenomena has been investigated extensively in geostatistics
(c.f., [S]] for an overview), and more generally (Bayesian) ex-
perimental design (c.f, [4]). Submodularity has been used to
analyze algorithms for placing a fixed set of sensors [20].
These approaches however only consider the sensor place-
ment problem, and not the scheduling.

The problem of deciding when to selectively turn on sen-
sors in order to conserve power was first discussed by [21]]
and [23]]. [1] presents an efficient approximation algorithm
with theoretical guarantees for this problem. [8] presents an
approach for this problem based on semidefinite program-
ming (SDP). They also provide a randomized rounding based
approach for scheduling under the balanced objective. How-
ever, in contrast to ESPASS (when specialized to schedul-
ing) their algorithm requires to relax the constraint that each
sensor location can only be selected once. Also, their guar-
antee only holds with high probability, whereas ESPASS is
deterministic. The approaches described above do not ap-
ply to the problem of optimizing sensor schedules for more
complex sensing quality functions such as, e.g., the increase
in prediction accuracy. To address these shortcomings, [14]
developed an approach for sensor scheduling that guarantees
a specified prediction accuracy based on a regression model.
However, their approach relies on the solution of a Mixed In-
teger Program, which is intractable in general. [23[] proposed
heuristics for selectively querying nodes in a sensor network
in order to reduce the entropy of the prediction. Unlike the
algorithms presented in this paper, their approaches do not
have any performance guarantees.

8. CONCLUSIONS

When deploying sensor networks for monitoring tasks, both
placing and scheduling the sensors are of key importance, in
order to ensure informative measurements and long deploy-
ment lifetime. Traditionally, sensor placement and schedul-
ing have been considered separately from each other. In this
paper, we presented an efficient algorithm, ESPASS, that
simultaneously optimizes the placement and schedule. We



considered both the setting where the average-case perfor-
mance over time is optimized, as well as the balanced set-
ting, where uniformly good performance is required. Such
balanced performance is crucial for security-critical applica-
tions like contamination detection. Our results show that op-
timizing for balanced performance often yields good average-
case performance, but not necessarily vice versa. We proved
that our ESPASS algorithm provides a constant factor 6 ap-
proximation to the optimal balanced solution. To the best of
our knowledge, ESPASS is the first algorithm that provides
strong guarantees for this problem, partly resolving an open
problem raised by [1]]. Furthermore, our algorithm applies to
any setting where the sensing quality function is submodular,
which allows to address complex sensing tasks where one
intends to optimize prediction or detection performance. We
also considered complex sensor placement scenarios, where
the deployed network must be able to function well both in
a scheduled and a high-density mode, where all sensors are
activated simultaneously. We developed an algorithm, MC-
SPASS, that optimizes this power-accuracy tradeoff.

We extensively evaluated our approach on several real-
world sensing case studies, including traffic and building mon-
itoring as well as contamination detection in metropolitan
area drinking water networks. When applied to the simpler
special case of sensor scheduling (i.e., ignoring the place-
ment aspect), ESPASS outperforms existing sensor schedul-
ing algorithms on standard data sets. For the more com-
plex, general case, our algorithm performs provably near-
optimal (as demonstrated by tight, data-dependent bounds).
Our results show that, for fixed deployment budget, drastic
improvements in sensor network lifetime can be achieved by
simultaneously optimizing the placement and the schedule,
as compared to the traditional, stage-wise approach. For ex-
ample, for traffic prediction, ESPASS achieves a 33% im-
provement in network lifetime compared to the setting where
placement and scheduled are optimized separately, and a 100%
improvement when compared to the traditional setting where
sensors are first randomly deployed and then optimally sched-
uled. Our results for MCSPASS show that solutions can be
found which perform near-optimally w.r.t. both scheduled
and high-density performance.

The simultaneous placement and scheduling problem is
naturally addressed in a centralized setting, since the opti-
mization is performed before sensors are deployed. An in-
teresting question, which we leave open for future work, is
whether the special case of fair scheduling (which is impor-
tant even for networks that already have been deployed) can
be solved in a distributed fashion while satisfying similarly
strong approximation guarantees as those of ESPASS. An-
other interesting open question is whether connectivity con-
straints can be met while simultaneously optimizing place-
ment and scheduling (as done by [15] for sensor placement).

We believe that the results described in this paper present
an important step towards understanding the deployment of
real world sensor networks.
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