Contextual Gaussian Process Bandit Optimization

Andreas Krause and Cheng Soon Ong

Department of Computer Science, ETH Zurich, Switzerland

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Contributions

- An efficient algorithm, CGP-UCB, for the contextual GP bandit problem • Flexibly combining kernels over contexts and actions • Generic approach for deriving regret bounds for composite kernel functions
- Evaluate CGP-UCB on automated vaccine design and sensor management

Contextual Bandits [cf., Auer '02; Langford & Zhang '08]

Play a game for *T* **rounds:**

- Receive *context* $\mathbf{z}_t \in Z$
- Choose an *action* $\mathbf{s}_t \in S$
- Receive a payoff $y_t = f(\mathbf{s}_t, \mathbf{z}_t) + \epsilon_t$ (f unknown).

Cumulative regret for context specific action

- Incur contextual regret $r_t = \sup_{\mathbf{s}' \in S} f(\mathbf{s}', \mathbf{z}_t) f(\mathbf{s}_t, \mathbf{z}_t)$
- After T rounds, the cumulative contextual regret is $R_T = \sum_{t=1}^{T} r_t$.

Composite Kernels

Contexts Additive combination of payoff that

smoothly depends on context, and

exhibits clusters of actions.

Product of squared exponential kernel and linear kernel

Product kernel

- $k = k_S \otimes k_Z$, where $(k_S \otimes k_Z)((\mathbf{s}, \mathbf{z}), (\mathbf{s}', \mathbf{z}')) = k_Z(\mathbf{z}, \mathbf{z}')k_S(\mathbf{s}, \mathbf{s}')$
- Two context-action pairs are similar (large correlation) if the contexts are similar and actions are similar

• Context-specific best action is a demanding benchmark.

Gaussian Processes (GP)

• Model payoff function using GPs: $f \sim GP(\mu, k)$ • observations $\mathbf{y}_T = [y_1 \dots y_T]^T$ at inputs $A_T = \{\mathbf{x}_1, \dots, \mathbf{x}_T\}$ • $y_t = f(\mathbf{x}_t) + \epsilon_t$ with i.i.d. Gaussian noise $\epsilon_t \sim N(0, \sigma^2)$ • Posterior distribution over f is a GP with $\mu_T(\mathbf{x}) = \mathbf{k}_T(\mathbf{x})^T (\mathbf{K}_T + \sigma^2 \mathbf{I})^{-1} \mathbf{y}_T,$ mean covariance $k_T(\mathbf{x}, \mathbf{x}') = k(\mathbf{x}, \mathbf{x}') - \mathbf{k}_T(\mathbf{x})^T (\mathbf{K}_T + \sigma^2 \mathbf{I})^{-1} \mathbf{k}_T(\mathbf{x}')$, variance $\sigma_T^2(\mathbf{x}) = k_T(\mathbf{x}, \mathbf{x}),$ where $\mathbf{k}_T(\mathbf{x}) = [k(\mathbf{x}_1, \mathbf{x}) \dots k(\mathbf{x}_T, \mathbf{x})]^T$ and \mathbf{K}_T is the kernel matrix.

GP-UCB [Srinivas, Krause, Kakade, Seeger ICML 2010]

Additive kernel

• $(k_S \oplus k_Z)((\mathbf{s}, \mathbf{z}), (\mathbf{s}', \mathbf{z}')) = k_Z(\mathbf{z}, \mathbf{z}') + k_S(\mathbf{s}, \mathbf{s}')$

• Generative model: first sample a function $f_S(\mathbf{s}, \mathbf{z})$ that is constant along \mathbf{z} , and varies along **s** with regularity as expressed by k_s ; then sample a function $f_z(\mathbf{s}, \mathbf{z})$, which varies along **z** and is constant along **s**;

 $f = f_{\rm s} + f_{\rm z}$

Bounds for Composite Kernels

Maximum information gain for a GP with kernel k on set V

$$\gamma(T; k; V) = \max_{A \subseteq V, |A| \le T} \frac{1}{2} \log \left| \mathbf{I} + \sigma^{-2} [k(\mathbf{v}, \mathbf{v}')]_{\mathbf{v}, \mathbf{v}' \in A} \right|,$$

Product kernel

Let k_7 be a kernel function on Z with rank at most d. Then

 $\gamma(T; k_S \otimes k_Z; X) \leq d\gamma(T; k_S; S) + d \log T.$

Additive kernel

Let k_S and k_Z be kernel functions on S and Z respectively. Then

 $\gamma(T; k_S \oplus k_Z; X) \leq \gamma(T; k_S; S) + \gamma(T; k_Z; Z) + 2\log T.$

Multi-task Learning (Vaccine Design)

Context free upper confidence bound algorithm (GP-UCB)

At round *t*, GP-UCB picks action $\mathbf{s}_t = \mathbf{x}_t$ such that

$$\mathbf{s}_{t} = \underset{\mathbf{s} \in S}{\operatorname{argmax}} \mu_{t-1}(\mathbf{s}) + \beta_{t}^{1/2} \sigma_{t-1}(\mathbf{s}),$$

with appropriate β_t . Trades exploration (high σ) and exploitation (high μ).

Maximum information gain bounds regret

The (context-free) regret R_T of GP-UCB is bounded by $\mathcal{O}^*(\sqrt{T\beta_T\gamma_T})$, where γ_T is defined as the maximum information gain:

 $\gamma_T := \max_{A \subset S: |A| = T} I(y_A; f), \quad \text{where} \quad I(y_A; f) = H(y_A) - H(y_A|f)$

quantifies the reduction in uncertainty about f achieved by revealing y_A . **Bounds for Kernels**

Bounds on γ_T exist for linear, squared exponential and Matérn kernels.

Contextual Upper Confidence Bound Algorithm (CGP-UCB)

 $\mathbf{s}_{t} = \operatorname*{argmax}_{\mathbf{s} \in S} \mu_{t-1}(\mathbf{s}, \mathbf{z}_{t}) + \beta_{t}^{1/2} \sigma_{t-1}(\mathbf{s}, \mathbf{z}_{t})$

where $\mu_{t-1}(\cdot)$ and $\sigma_{t-1}(\cdot)$ are the posterior mean and standard deviation of the GP over the joint set $X = S \times Z$ conditioned on the observations $(s_1, z_1, y_1), \ldots, (s_{t-1}, z_{t-1}, y_{t-1}).$

Task Discover peptide sequences binding to MHC molecules

Context Features encoding the MHC alleles

Action Choose a stimulus (the vaccine) $\mathbf{s} \in S$ that maximizes an observed response (binding affinity).

Kernels Use a finite inter-task covariance kernel K_Z with rank m_Z to model the similarity of different experiments, and a Gaussian kernel $k_S(\mathbf{s}, \mathbf{s}')$ to model the experimental parameters.

GP-UCB

merge contex

Learning to Monitor Sensor Networks

Bounds on Contextual Regret

Let $\delta \in (0, 1)$. Suppose one of the following assumptions holds X is finite, f is sampled from a known GP prior with known noise variance σ^2 , X is compact and convex, $\subseteq [0, r]^d$, $d \in \mathbb{N}$, r > 0. Suppose f is sampled from a known GP prior with known noise variance σ^2 , and that $k(\mathbf{x}, \mathbf{x}')$ has smooth derivatives,

X is arbitrary; $\|f\|_k \leq B$. The noise variables ϵ_t form an *arbitrary* martingale difference sequence (meaning that $\mathbb{E}[\varepsilon_t | \varepsilon_1, \ldots, \varepsilon_{t-1}] = 0$ for all $t \in \mathbb{N}$), uniformly bounded by σ .

Then for appropriate choices of β_t , the *contextual regret* of CGP-UCB is bounded by $\mathcal{O}^*(\sqrt{T\gamma_T\beta_T})$ w.h.p. Precisely,

 $\Pr\left\{R_T \leq \sqrt{C_1 T \beta_T \gamma_T} + 2 \quad \forall T \geq 1\right\} \geq 1 - \delta.$ where $C_1 = 8/\log(1 + \sigma^{-2})$.

Task Given a sensor network, monitor maximum temperatures in building **Context** Time of day **Action** Pick 5 sensors to activate Kernels Joint spatio-temporal covariance function using the Matérn kernel