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Abstract

Subsampling methods have been recently proposed to speed up least squares esti-
mation in large scale settings. However, these algorithms are typically not robust
to outliers or corruptions in the observed covariates.
The concept of influence that was developed for regression diagnostics can be
used to detect such corrupted observations as shown in this paper. This property
of influence – for which we also develop a randomized approximation – motivates
our proposed subsampling algorithm for large scale corrupted linear regression
which limits the influence of data points since highly influential points contribute
most to the residual error. Under a general model of corrupted observations, we
show theoretically and empirically on a variety of simulated and real datasets that
our algorithm improves over the current state-of-the-art approximation schemes
for ordinary least squares.

1 Introduction

To improve scalability of the widely used ordinary least squares algorithm, a number of randomized
approximation algorithms have recently been proposed. These methods, based on subsampling the
dataset, reduce the computational time from O

�

np2
�

to o(np2)1 [14]. Most of these algorithms
are concerned with the classical fixed design setting or the case where the data is assumed to be
sampled i.i.d. typically from a sub-Gaussian distribution [7]. This is known to be an unrealistic
modelling assumption since real-world data are rarely well-behaved in the sense of the underlying
distributions.

We relax this limiting assumption by considering the setting where with some probability, the ob-
served covariates are corrupted with additive noise. This scenario corresponds to a generalised
version of the classical problem of “errors-in-variables” in regression analysis which has recently
been considered in the context of sparse estimation [12]. This corrupted observation model poses a
more realistic model of real data which may be subject to many different sources of measurement
noise or heterogeneity in the dataset.

A key consideration for sampling is to ensure that the points used for estimation are typical of the
full dataset. Typicality requires the sampling distribution to be robust against outliers and corrupted
points. In the i.i.d. sub-Gaussian setting, outliers are rare and can often easily be identified by
examining the statistical leverage scores of the datapoints.

Crucially, in the corrupted observation setting described in §2, the concept of an outlying point
concerns the relationship between the observed predictors and the response. Now, leverage alone
cannot detect the presence of corruptions. Consequently, without using additional knowledge about

⇤Authors contributed equally.
1Informally: f(n) = o(g(n)) means f(n) grows more slowly than g(n).
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the corrupted points, the OLS estimator (and its subsampled approximations) are biased. This also
rules out stochastic gradient descent (SGD) – which is often used for large scale regression – since
convex cost functions and regularizers which are typically used for noisy data are not robust with
respect to measurement corruptions.

This setting motivates our use of influence – the effective impact of an individual datapoint exerts on
the overall estimate – in order to detect and therefore avoid sampling corrupted points. We propose
an algorithm which is robust to corrupted observations and exhibits reduced bias compared with
other subsampling estimators.

Outline and Contributions. In §2 we introduce our corrupted observation model before reviewing
the basic concepts of statistical leverage and influence in §3. In §4 we briefly review two subsampling
approaches to approximating least squares based on structured random projections and leverage
weighted importance sampling. Based on these ideas we present influence weighted subsampling
(IWS-LS), a novel randomized least squares algorithm based on subsampling points with small
influence in §5.

In §6 we analyse IWS-LS in the general setting where the observed predictors can be corrupted
with additive sub-Gaussian noise. Comparing the IWS-LS estimate with that of OLS and other
randomized least squares approaches we show a reduction in both bias and variance. It is important
to note that the simultaneous reduction in bias and variance is relative to OLS and randomized
approximations which are only unbiased in the non-corrupted setting. Our results rely on novel
finite sample characteristics of leverage and influence which we defer to §SI.3. Additionally, in
§SI.4 we prove an estimation error bound for IWS-LS in the standard sub-Gaussian model.

Computing influence exactly is not practical in large-scale applications and so we propose two ran-
domized approximation algorithms based on the randomized leverage approximation of [8]. Both
of these algorithms run in o(np2) time which improve scalability in large problems. Finally, in §7
we present extensive experimental evaluation which compares the performance of our algorithms
against several randomized least squares methods on a variety of simulated and real datasets.

2 Statistical model
In this work we consider a variant of the standard linear model

y = X� + ✏, (1)

where ✏ 2 Rn is a noise term independent of X 2 Rn⇥p. However, rather than directly observing
X we instead observe Z where

Z = X+ UW. (2)
U = diag(u

1

, . . . , un) and ui is a Bernoulli random variable with probability ⇡ of being 1.
W 2 Rn⇥p is a matrix of measurement corruptions. The rows of Z therefore are corrupted with
probability ⇡ and not corrupted with probability (1 � ⇡).
Definition 1 (Sub-gaussian matrix). A zero-mean matrix X is called sub-Gaussian with parameter
(

1

n�
2

x,
1

n⌃x) if (a) Each row x>
i 2 Rp is sampled independently and has E[xix

>
i ] =

1

n⌃x. (b) For
any unit vector v 2 Rp, v>xi is a sub-Gaussian random variable with parameter at most 1p

p�x.

We consider the specific instance of the linear corrupted observation model in Eqs. (1), (2) where

• X,W 2 Rn⇥p are sub-Gaussian with parameters (

1

n�
2

x,
1

n⌃x) and (

1

n�
2

w,
1

n⌃w) respec-
tively,

• ✏ 2 Rn is sub-Gaussian with parameters ( 1n�
2

✏ ,
1

n�
2

✏ In),

and all are independent of each other.

The key challenge is that even when ⇡ and the magnitude of the corruptions, �w are relatively small,
the standard linear regression estimate is biased and can perform poorly (see §6). Sampling methods
which are not sensitive to corruptions in the observations can perform even worse if they somehow
subsample a proportion rn > ⇡n of corrupted points. Furthermore, the corruptions may not be large
enough to be detected via leverage based techniques alone.

The model described in this section generalises the “errors-in-variables” model from classical least
squares modelling. Recently, similar models have been studied in the high dimensional (p � n)
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setting in [4–6, 12] in the context of robust sparse estimation. The “low-dimensional” (n > p)
setting is investigated in [4], but the “big data” setting (n � p) has not been considered so far.2

In the high-dimensional problem, knowledge of the corruption covariance, ⌃w [12], or the data
covariance ⌃x [5], is required to obtain a consistent estimate. This assumption may be unrealistic in
many settings. We aim to reduce the bias in our estimates without requiring knowledge of the true
covariance of the data or the corruptions, and instead sub-sample only non-corrupted points.

3 Diagnostics for linear regression

In practice, the sub-Gaussian linear model assumption is often violated either by heterogeneous
noise or by a corruption model as in §2. In such scenarios, fitting a least squares model to the full
dataset is unwise since the outlying or corrupted points can have a large adverse effect on the model
fit. Regression diagnostics have been developed in the statistics literature to detect such points (see
e.g. [2] for a comprehensive overview). Recently, [14] proposed subsampling points for least squares
based on their leverage scores. Other recent works suggest related influence measures that identify
subspace [16] and multi-view [15] clusters in high dimensional data.

3.1 Statistical leverage

For the standard linear model in Eq. (1), the well known least squares solution is

b� = argmin

�
ky � X�k

2

=

�

X>X
��1

X>y. (3)

The projection matrix I�L with L := X(X>X)

�1X> specifies the subspace in which the residual
lies. The diagonal elements of the “hat matrix” L, li := Lii, i = 1, . . . , n are the statistical leverage
scores of the ith sample. Leverage scores quantify to what extent a particular sample is an outlier
with respect to the distribution of X.

An equivalent definition from [14] which will be useful later concerns any matrix U 2 Rn⇥p which
spans the column space of X (for example, the matrix whose columns are the left singular vectors of
X). The statistical leverage scores of the rows of X are the squared row norms of U, i.e. li = kUik

2.

Although the use of leverage can be motivated from the least squares solution in Eq. (3), the lever-
age scores do not take into account the relationship between the predictor variables and the response
variable y. Therefore, low-leverage points may have a weak predictive relationship with the re-
sponse and vice-versa. In other words, it is possible for such points to be outliers with respect to the
conditional distribution P (y|X) but not the marginal distribution on X.

3.2 Influence

A concept that captures the predictive relationship between covariates and response is influence.
Influential points are those that might not be outliers in the geometric sense, but instead adversely
affect the estimated coefficients.

One way to assess the influence of a point is to compute the change in the learned model when
the point is removed from the estimation step. [2]. We can compute a leave-one-out least squares
estimator by straightforward application of the Sherman-Morrison-Woodbury formula (see Prop. 3
in §SI.3):

b��i =
�

X>X � x>
i xi

��1

�

X>y � x>
i yi
�

=

b� �

⌃�1x>
i ei

1 � li

where ei = yi � xi
b�OLS. Defining the influence3, di as the change in expected mean squared error

we have

di =
⇣

b� �

b��i

⌘>
X>X

⇣

b� �

b��i

⌘

=

e2i li

(1 � li)
2

.

2Unlike [5, 12] and others we do not consider sparsity in our solution since n � p.
3The expression we use is also called Cook’s distance [2].
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Points with large values of di are those which, if added to the model, have the largest adverse effect
on the resulting estimate. Since influence only depends on the OLS residual error and the leverage
scores, it can be seen that the influence of every point can be computed at the cost of a least squares
fit. In the next section we will see how to approximate both quantities using random projections.

4 Fast randomized least squares algorithms

We briefly review two randomized approaches to least squares approximation: the importance
weighted subsampling approach of [9] and the dimensionality reduction approach [14]. The for-
mer proposes an importance sampling probability distribution according to which, a small number
of rows of X and y are drawn and used to compute the regression coefficients. If the sampling prob-
abilities are proportional to the statistical leverages, the resulting estimator is close to the optimal
estimator [9]. We refer to this as LEV-LS.

The dimensionality reduction approach can be viewed as a random projection step followed by a
uniform subsampling. The class of Johnson-Lindenstrauss projections – e.g. the SRHT – has been
shown to approximately uniformize leverage scores in the projected space. Uniformly subsampling
the rows of the projected matrix proves to be equivalent to leverage weighted sampling on the origi-
nal dataset [14]. We refer to this as SRHT-LS. It is analysed in the statistical setting by [7] who also
propose ULURU, a two step fitting procedure which aims to correct for the subsampling bias and
consequently converges to the OLS estimate at a rate independent of the number of subsamples [7].

Subsampled Randomized Hadamard Transform (SRHT) The SHRT consists of a precondi-
tioning step after which nsubs rows of the new matrix are subsampled uniformly at random in the
following way

q

n
n
subs

SHD · X = ⇧X with the definitions [3]:
• S is a subsampling matrix.
• D is a diagonal matrix whose entries are drawn independently from {�1, 1}.
• H 2 Rn⇥n is a normalized Walsh-Hadamard matrix4 which is defined recursively as

Hn =



Hn/2 Hn/2

Hn/2 �Hn/2

�

, H
2

=



+1 +1

+1 �1

�

.

We set H =

1p
n
Hn so it has orthonormal columns.

As a result, the rows of the transformed matrix ⇧X have approximately uniform leverage scores.
(see [17] for detailed analysis of the SRHT). Due to the recursive nature of H, the cost of applying
the SRHT is O (pn log nsubs) operations, where nsubs is the number of rows sampled from X [1].

The SRHT-LS algorithm solves b�SRHT = argmin� k⇧y � ⇧X�k

2 which for an appropriate
subsampling ratio, r = ⌦(

p2

⇢2 ) results in a residual error, ˜e which satisfies

k

˜ek  (1 + ⇢)kek (4)

where e = y � Xb�OLS is the vector of OLS residual errors [14].

Randomized leverage computation Recently, a method based on random projections has been
proposed to approximate the leverage scores based on first reducing the dimensionality of the data
using the SRHT followed by computing the leverage scores using this low-dimensional approxima-
tion [8–10, 13].

The leverage approximation algorithm of [8] uses a SRHT, ⇧
1

2 Rr1⇥n to first compute the ap-
proximate SVD of X,

⇧
1

X = U
⇧X⌃

⇧XV>
⇧X . Followed by a second SHRT ⇧

2

2 Rp⇥r2 to compute an approximate
orthogonal basis for X

R�1

= V
⇧X⌃�1

⇧X 2 Rp⇥p, ˜U = XR�1⇧
2

2 Rn⇥r2 . (5)

4For the Hadamard transform, n must be a power of two but other transforms exist (e.g. DCT, DFT) for
which similar theoretical guarantees hold and there is no restriction on n.
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The approximate leverage scores are now the squared row norms of ˜U, ˜li = k

˜Uik
2.

From [14] we derive the following result relating to randomized approximation of the leverage

˜li  (1 + ⇢l)li , (6)

where the approximation error, ⇢l depends on the choice of projection dimensions r
1

and r
2

.

The leverage weighted least squares (LEV-LS) algorithm samples rows of X and y with probability
proportional to li (or ˜li in the approximate case) and performs least squares on this subsample. The
residual error resulting from the leverage weighted least squares is bounded by Eq. (4) implying
that LEV-LS and SRHT-LS are equivalent [14]. It is important to note that under the corrupted
observation model these approximations will be biased.

5 Influence weighted subsampling
In the corrupted observation model, OLS and therefore the random approximations to OLS de-
scribed in §4 obtain poor predictions. To remedy this, we propose influence weighted subsampling
(IWS-LS) which is described in Algorithm 1. IWS-LS subsamples points according to the distri-
bution, Pi = c/di where c is a normalizing constant so that

Pn
i=1

Pi = 1. OLS is then estimated on
the subsampled points. The sampling procedure ensures that points with high influence are selected
infrequently and so the resulting estimate is less biased than the full OLS solution. Several ap-
proaches similar in spirit have previously been proposed based on identifying and down-weighting
the effect of highly influential observations [19].

Obviously, IWS-LS is impractical in the scenarios we consider since it requires the OLS residuals
and full leverage scores. However, we use this as a baseline and to simplify the analysis. In the next
section, we propose an approximate influence weighted subsampling algorithm which combines the
approximate leverage computation of [8] and the randomized least squares approach of [14].

Algorithm 1 Influence weighted subsampling
(IWS-LS).
Input: Data: Z, y

1: Solve

b�OLS = argmin� ky � Z�k

2

2: for i = 1 . . . n do
3: ei = yi � zib�OLS
4: li = z>i (Z

>Z)�1zi
5: di = e2i li/(1 � li)

2

6: end for
7: Sample rows (Z̃, ỹ) of (Z, y) proportional to

1
d
i

8: Solve

b�IWS = argmin� k

˜y �

˜Z�k

2

Output: b�IWS

Algorithm 2 Residual weighted subsampling
(aRWS-LS)
Input: Data: Z, y

1: Solve

b�SRHT = argmin� k⇧ · (y � Z�)k2

2: Estimate residuals: ẽ = y � Zb�SRHT

3: Sample rows (

˜Z,

˜y) of (Z, y) proportional to

1

ẽ2
i

4: Solve

b�RWS = argmin� k

˜y �

˜Z�k

2

Output: b�RWS

Randomized approximation algorithms. Using the ideas from §4 and §4 we obtain the following
randomized approximation to the influence scores

˜di =
ẽ2i
˜li

(1 �

˜li)2
, (7)

where ẽi is the ith residual error computed using the SRHT-LS estimator. Since the approxima-
tion errors of ẽi and ˜li are bounded (inequalities (4) and (6)), this suggests that our randomized
approximation to influence is close to the true influence.

Basic approximation. The first approximation algorithm is identical to Algorithm 1 except that
leverage and residuals are replaced by their randomized approximations as in Eq. (7). We refer to
this algorithm as Approximate influence weighted subsampling (aIWS-LS). Full details are given
in Algorithm 3 in §SI.2.
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Residual Weighted Sampling. Leverage scores are typically uniform [7, 13] for sub-Gaussian
data. Even in the corrupted setting, the difference in leverage scores between corrupted and non-
corrupted points is small (see §6). Therefore, the main contribution to the influence for each point
will originate from the residual error, e2i . Consequently, we propose sampling with probability
inversely proportional to the approximate residual, 1

ẽ2
i

. The resulting algorithm Residual Weighted
Subsampling (aRWS-LS) is detailed in Algorithm 2. Although aRWS-LS is not guaranteed to be
a good approximation to IWS-LS, empirical results suggests that it works well in practise and is
faster to compute than aIWS-LS.

Computational complexity. Clearly, the computational complexity of IWS-LS is O
�

np2
�

. The
computation complexity of aIWS-LS is O

�

np log nsubs + npr
2

+ nsubsp
2

�

, where the first term
is the cost of SRHT-LS, the second term is the cost of approximate leverage computation and the
last term solves OLS on the subsampled dataset. Here, r

2

is the dimension of the random pro-
jection detailed in Eq. (5). The cost of aRWS-LS is O

�

np log nsubs + np+ nsubsp
2

�

where
the first term is the cost of SRHT-LS, the second term is the cost of computing the residuals
e, and the last term solves OLS on the subsampled dataset. This computation can be reduced to
O
�

np log nsubs + nsubsp
2

�

. Therefore the cost of both aIWS-LS and aRWS-LS is o(np2).

6 Estimation error

In this section we will prove an upper bound on the estimation error of IWS-LS in the corrupted
model. First, we show that the OLS error consists of two additional variance terms that depend on the
size and proportion of the corruptions and an additional bias term. We then show that IWS-LS can
significantly reduce the relative variance and bias in this setting, so that it no longer depends on the
magnitude of the corruptions but only on their proportion. We compare these results to recent results
from [4, 12] suggesting that consistent estimation requires knowledge about ⌃w. More recently, [5]
show that incomplete knowledge about this quantity results in a biased estimator where the bias is
proportional to the uncertainty about ⌃w. We see that the form of our bound matches these results.

Inequalities are said to hold with high probability (w.h.p.) if the probability of failure is not more
than C

1

exp(�C
2

log p) where C
1

, C
2

are positive constants that do not depend on the scaling quan-
tities n, p,�w. The symbol . means that we ignore constants that do not depend on these scaling
quantities. Proofs are provided in the supplement. Unless otherwise stated, k·k denotes the `

2

norm
for vectors and the spectral norm for matrices.

Corrupted observation model. As a baseline, we first investigate the behaviour of the OLS esti-
mator in the corrupted model.

Theorem 1 (A bound on k

b�OLS � �k). If n & �2
x

�2
w

�min(⌃x

)

p log p then w.h.p.

k

b�OLS � �k .
 

�

�✏�x + ⇡�✏�w + ⇡
�

�2

w + �w�x

�

k�k

�

r

p log p

n
+ ⇡�2

w
p

pk�k

!

·

1

�
(8)

where 0 < �  �
min

(⌃x) + ⇡�
min

(⌃w).
Remark 1 (No corruptions case). Notice for a fixed �w, taking lim⇡!0

or for a fixed ⇡ taking
lim�

w

!0

(i.e. there are no corruptions) the above error reduces to the least squares result (see for
example [4]).
Remark 2 (Variance and Bias). The first three terms in (8) scale with

p

1/n so as n ! 1, these
terms tend towards 0. The last term does not depend on

p

1/n and so for some non-zero ⇡ the least
squares estimate will incur some bias depending on the fraction and magnitude of corruptions.

We are now ready to state our theorem characterising the mean squared error of the influence
weighted subsampling estimator.

Theorem 2 (Influence sampling in the corrupted model). For n & �2
x

�2
w

�min(⌃⇥x

)

p log p we have

k

b�IWS � �k .
 

✓

�✏�x +

⇡�✏

(�w + 1)

+ ⇡k�k

◆

r

p log p

nsubs
+ ⇡

p

pk�k

!

.
1

�

where 0 < �  �
min

(⌃

⇥x) and ⌃

⇥x is the covariance of the influence weighted subsampled data.
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(a) Influence (1.1) (b) Leverage (0.1)
Figure 1: Comparison of the distribution of the influence and leverage for corrupted and non-
corrupted points. The `

1

distance between the histograms is shown in brackets.

Remark 3. Theorem 2 states that the influence weighted subsampling estimator removes the propor-
tional dependance of the error on �w so the additional variance terms scale as O(⇡/�w ·

p

p/nsubs)

and O(⇡
p

p/nsubs). The relative contribution of the bias term is ⇡
p

pk�k compared with
⇡�2

w
p

pk�k for the OLS or non-influence-based subsampling methods.

Comparison with fully corrupted setting. We note that the bound in Theorem 1 is similar to the
bound in [5] for an estimator where all data points are corrupted (i.e. ⇡ = 1) and where incomplete
knowledge of the covariance matrix of the corruptions, ⌃w is used. The additional bias in the
estimator is proportional to the uncertainty in the estimate of ⌃w – in Theorem 1 this corresponds to
�2

w. Unbiased estimation is possible if ⌃w is known. See the Supplementary Information for further
discussion, where the relevant results from [5] are provided in Section SI.6.1 as Lemma 16.

7 Experimental results
We compare IWS-LS against the methods SRHT-LS [14], ULURU [7]. These competing methods
represent current state-of-the-art in fast randomized least squares. Since SRHT-LS is equivalent to
LEV-LS [9] the comparison will highlight the difference between importance sampling according
to the two difference types of regression diagnostic in the corrupted model. Similar to IWS-LS,
ULURU is also a two-step procedure where the first is equivalent to SRHT-LS. The second reduces
bias by subtracting the result of regressing onto the residual. The experiments with the corrupted
data model will demonstrate the difference in robustness of IWS-LS and ULURU to corruptions in
the observations. Note that we do not compare with SGD. Although SGD has excellent properties
for large-scale linear regression, we are not aware of a convex loss function which is robust to the
corruption model we propose.

We assess the empirical performance of our method compared with standard and state-of-the-art
randomized approaches to linear regression in several difference scenarios. We evaluate these meth-
ods on the basis of the estimation error: the `

2

norm of the difference between the true weights and
the learned weights, k

b� � �k. We present additional results for root mean squared prediction error
(RMSE) on the test set in §SI.7.

For all the experiments on simulated data sets we use ntrain = 100, 000, ntest = 1000, p = 500.
For datasets of this size, computing exact leverage is impractical and so we report on results for
IWS-LS in §SI.7. For aIWS-LS and aRWS-LS we used the same number of sub-samples to
approximate the leverage scores and residuals as for solving the regression. For aIWS-LS we set
r
2

= p/2 (see Eq. (5)). The results are averaged over 100 runs.

Corrupted data. We investigate the corrupted data noise model described in Eqs. (1)-(2). We
show three scenarios where ⇡ = {0.05, 0.1, 0.3}. X and W were sampled from independent, zero-
mean Gaussians with standard deviation �x = 1 and �w = 0.4 respectively. The true regression
coefficients, � were sampled from a standard Gaussian. We added i.i.d. zero-mean Gaussian noise
with standard deviation �e = 0.1.

Figure 1 shows the difference in distribution of influence and leverage between non-corrupted points
(top) and corrupted points (bottom) for a dataset with 30% corrupted points. The distribution of
leverage is very similar between the corrupted and non-corrupted points, as quantified by the `

1

difference. This suggests that leverage alone cannot be used to identify corrupted points.
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(a) 5% Corruptions (b) 30% Corruptions (c) Airline delay

Figure 2: Comparison of mean estimation error and standard deviation on two corrupted simulated
datasets and the airline delay dataset.

On the other hand, although there are some corrupted points with small influence, they typically
have a much larger influence than non-corrupted points. We give a theoretical explanation of this
phenomenon in §SI.3 (remarks 4 and 5).

Figure 2(a) and (b) shows the estimation error and the mean squared prediction error for different
subsample sizes. In this setting, computing IWS-LS is impractical (due to the exact leverage com-
putation) so we omit the results but we notice that aIWS-LS and aRWS-LS quickly improve over
the full least squares solution and the other randomized approximations in all simulation settings. In
all cases, influence based methods also achieve lower-variance estimates.

For 30% corruptions for a small number of samples ULURU outperforms the other subsampling
methods. However, as the number of samples increases, influence based methods start to outperform
OLS. Here, ULURU converges quickly to the OLS solution but is not able to overcome the bias
introduced by the corrupted datapoints. Results for 10% corruptions are shown in Figs. 5 and 6 and
we provide results on smaller corrupted datasets (to show the performance of IWS-LS) as well as
non-corrupted data simulated according to [13] in §SI.7.

Airline delay dataset The dataset consists of details of all commercial flights in the USA over 20
years. Dataset along with visualisations available from http://stat-computing.org/dataexpo/2009/.
Selecting the first ntrain = 13, 000 US Airways flights from January 2000 (corresponding to ap-
proximately 1.5 weeks) our goal is to predict the delay time of the next ntest = 5, 000 US Airways
flights. The features in this dataset consist of a binary vector representing origin-destination pairs
and a real value representing distance (p = 170).

The dataset might be expected to violate the usual i.i.d. sub-Gaussian design assumption of standard
linear regression since the length of delays are often very different depending on the day. For
example, delays may be longer due to public holidays or on weekends. Of course, such regular
events could be accounted for in the modelling step, but some unpredictable outliers such as weather
delay may also occur. Results are presented in Figure 2(c), the RMSE is the error in predicted delay
time in minutes. Since the dataset is smaller, we can run IWS-LS to observe the accuracy of
aIWS-LS and aRWS-LS in comparison. For more than 3000 samples, these algorithm outperform
OLS and quickly approach IWS-LS. The result suggests that the corrupted observation model is a
good model for this dataset. Furthermore, ULURU is unable to achieve the full accuracy of the OLS
solution.

8 Conclusions
We have demonstrated theoretically and empirically under the generalised corrupted observation
model that influence weighted subsampling is able to significantly reduce both the bias and variance
compared with the OLS estimator and other randomized approximations which do not take influence
into account. Importantly our fast approximation, aRWS-LS performs similarly to IWS-LS. We
find ULURU quickly converges to the OLS estimate, although it is not able to overcome the bias
induced by the corrupted datapoints despite its two-step procedure. The performance of IWS-LS
relative to OLS in the airline delay problem suggests that the corrupted observation model is a more
realistic modelling scenario than the standard sub-Gaussian design model for some tasks. Software
is available at http://people.inf.ethz.ch/kgabriel/software.html.

Acknowledgements. We thank David Balduzzi, Cheng Soon Ong and the anonymous reviewers
for invaluable discussions, suggestions and comments.
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