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Contributions Composite Kernels

e An efficient algorithm, CGP-UCB, for the contextual GP bandit problem

e Flexibly combining kernels over contexts and actions

e Generic approach for deriving regret bounds for composite kernel functions
e Evaluate CGP-UCB on automated vaccine design and sensor management

Contextual Bandits [cf., Auer '02; Langford & Zhang '08]

Play a game for T rounds:
e Receive context z, € /
e Choose an actions, € S
o Receive a payoff y; = f(s;,z;) + €; (f unknown).
Cumulative regret for context specific action
o Incur contextual regret r; = supgy.s f(s', z;) — f(s¢, z¢)
e After T rounds, the cumulative contextual regret is Rt = Z;l re.
o Context-specific best action is a demanding benchmark.

Gaussian Processes (GP)

e Model payoff function using GPs: f ~ GP(u, k)

e observations y1 = [y; ... y7]” at inputs At = {xq,...,x7}
oy, = f(x;) + € with i.i.d. Gaussian noise ¢, ~ N(0, 0?)

e Posterior distribution over f is a GP with

mean pr(x) = kr(x)" (K7 +o?l) "ty r,
covariance k7(x,x') = k(x,x") — kr(x)" (K7 4 o?1) "tk (x'),
variance o%(x) = kr(x, x),

where k7(x) = [k(x1,x) ... k(x7,x)]" and K7 is the kernel matrix.

GP-UCB [Srinivas, Krause, Kakade, Seeger ICML 2010]
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Context free upper confidence bound algorithm (GP-UCB)
At round t, GP-UCB picks action s; = x; such that

s: = argmax 11-1(s) + B¢ "0-1(s),
se$S
with appropriate ;. Trades exploration (high o) and exploitation (high ).
Maximum information gain bounds regret
The (context-free) regret Ry of GP-UCB is bounded by O*(v/ T 87v7), where

~v1 is defined as the maximum information gain:
[(ya: f), [(ya; f) = H(ya) — H(yalf)

quantifies the reduction in uncertainty about f achieved by revealing ya.
Bounds for Kernels
Bounds on 7 exist for linear, squared exponential and Matérn kernels.

YT = max where
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Contextual Upper Confidence Bound Algorithm (CGP-UCB)

¢ = argmax peo1(s,ze) + B Poe (s, 2)
Sc

where p; 1(-) and o;_1(+) are the posterior mean and standard deviation of the GP
over the joint set X = S X Z conditioned on the observations
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Bounds on Contextual Regret

Let 0 € (0,1). Suppose one of the following assumptions holds

2

X is compact and convex, C [0, r]d, d € N, r > 0. Suppose f is sampled from a
known GP prior with known noise variance o2, and that k(x, x’) has smooth
derivatives,

X is arbitrary; ||f||x < B. The noise variables ¢; form an arbitrary martingale
difference sequence (meaning that E[e;|eq,...,e,.1] =0 for all t € N),
uniformly bounded by o.

X is finite, f is sampled from a known GP prior with known noise variance o

Then for appropriate choices of 3;, the contextual regret of CGP-UCB is bounded by
O*(\/ Tv7B7) w.h.p. Precisely,

Pr{RT < /GTBrr+2 VT > 1} >1-4.
where C; = 8/ log(1 + o72).
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Product of squared exponential kernel
and linear kernel

Additive combination of payoff that
smoothly depends on context, and

exhibits clusters of actions.
Product kernel

o k = ks ® kz, where (ks ® kz)((s, z),(s',Z')) = kz(z,2')ks(s, s')
e Two context-action pairs are similar (large correlation) if the contexts are
similar and actions are similar

Additive kernel
o (ks @ kz)((s,z),(s',2)) = kz(z,Z) + ks(s,s')
o Generative model: first sample a function fs(s, z) that is constant along z, and

varies along s with regularity as expressed by kg; then sample a function £,(s, z),
which varies along z and is constant along s;

f=fi+h

Bounds for Composite Kernels

Maximum information gain for a GP with kernel k on set V

n n — 1 —2 /
Tk V)= | max 5 log|l+ o Tk(v,V)lvweal
Product kernel

Let k» be a kernel function on Z with rank at most d. Then
Y(T; ks ® kz; X) < dvy(T; ks;S) + dlog T.

Additive kernel
Let ks and k7 be kernel functions on $ and Z respectively. Then

Y(T; ks ® kz; X) < (T ks; S) +v(T; kz; Z) + 2log T.

Multi-task Learning (Vaccine Design)
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Context Similarity US|ng Trial t Trial t per task
inter task predictions. average regret of

CGP-UCB

maximum regret of

CGP-UCB

Task Discover peptide sequences binding to MHC molecules
Context Features encoding the MHC alleles

Action Choose a stimulus (the vaccine) s € S that maximizes an observed response
(binding affinity).

Kernels Use a finite inter-task covariance kernel K, with rank m, to model the
similarity of different experiments, and a Gaussian kernel ks(s,s’) to model the
experimental parameters.

Learning to Monitor Sensor Networks
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temperature minimum temperature

Temperature data from a
network of 46 sensors at
Intel Research.

Task Given a sensor network, monitor maximum temperatures in building
Context Time of day

Action Pick 5 sensors to activate

Kernels Joint spatio-temporal covariance function using the Matérn kernel



