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Contributions

•An efficient algorithm, CGP-UCB, for the contextual GP bandit problem

• Flexibly combining kernels over contexts and actions

•Generic approach for deriving regret bounds for composite kernel functions

• Evaluate CGP-UCB on automated vaccine design and sensor management

Contextual Bandits [cf., Auer ’02; Langford & Zhang ’08]

Play a game for T rounds:
•Receive context zt ∈ Z
•Choose an action st ∈ S
•Receive a payoff yt = f (st, zt) + εt (f unknown).

Cumulative regret for context specific action
• Incur contextual regret rt = sups′∈S f (s′, zt)− f (st, zt)
•After T rounds, the cumulative contextual regret is RT =

∑T
t=1 rt.

•Context-specific best action is a demanding benchmark.

Gaussian Processes (GP)

•Model payoff function using GPs: f ∼ GP(µ, k)

• observations yT = [y1 . . . yT ]T at inputs AT = {x1, . . . , xT}
• yt = f (xt) + εt with i.i.d. Gaussian noise εt ∼ N(0, σ2)

•Posterior distribution over f is a GP with
mean µT (x) = kT (x)T (KT + σ2I)−1yT ,
covariance kT (x, x′) = k(x, x′)− kT (x)T (KT + σ2I)−1kT (x′),
variance σ2

T (x) = kT (x, x),

where kT (x) = [k(x1, x) . . . k(xT , x)]T and KT is the kernel matrix.

GP-UCB [Srinivas, Krause, Kakade, Seeger ICML 2010]
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Context free upper confidence bound algorithm (GP-UCB)
At round t, GP-UCB picks action st = xt such that

st = argmax
s∈S

µt−1(s) + β
1/2
t σt−1(s),

with appropriate βt. Trades exploration (high σ) and exploitation (high µ).

Maximum information gain bounds regret
The (context-free) regret RT of GP-UCB is bounded by O∗(

√
TβTγT ), where

γT is defined as the maximum information gain:

γT := max
A⊂S :|A|=T

I(yA; f ), where I(yA; f ) = H(yA)− H(yA|f )

quantifies the reduction in uncertainty about f achieved by revealing yA.

Bounds for Kernels
Bounds on γT exist for linear, squared exponential and Matérn kernels.

Contextual Upper Confidence Bound Algorithm (CGP-UCB)

st = argmax
s∈S

µt−1(s, zt) + β
1/2
t σt−1(s, zt)

where µt−1(·) and σt−1(·) are the posterior mean and standard deviation of the GP
over the joint set X = S × Z conditioned on the observations
(s1, z1, y1), . . . , (st−1, zt−1, yt−1).

Bounds on Contextual Regret

Let δ ∈ (0, 1). Suppose one of the following assumptions holds

X is finite, f is sampled from a known GP prior with known noise variance σ2,

X is compact and convex,⊆ [0, r ]d , d ∈ N, r > 0. Suppose f is sampled from a
known GP prior with known noise variance σ2, and that k(x, x′) has smooth
derivatives,

X is arbitrary; ||f ||k ≤ B. The noise variables εt form an arbitrary martingale
difference sequence (meaning that E[εt | ε1, . . . , εt−1] = 0 for all t ∈ N),
uniformly bounded by σ.

Then for appropriate choices of βt, the contextual regret of CGP-UCB is bounded by
O∗(
√

TγTβT ) w.h.p. Precisely,

Pr
{

RT ≤
√

C1TβTγT + 2 ∀T ≥ 1
}
≥ 1− δ.

where C1 = 8/ log(1 + σ−2).

Composite Kernels
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Additive combination of payoff that
smoothly depends on context, and

exhibits clusters of actions.
Product kernel

• k = kS ⊗ kZ , where (kS ⊗ kZ )((s, z), (s′, z′)) = kZ (z, z′)kS(s, s′)
•Two context-action pairs are similar (large correlation) if the contexts are

similar and actions are similar

Additive kernel
• (kS ⊕ kZ )((s, z), (s′, z′)) = kZ (z, z′) + kS(s, s′)
•Generative model: first sample a function fS(s, z) that is constant along z, and

varies along s with regularity as expressed by ks; then sample a function fz(s, z),
which varies along z and is constant along s;

f = fs + fz.

Bounds for Composite Kernels

Maximum information gain for a GP with kernel k on set V

γ(T ; k ; V ) = max
A⊆V ,|A|≤T

1

2
log
∣∣∣I + σ−2[k(v, v′)]v,v′∈A

∣∣∣,
Product kernel

Let kZ be a kernel function on Z with rank at most d . Then

γ(T ; kS ⊗ kZ ; X ) ≤ dγ(T ; kS ; S) + d log T .

Additive kernel
Let kS and kZ be kernel functions on S and Z respectively. Then

γ(T ; kS ⊕ kZ ; X ) ≤ γ(T ; kS ; S) + γ(T ; kZ ; Z ) + 2 log T .

Multi-task Learning (Vaccine Design)

Context similarity using
inter task predictions.
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Task Discover peptide sequences binding to MHC molecules

Context Features encoding the MHC alleles

Action Choose a stimulus (the vaccine) s ∈ S that maximizes an observed response
(binding affinity).

Kernels Use a finite inter-task covariance kernel KZ with rank mZ to model the
similarity of different experiments, and a Gaussian kernel kS(s, s′) to model the
experimental parameters.

Learning to Monitor Sensor Networks
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Task Given a sensor network, monitor maximum temperatures in building

Context Time of day

Action Pick 5 sensors to activate

Kernels Joint spatio-temporal covariance function using the Matérn kernel


