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Abstract

How can one find a subset, ideally as small as possible, that well represents a
massive dataset? I.e., its corresponding utility, measured according to a suitable
utility function, should be comparable to that of the whole dataset. In this paper,
we formalize this challenge as a submodular cover problem. Here, the utility is
assumed to exhibit submodularity, a natural diminishing returns condition preva-
lent in many data summarization applications. The classical greedy algorithm is
known to provide solutions with logarithmic approximation guarantees compared
to the optimum solution. However, this sequential, centralized approach is imprac-
tical for truly large-scale problems. In this work, we develop the first distributed
algorithm – DISCOVER – for submodular set cover that is easily implementable
using MapReduce-style computations. We theoretically analyze our approach,
and present approximation guarantees for the solutions returned by DISCOVER.
We also study a natural trade-off between the communication cost and the num-
ber of rounds required to obtain such a solution. In our extensive experiments,
we demonstrate the effectiveness of our approach on several applications, includ-
ing active set selection, exemplar based clustering, and vertex cover on tens of
millions of data points using Spark.

1 Introduction

A central challenge in machine learning is to extract useful information from massive data. Con-
cretely, we are often interested in selecting a small subset of data points such that they maximize a
particular quality criterion. For example, in nonparametric learning, we often seek to select a small
subset of points along with associated basis functions that well approximate the hypothesis space
[1]. More abstractly, in data summarization problems, we often seek a small subset of images [2],
news articles [3], scientific papers [4], etc., that are representative w.r.t. an entire corpus. In many
such applications, the utility function that measures the quality of the selected data points satisfies
submodularity, i.e., adding an element from the dataset helps more in the context of few selected
elements than if we have already selected many elements (c.f., [5]).

Our focus in this paper is to find a succinct summary of the data, i.e., a subset, ideally as small as
possible, which achieves a desired (large) fraction of the utility provided by the full dataset. Hereby,
utility is measured according to an appropriate submodular function. We formalize this problem as a
submodular cover problem, and seek efficient algorithms for solving it in face of massive data. The
celebrated result of Wolsey [6] shows that a greedy approach that selects elements sequentially in
order to maximize the gain over the items selected so far, yields a logarithmic factor approximation.
It is also known that improving upon this approximation ratio is hard under natural complexity
theoretic assumptions [7]. Even though such a greedy algorithm produces near-optimal solutions,
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it is impractical for massive datasets, as sequential procedures that require centralized access to the
full data are highly constrained in terms of speed and memory.

In this paper, we develop the first distributed algorithm – DISCOVER – for solving the submodular
cover problem. It can be easily implemented in MapReduce-style parallel computation models [8]
and provides a solution that is competitive with the (impractical) centralized solution. We also study
a natural trade-off between the communication cost (for each round of MapReduce) and the number
of rounds. The trade-off lets us choose between a small communication cost between machines
while having more rounds to perform or a large communication cost with the benefit of running
fewer rounds. Our experimental results demonstrate the effectiveness of our approach on a variety
of submodular cover instances: vertex cover, exemplar-based clustering, and active set selection in
non-parametric learning. We also implemented DISCOVER on Spark [9] and approximately solved
vertex cover on a social graph containing more than 65 million nodes and 1.8 billion edges.

2 Background and Related Work

Recently, submodular optimization has attracted a lot of interest in machine learning and data min-
ing where it has been applied to a variety of problems including viral marketing [10], information
gathering [11], and active learning [12], to name a few. Like convexity in continuous optimization,
submodularity allows many discrete problems to become efficiently approximable (e.g., constrained
submodular maximization).

In the submodular cover problem, the main objective is to find the smallest subset of data points
such that its utility reaches a desirable fraction of the entire dataset. As stated earlier, the sequential,
centralized greedy method fails to appropriately scale. Once faced with massive data, MapReduce
[8] (and modern implementations like Spark [9]) offer arguably one of the most successful pro-
gramming models for reliable parallel computing. Distributed solutions for some special cases of
the submodular cover problem have been recently proposed. In particular, for the set cover prob-
lem (i.e., find the smallest subcollection of sets that covers all the data points), Berger et al. [13]
provided the first distributed solution with an approximation guarantee similar to that of the greedy
procedure. Blelloch et al. [14] improved their result in terms of the number of rounds required
by a MapReduce-based implementation. Very recently, Stergiou et al. [15] introduced an efficient
distributed algorithm for set cover instances of massive size. Another variant of the set cover prob-
lem that has received some attention is maximum k-cover (i.e., cover as many elements as possible
from the ground set by choosing at most k subsets) for which Chierichetti et al. [16] introduced a
distributed solution with a (1− 1/e− ε) approximation guarantee.

Going beyond the special case of coverage functions, distributed constrained submodular maximiza-
tion has also been the subject of recent research in the machine learning and data mining commu-
nities. In particular, Mirzasoleiman et al. [17] provided a simple two-round distributed algorithm
called GREEDI for submodular maximization under cardinality constraints. Contemporarily, Kumar
et al [18] developed a multi-round algorithm for submodular maximzation subject to cardinality and
matroid constraints. There have also been very recent efforts to either make use of randomization
methods or treat data in a streaming fashion [19, 20]. To the best of our knowledge, we are the first
to address the general distributed submodular cover problem and propose an algorithm DISCOVER
for approximately solving it.

3 The Distributed Submodular Cover Problem

The goal of data summarization is to select a small subset A out of a large dataset indexed by V
(called the ground set) such that A achieves a certain quality. To this end, we first need to define a
utility function f : 2V → R+ that measures the quality of any subset A ⊆ V , i.e., f(A) quantifies
how wellA represents V according to some objective. In many data summarization applications, the
utility function f satisfies submodularity, stating that the gain in utility of an element e in context of
a summary A decreases as A grows. Formally, f is submodular if

f(A ∪ {e})− f(A) ≥ f(B ∪ {e})− f(B),

for any A ⊆ B ⊆ V and e ∈ V \ B. Note that the meaning of utility is application specific and
submodular functions provide a wide range of possibilities to define appropriate utility functions. In
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Section 3.2 we discuss concrete instances of functions f that we consider in our experiments. Let us
denote the marginal utility of an element e w.r.t. a subset A as4(e|A) = f(A ∪ {e})− f(A). The
utility function f is called monotone if4(e|A) ≥ 0 for any e ∈ V \A and A ⊆ V . Throughout this
paper we assume that the utility function is monotone submodular.

The focus of this paper is on the submodular cover problem, i.e., finding the smallest set Ac such
that it achieves a utility Q = (1− ε)f(V ) for some 0 ≤ ε ≤ 1. More precisely,

Ac = argminA⊆V |A|, such that f(A) ≥ Q. (1)

We call Ac the optimum centralized solution with size k = |Ac|. Unfortunately, finding Ac

is NP-hard, for many classes of submodular functions [7]. However, a simple greedy algo-
rithm is known to be very effective. This greedy algorithm starts with the empty set A0, and at
each iteration i, it chooses an element e ∈ V that maximizes 4(e|Ai−1), i.e., Ai = Ai−1 ∪
{argmaxe∈V 4f (e|Ai−1)}. Let us denote this (centralized) greedy solution by Ag . When f is
integral (i.e., f : 2V → N) it is known that the size of the solution returned by the greedy algorithm
|Ag| is at most H(maxe f({e}))|Ac|, where H(z) is the z-th harmonic number and is bounded by
H(z) ≤ 1 + ln z [6]. Thus, we have |Ag| ≤ (1 + ln(maxe f({e})))|Ac|, and obtaining a better
solution is hard under natural complexity theoretic assumptions [7]. As it is standard practice, for
our theoretical analysis to hold, we assume that f is an integral, monotone submodular function.

Scaling up: Distributed computation in MapReduce. In many data summarization applications
where the ground set V is large, the sequential greedy algorithm is impractical: either the data cannot
be stored on a single computer or the centralized solution is too expensive in terms of computation
time. Instead, we seek an algorithm for solving the submodular cover problem in a distributed
manner, preferably amenable to MapReduce implementations. In this model, at a high level, the
data is first distributed to m machines in a cluster, then each part is processed by the corresponding
machine (in parallel, without communication), and finally the outputs are either merged or used
for the next round of MapReduce computation. While in principle multiple rounds of computation
can be realized, in practice, expensive synchronization is required after each round. Hence, we are
interested in distributed algorithms that require few rounds of computation.

3.1 Naive Approaches Towards Distributed Submodular Cover

One way of solving the distributed submodular cover problem in multiple rounds is as follows. In
each round, all machines – in parallel – compute the marginal gains for the data points assigned
to them. Then, they communicate their best candidate to a central processor, who then identifies
the globally best element, and sends it back to all the m machines. This element is then taken
into account when selecting the next element with highest marginal gain, and so on. Unfortunately,
this approach requires synchronization after each round and we have exactly |Ag| many rounds.
In many applications, k and hence |Ag| is quite large, which renders this approach impractical for
MapReduce style computations.

An alternative approach would be for each machine i to select greedily enough elements from its
partition Vi until it reaches at least Q/m utility. Then, all machines merge their solution. This
approach is much more communication efficient, and can be easily implemented, e.g., using a single
MapReduce round. Unfortunately, many machines may select redundant elements, and the merged
solution may suffer from diminishing returns and never reach Q. Instead of aiming for Q/m, one
could aim for a larger fraction, but it is not clear how to select this target value.

In Section 4, we introduce our solution DISCOVER, which requires few rounds of communication,
while at the same time yielding a solution competitive with the centralized one. Before that, let us
briefly discuss the specific utility functions that we use in our experiments (described in Section 5).

3.2 Example Applications of the Distributed Submodular Cover Problem

In this part, we briefly discuss three concrete utility functions that have been extensively used in pre-
vious work for finding a diverse subset of data points and ultimately leading to good data summaries
[1, 17, 21, 22, 23].

Truncated Vertex Cover: Let G = (V,E) be a graph with the vertex set V and edge set E. Let
%(C) denote the neighbours of C ⊆ V in the graph G. One way to measure the influence of a set C
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is to look at its cover f(C) = |%(C)∪C|. It is easy to see that f is a monotone submodular function.
The truncated vertex cover is the problem of choosing a small subset of nodes C such that it covers
a desired fraction of |V | [21].

Active Set Selection in Kernel Machines: In many application such as feature selections [22],
determinantal point processes [24], and GP regression [23], where the data is described in terms of a
kernel matrix K, we want to select a small subset of elements while maintaining a certain diversity.
Very often, the utility function boils down to f(S) = log det(I +αKS,S) where α > 0 and KS,S is
the principal sub-matrix of K indexed by S. It is known that f is monotone submodular [5].

Exemplar-Based Clustering: Another natural application is to select a small number of exem-
plars from the data representing the clusters present in it. A natural utility function (see, [1] and
[17]) is f(S) = L({e0})− L(S ∪ {e0}) where L(S) = 1

|V |
∑
e∈V minυ∈S d(e, υ) is the k-medoid

loss function and e0 is an appropriately chosen reference element. The utility function f is mono-
tone submodular [1]. The goal of distributed submodular cover here is to select the smallest set of
exemplars that satisfies a specified bound on the loss.

4 The DISCOVER Algorithm for Distributed Submodular Cover

On a high level, our main approach is to reduce the submodular cover to a sequence of cardinality
constrained submodular maximization problems1, a problem for which good distributed algorithms
(e.g., GREEDI [17, 25, 26]) are known. Concretely, our reduction is based on a combination of the
following three ideas.

To get an intuition, we will first assume that we have access to an optimum algorithm which can
solve cardinality constrained submodular maximization exactly, i.e., solve, for some specified `,

Aoc[`] = arg max
|S|≤`

f(S). (2)

We will then consider how to solve the problem when, instead of Aoc[`], we only have access to an
approximation algorithm for cardinality constrained maximization. Lastly, we will illustrate how we
can parametrize our algorithm to trade-off the number of rounds of the distributed algorithm versus
communication cost per round.

4.1 Estimating Size of the Optimal Solution

Momentarily, assume that we have access to an optimum algorithm OPTCARD(V, `) for computing
Aoc[`] on the ground set V . Then one simple way to solve the submodular cover problem would
be to incrementally check for each ` = {1, 2, 3, . . .} if f(Aoc[`]) ≥ Q. But this is very inefficient
since it will take k = |Ac| rounds of running the distributed algorithm for computing Aoc[`]. A
simple fix that we will follow is to instead start with ` = 1 and double it until we find an ` such
that f(Aoc[`]) ≥ Q. This way we are guaranteed to find a solution of size at most 2k in at most
dlog2(k)e rounds of running Aoc[`]. The pseudocode is given in Algorithm 1. However, in practice,
we cannot run Algorithm 1. In particular, there is no efficient way to identify the optimum subset
Aoc[`] in set V , unless P=NP. Hence, we need to rely on approximation algorithms.

4.2 Handling Approximation Algorithms for Submodular Maximization

Assume that there is a distributed algorithm DISCARD(V,m, `), for cardinality constrained sub-
modular maximization, that runs on the dataset V with m machines and provides a set Agd[m, `]
with λ-approximation guarantee to the optimal solution Aoc[`], i.e., f(Agd[m, `]) ≥ λf(Aoc[`]). Let
us assume that we could run DISCARD with the unknown value ` = k. Then the solution we get
satisfies f(Agd[m, k]) ≥ λQ. Thus, we are not guaranteed to get Q anymore. Now, what we can do
(still under the assumption that we know k) is to repeatedly run DISCARD in order to augment our
solution set until we get the desired value Q. Note that for each invocation of DISCARD, to find a
set of size ` = k, we have to take into account the solutions A that we have accumulated so far. So,

1Note that while reduction from submodular coverage to submodular maximization has been used (e.g.,
[27]), the straightforward application to the distributed setting incurs large communication cost.
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Algorithm 1 Approximate Submodular Cover

Input: Set V , constraint Q.
Output: Set A.

1: ` = 1.
2: Aoc[`] = OPTCARD(V, `).
3: while f(Aoc[`]) < Q do
4: ` = `× 2.
5: Aoc[l] = OPTCARD(V, `).

6: A = Aoc[`].
7: Return A.

Algorithm 2 Approximate OPTCARD

Input: Set V , #of partitions m, constraint Q, `.
Output: Set Adc[m].

1: r = 0, Agd[m, `] = ∅, .
2: while f(Agd[m, `]) < Q do
3: A = Agd[m, `].
4: r = r + 1.
5: Agd[m, `] = DISCARD(V,m, `, A).
6: if f(Agd[m, `])−f(A) ≥ λ(Q−f(A)) then
7: Adc[m] = {Agd[m, `] ∪A}.
8: else
9: break

10: Return Adc[m].

by overloading the notation, DISCARD(V,m, `, A) returns a set of size ` given that A has already
been selected in previous rounds (i.e., DISCARD computes the marginal gains w.r.t. A). Note that at
every invocation –thanks to submodularity– DISCARD increases the value of the solution by at least
λ(Q− f(A)). Therefore, by running DISCARD at most dlog(Q)/λe times we get Q.

Unfortunately, we do not know the optimum value k. So, we can feed an estimate ` of the size of
the optimum solution k to DISCARD. Now, again thanks to submodularity, DISCARD can check
whether this ` is good enough or not: if the improvement in the value of the solution is not at least
λ(Q − f(A)) during the augmentation process, we can infer that ` is a too small estimate of k and
we cannot get the desired value Q by using ` – so we apply the doubling strategy again.

Theorem 4.1. Let DISCARD be a distributed algorithm for cardinality-constrained submodular
maximization with λ approximation guarantee. Then, Algorithm 1 (where OPTCARD is replaced
with Approximate OPTCARD, Algorithm 2) runs in at most dlog(k) + log(Q)/λ + 1e rounds and
produces a solution of size at most d2k + 2 log(Q)k/λe.

4.3 Trading Off Communication Cost and Number of Rounds

While Algorithm 1 successfully finds a distributed solution Adc[m] with f(Adc[m]) ≥ Q, (c.f. 4.1),
the intermediate problem instances (i.e., invocations of DISCARD) are required to select sets of size
up to twice the size of the optimal solution k, and these solutions are communicated between all
machines. Oftentimes, k is quite large and we do not want to have such a large communication
cost per round. Now, instead of finding an ` ≥ k what we can do is to find a smaller ` ≥ αk,
for 0 < α ≤ 1 and augment these smaller sets in each round of Algorithm 2. This way, the
communication cost reduces to an α fraction (per round), while the improvement in the value of
the solution is at least αλ(Q − f(Agd[m, `])). Consequently, we can trade-off the communication
cost per round with the total number of rounds. As a positive side effect, for α < 1, since in each
invocation of DISCARD it returns smaller sets, the final solution set size can potentially get closer to
the optimum solution size k. For instance, for the extreme case of α = 1/k we recover the solution
of the sequential greedy algorithm (up to O(1/λ)). We see this effect in our experimental results.

4.4 DISCOVER

The DISCOVER algorithm is shown in Algorithm 3. The algorithm proceeds in rounds, with commu-
nication between machines taking place only between successive rounds. In particular, DISCOVER
takes the ground set V , the number of partitions m, and the trade-off parameter α. It starts with
` = 1, andAdc[m] = ∅. It then augments the setAdc[m] with setAgd[m, `] of at most ` new elements
using an arbitrary distributed algorithm for submodular maximization under cardinality constraint,
DISCARD. If the gain from adding Agd[m, `] to Adc[m] is at least αλ(Q − f(Agd[m, `])), then we
continue augmenting Agd[m, `] with another set of at most ` elements. Otherwise, we double ` and
restart the process with 2`. We repeat this process until we get Q.

Theorem 4.2. Let DISCARD be a distributed algorithm for cardinality-constrained submodular
maximization with λ approximation guarantee. Then, DISCOVER runs in at most dlog(αk) +
log(Q)/(λα) + 1e rounds and produces a solution of size d2αk + log(Q)2k/λe.
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Algorithm 3 DISCOVER

Input: Set V , #of partitions m, constraint Q, trade off parameter α.
Output: Set Adc[m].

1: Adc[m] = ∅, r = 0.
2: while f(Adc[m]) < Q do
3: r = r + 1.
4: Agd[m, `] = DISCARD(V,m, `,Adc[m]).
5: if f(Adc[m] ∪Agd[m, `])− f(Adc[m]) ≥ αλ(Q− f(Adc[m])) then
6: Adc[m] = {Adc[m] ∪Agd[m, `]}.
7: else
8: ` = `× 2.
9: Return Adc[m].

GREEDI as Subroutine: So far, we have assumed that a distributed algorithm DISCARD that
runs on m machines is given to us as a black box, which can be used to find sets of cardinality
` and obtain a λ-factor of the optimal solution. More concretely, we can use GREEDI, a recently
proposed distributed algorithm for maximizing submodular functions under a cardinality constraint
[17] (outlined in Algorithm 4). It first distributes the ground set V to m machines. Then each
machine i separately runs the standard greedy algorithm to produce a setAgc

i [`] of size `. Finally, the
solutions are merged, and another round of greedy selection is performed (over the merged results)
in order to return the solution Agd[m, `] of size `. It was proven that GREEDI provides a (1 −
e−1)2/min(m, `)-approximation to the optimal solution [17]. Here, we prove a (tight) improved
bound on the performance of GREEDI. More formally, we have the following theorem.

Theorem 4.3. Let f be a monotone submodular function and let ` > 0. Then, GREEDI produces a
solution Agd[m, `] where f(Agd[m, `]) ≥ 1

36
√

min(m,`)
f(Ac[`]).

Algorithm 4 Greedy Distributed Submodular Maximization (GREEDI)

Input: Set V , #of partitions m, constraint `.
Output: Set Agd[m, `].

1: Partition V into m sets V1, V2, . . . , Vm.
2: Run the standard greedy algorithm on each set Vi. Find a solution Agci [`].
3: Merge the resulting sets: B = ∪mi=1A

gc
i [`].

4: Run the standard greedy algorithm on B until ` elements are selected. Return Agd[m, `].

We illustrate the resulting algorithm DISCOVER using GREEDI as subroutine in Figure 1. By com-
bining Theorems 4.2 and 4.3, we will have the following.

Corollary 4.4. By using GREEDI, we get that DISCOVER produces a solution of size d2αk +

72 log(Q)k
√
min(m,αk))e and runs in at most dlog(αk)+36

√
min(m,αk) log(Q)/α+1e rounds.

Note that for a constant number of machines m, α = 1 and a large solution size αk ≥ m, the above
result simply implies that in at most O(log(kQ)) rounds, DISCOVER produces a solution of size
O(k logQ). In contrast, the greedy solution with O(k logQ) rounds (which is much larger than
O(log(kQ))) produces a solution of the same quality.

Very recently, a (1 − e−1)/2-approximation guarantee was proven for the randomized version of
GREEDI [26, 25]. This suggests that, if it is possible to reshuffle (i.e., randomly re-distribute V
among the m machines) the ground set each time that we revoke GREEDI, we can benefit from
these stronger approximation guarantees (which are independent ofm and k). Note that Theorem 4.2
does not directly apply here, since it requires a deterministic subroutine for constrained submodular
maximization. We defer the analysis to a longer version of this paper.

As a final technical remark, for our theoretical results to hold we have assumed that the utility
function f is integral. In some applications (like active set selection) this assumption may not hold.
In these cases, either we can appropriately discretize and rescale the function, or instead of achieving
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Figure 1: Illustration of our multi-round algorithm DISCOVER , assuming it terminates in two rounds
(without doubling search for `).

the utility Q, try to reach (1− ε)Q, for some 0 < ε < 1. In the latter case, we can simply replace Q
with Q/ε in Theorem 4.2.

5 Experiments
In our experiments we wish to address the following questions: 1) How well does DISCOVER
perform compare to the centralized greedy solution; 2) How is the trade-off between the solution
size and the number of rounds affected by parameter α; and 3) How well does DISCOVER scale to
massive data sets. To this end, we run DISCOVER on three scenarios: exemplar based clustering,
active set selection in GPs, and vertex cover problem. For vertex cover, we report experiments on a
large social graph with more than 65.6 million vertices and 1.8 billion edges. Since the constant in
Theorem 4.3 is not optimized, we used λ = 1/

√
min(m, k) in all the experiments.

Exemplar based Clustering. Our exemplar based clustering experiments involve DISCOVER ap-
plied to the clustering utility f(S) described in Section 3.2 with d(x, x′) = ‖x− x′‖2. We perform
our experiments on a set of 10,000 Tiny Images [28]. Each 32 by 32 RGB pixel image is represented
as a 3,072 dimentional vectors. We subtract from each vector the mean value, then normalize it to
have unit norm. We use the origin as the auxiliary exemplar for this experiment. Fig. 2a compares
the performance of our approach to the centralized benchmark with the number of machines set to
m = 10 and varying coverage percentage Q = (1 − ε)f(V ). Here, we have β = (1 − ε). It can
be seen that DISCOVER provides a solution which is very close to the centralized solution, with
a number of rounds much smaller than the solution size. Varying α results in a tradeoff between
solution size and number of rounds.

Active Set Selection. Our active set selection experiments involve DISCOVER applied to the
log-determinant function f(S) described in Section 3.2, using an exponential kernel K(ei, ej) =
exp(−|ei − ej |2/0.75). We use the Parkinsons Telemonitoring dataset [29] comprised of 5,875
biomedical voice measurements with 22 attributes from people in early-stage Parkinson’s disease.
Fig. 2b compares the performance of our approach to the benchmark with the number of machines
set tom = 6 and varying coverage percentageQ = (1−ε)f(V ). Again, DISCOVER performs close
to the centralized greedy solution, even with very few rounds. Again we see a tradeoff by varying α.

Large Scale Vertex Cover with Spark. As our large scale experiment, we applied DISCOVER to
the Friendster network consists of 65,608,366 nodes and 1,806,067,135 edges [30]. The average out-
degree is 55.056 while the maximum out-degree is 5,214. The disk footprint of the graph is 30.7GB,
stored in 246 part files on HDFS. Our experimental infrastructure was a cluster of 8 quad-core
machines with 32GB of memory each, running Spark. We set the number of reducers to m = 64.

Each machine carried out a set of map/reduce tasks in sequence, where each map/reduce stage
corresponds to running GREEDI with a specific values of ` on the whole data set. We first distributed
the data uniformly at random to the machines, where each machine received ≈1,025,130 vertices
(≈12.5GB RAM). Then we start with ` = 1, perform a map/reduce task to extract one element. We
then communicate back the results to each machine and based on the improvement in the value of
the solution, we perform another round of map/reduce calculation with either the the same value for
` or 2× `. We continue performing map/reduce tasks until we get the desired value Q.

We examine the performance of DISCOVER by obtaining covers for 50%, 30%, 20% and 10% of
the whole graph. The total running time of the algorithm for the above coverage percentages with
α = 1 was about 5.5, 1.5, 0.6 and 0.1 hours respectively. For comparison, we ran the centralized
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Figure 2: Performance of DISCOVER compared to the centralized solution. a, b) show the solution
set size vs. the number of rounds for various α, for a set of 10,000 Tiny Images and Parkinsons
Telemonitoring. c) shows the same quantities for the Friendster network with 65,608,366 vertices.

greedy on a computer of 24 cores and 256GB memory. Note that, loading the entire data set into
memory requires 200GB of RAM, and running the centralized greedy algorithm for 50% cover
requires at least another 15GB of RAM. This highlights the challenges in applying the centralized
greedy algorithm to larger scale data sets. Fig. 2c shows the solution set size versus the number of
rounds for various α and different coverage constraints. We find that by decreasing α, DISCOVER’s
solutions quickly converge (in size) to those obtained by the centralized solution.

6 Conclusion

We have developed the first efficient distributed algorithm –DISCOVER – for the submodular cover
problem. We have theoretically analyzed its performance and showed that it can perform arbitrary
close to the centralized (albeit impractical in context of large data sets) greedy solution. We also
demonstrated the effectiveness of our approach through extensive experiments, including vertex
cover on a graph with 65.6 million vertices using Spark. We believe our results provide an important
step towards solving submodular optimization problems in very large scale, real applications.
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