
Fast Distributed Submodular Cover:
Public-Private Data Summarization

Baharan Mirzasoleiman Morteza Zadimoghaddam Amin Karbasi
ETH Zurich Google Research Yale University

Abstract

In this paper, we introduce the public-private framework of data summarization
motivated by privacy concerns in personalized recommender systems and online
social services. Such systems have usually access to massive data generated by a
large pool of users. A major fraction of the data is public and is visible to (and
can be used for) all users. However, each user can also contribute some private
data that should not be shared with other users to ensure her privacy. The goal is to
provide a succinct summary of massive dataset, ideally as small as possible, from
which customized summaries can be built for each user, i.e. it can contain elements
from the public data (for diversity) and users’ private data (for personalization).
To formalize the above challenge, we assume that the scoring function according
to which a user evaluates the utility of her summary satisfies submodularity, a
widely used notion in data summarization applications. Thus, we model the data
summarization targeted to each user as an instance of a submodular cover problem.
However, when the data is massive it is infeasible to use the centralized greedy
algorithm to find a customized summary even for a single user. Moreover, for a
large pool of users, it is too time consuming to find such summaries separately. In-
stead, we develop a fast distributed algorithm for submodular cover, FASTCOVER,
that provides a succinct summary in one shot and for all users. We show that
the solution provided by FASTCOVER is competitive with that of the centralized
algorithm with the number of rounds that is exponentially smaller than state of the
art results. Moreover, we have implemented FASTCOVER with Spark to demon-
strate its practical performance on a number of concrete applications, including
personalized location recommendation, personalized movie recommendation, and
dominating set on tens of millions of data points and varying number of users.

1 Introduction

Data summarization, a central challenge in machine learning, is the task of finding a representative
subset of manageable size out of a large dataset. It has found numerous applications, including image
summarization [1], recommender systems [2], scene summarization [3], clustering [4, 5], active set
selection in non-parametric learning [6], and document and corpus summarization [7, 8], to name a
few. A general recipe to obtain a faithful summary is to define a utility/scoring function that measures
coverage and diversity of the selected subset [1]. In many applications, the choice of utility functions
used for summarization exhibit submodularity, a natural diminishing returns property. In words,
submodularity implies that the added value of any given element from the dataset decreases as we
include more data points to the summary. Thus, the data summarization problem can be naturally
reduced to that of a submodular cover problem where the objective is to find the smallest subset
whose utility achieves a desired fraction of the utility provided by the entire dataset.

It is known that the classical greedy algorithm yields a logarithmic factor approximation to the
optimum summary [9]. It starts with an empty set, and at each iteration adds an element with the

29th Conference on Neural Information Processing Systems (NIPS 2016), Barcelona, Spain.

maximum added value to the summary selected so far. It is also known that improving upon the
logarithmic approximation ratio is NP-hard [10]. Even though the greedy algorithm produces a
near-optimal solution, it is highly impractical for massive datasets, as sequentially selecting elements
on a single machine is heavily constrained in terms of speed and memory. Hence, in order to solve the
submodular cover problem at scale, we need to make use of MapReduce-style parallel computation
models [11, 12]. The greedy algorithm, due to its sequential nature, is poorly suited for parallelization.

In this paper, we propose a fast distributed algorithm, FASTCOVER, that enables us to solve the more
general problem of covering multiple submodular functions in one run of the algorithm. It relies
one three important ingredients: 1) a reduction from multiple submodular cover problems into a
single instance of a submodular cover problem [13, 14], 2) randomized filtration mechanism to select
elements with high utility, and 3) a set of carefully chosen threshold functions used for the filteration
mechanism. FASTCOVER also provides a natural tarde-off between the number of MapReduce rounds
and the size of the returned summary. It effectively lets us choose between compact summaries (i.e.,
smaller solution size) while running more MapReduce rounds or larger summaries while running
fewer MapReduce rounds.

This setting is motivated by privacy concerns in many modern applications, including personalized
recommender systems, online social services, and the data collected by apps on mobile platforms
[15, 16]. In such applications, users have some control over their own data and can mark some part
of it private (in a slightly more general case, we can assume that users can make part of their data
private to specific groups and public to others). As a result, the dataset consists of public data, shared
among all users, and disjoint sets of private data accessible to the owners only.

We call this more general framework for data summarization, public-private data summarization,
where the private data of one user should not be included in another user’s summary (see also [15]).
This model naturally reduces to solving one instance of the submodular cover problem for each
user, as their view of the dataset and the specific utility function specifying users’ preferences differ
across users. When the number of users is small, one can solve the public-private data summarization
separately for each user, using the greedy algorithm (for datasets of small size) or the recently
proposed distributed algorithm DISCOVER [12] (for datasets of moderate size). However, when there
are many users or the dataset is massive, none of the prior work truly scales.

We report performance of DISCOVER using Spark on concrete applications of the public-private data
summarization, including personalized movie recommendation on a dataset containing 2 million
ratings by more than 100K users for 1000 movies, personalized location recommendation based
on 20 users and their collected GPS locations, and finding the dominating set on a social network
containing more than 65 million nodes and 1.8 billion edges. For small to moderate sized datasets, we
compare our results with previous work, namely, classical greedy algorithm and DISCOVER [12]. For
truly large-scale experiments, where the data is big and/or there are many users involved (e.g., movie
recommendation), we cannot run DISCOVER as the number of MapReduce rounds in addition to their
communication costs is prohibitive. In our experiments, we constantly observe that FASTCOVER
provides solutions of size similar to the greedy algorithm (and very often even smaller) with the
number of rounds that are orders of magnitude smaller than DISCOVER. This makes FASTCOVER
the first distributed algorithm that solves the public-private data summarization fast and at scale.

2 Problem Statement: Public-Private Data Summarization

In this section, we formally define the public-private model of data summarization1. Here, we
consider a potentially large dataset (sometimes called universe of items) V of size n and a set of
users U. The dataset consists of public data VP and disjoint subsets of private data Vu for each user
u ∈ U. The public-private aspect of data summarization realizes in two dimensions. First, each
user u ∈ U has her own utility function fu(S) according to which she scores the value of a subset
S ⊆ V. Throughout this paper we assume that fu(·) is integer-valued2, non-negative, and monotone

1All the results are applicable to submodular cover as a special case where there is only public data.
2For the submodular cover problem it is a standard assumption that the function is integer-values for the

theoretical results to hold. In applications where this assumption is not satisfied, either we can appropriately
discretize and rescale the function, or instead of achieving the desired utility Q, try to reach (1− δ)Q, for some
0 < δ < 1. In the latter case, we can simply replace Q with Q/δ in the theorems to get the correct bounds.

2

submodular. More formally, submodularity means that

fu(A ∪ {e})− fu(A) ≥ fu(B ∪ {e})− fu(B) ∀A ⊆ B ⊂ V and ∀e ∈ V \B.

Monotonicity implies that for anyA ⊆ V and e ∈ V we have ∆fu(e|A)
.
= fu(A∪{e})−fu(A) ≥ 0.

The term ∆fu(e|A) is called the marginal gain (or added value) of e to the set A. Whenever it is
clear from the context we drop fu from ∆fu(e|A). Without loss of generality, we normalize all
users’ functions so that they achieve the same maximum value, i.e., fu(V) = fv(V) for all u, v ∈ U.
Second, and in contrast to public data that is shared among all users, the private data of a user cannot
be shared with others. Thus, a user u ∈ U can only evaluate the public and her own private part of a
summary S, i.e., S ∩ (VP ∪ Vu). In other words, if the summary S contains private data of a user
v 6= u, the user u cannot have access or evaluate v’s private part of S, i.e., S ∩ Vv . In public-private
data summarization, we would like to find the smallest subset S ⊆ V such that all users reach a
desired utility Q ≤ fu(V) = fu(VP ∪ Vu) simultaneously, i.e.,

OPT = arg min
S⊆V

|S|, such that fu(S ∩ (VP ∪ Vu)) ≥ Q ∀u ∈ U. (1)

A naive way to solve the above problem is to find a separate summary for each user and then return
the union of all summaries as S. A more clever way is to realize that problem (1) is in fact equivalent
to the following problem [13, 14]

OPT = arg min
S⊆V

|S|, such that f(S)
.
=

∑
u∈U

min{fu(S ∩ (VP ∪ Vu)), Q} ≥ Q× |U|. (2)

Note that the surrogate function f(·) is also monotone submodular as a thresholded submodular
function remains submodular. Thus, finding a set S that provides each user with utilityQ is equivalent
of finding a set S with f(S) ≥ L

.
= Q × |U|. This reduction lets us focus on developing a fast

distributed solution for solving a single submodular cover problem. Our method FASTCOVER is
explained in detail in Section 4.

Related Work: When the data is small, we can use the centralized greedy algorithm to solve
problem (2) (and equivalently problem (1)). The greedy algorithm sequentially picks elements and
returns a solution of size (1 + lnM)OPT ≈ ln(L)|OPT| where M = maxe∈V f(e). As elaborated
earlier, when the data is large, one cannot run this greedy algorithm as it requires centralized access to
the full dataset. This is why scalable solutions for the submodular cover problem have recently gained
a lot of interest. In particular, for the set cover problem (a special case of submodular cover problem)
there have been efficient MapReduce-based implementations proposed in the literature [17, 18, 19].
There have also been recent studies on the streaming set cover problem [20]. Perhaps the closest work
to our efforts is [12] where the authors proposed a distributed algorithm for the submodular cover
problem called DISCOVER. Their method relies on the reduction of the submodular cover problem to
multiple instances of the distributed constrained submodular maximization problem [6, 21]. For any
fixed 0 < α ≤ 1, DISCOVER returns a solution of size d2αk+72 log(L)|OPT|

√
min(m,α|OPT|))e

in dlog(α|OPT|) + 36
√

min(m,α|OPT|) log(L)/α + 1e rounds, where m denotes the number
of machines. Even though DISCOVER scales better than the greedy algorithm, the solution it
returns is usually much larger. Moreover, the dependency of the number of MapReduce rounds on√

min(m,α|OPT|) is far from desirable. Note that as we increase the number of machines, the
number of rounds may increase (rather than decreasing). Instead, in this paper we propose a fast
distributed algorithm, FASTCOVER, that truly scales to massive data and produces a solution that is
competitive with that of the greedy algorithm. More specifically, for any ε > 0, FASTCOVER returns a
solution of size at most dln(L)|OPT|/(1−ε)ewith at most dlog3/2(n/m|OPT|) log(M)/ε+log(L)e
rounds, where M = maxe∈V f(e). Thus, in terms of speed, FASTCOVER improves exponentially
upon DISCOVER while providing a smaller solution. Moreover, in our work, the number of rounds
decreases as the number of machines increases, in sharp contrast to [12].

3 Applications of Pubic-Private Data Data Summarization

In this section, we discuss 3 concrete applications where parts of data are private and the remaining
parts are public. All objective functions are non-negative, monotone, and submodular.

3

3.1 Personalized Movie Recommendation

Consider a movie recommender system that allows users to anonymously and privately rate movies.
The system can use this information to recognize users’ preferences using existing matrix completion
techniques [22]. A good set of recommended movies should meet two criteria: 1) be correlated with
user’s preferences, and 2) be diverse and contains globally popular movies. To this end, we define the
following sum-coverage function to score the quality of the selected movies S for a user u:

fu(S) = αu
∑

i∈S,j∈Vu

si,j + (1− αu)
∑

i∈S,j∈VP \S

si,j , (3)

where Vu is the list of highly ranked movies by user u (i.e., private information), VP is the set of
all movies in the database3, and si,j measures the similarity between movie i and j. The similarity
can be easily calculated using the inner product between the corresponding feature vectors of any
two movies i and j. The term

∑
i∈S,j∈Vu si,j measures the similarity between the recommended

set S and the user’s preferences. The second term
∑
i∈S,j∈VP \S si,j encourages diversity. Finally,

the parameter 0 ≤ αu ≤ 1 provides the user the freedom to specify how much she cares about
personalization versus diversity, i.e., αu = 1 indicates that all the recommended movies should be
very similar to the movies she highly ranked and αu = 0 means that she prefers to receive a set of
globally popular movies among all users, irrespective of her own private ratings. Note that in this
application, the universe of items (i.e., movies) is public. What is private is the users’ ratings through
which we identify the set of highly ranked movies by each user Vu. The effect of private data is
expressed in users’ utility functions. The objective is to find the smallest set S of movies V, from
which we can build recommendations for all users in a way that all reach a certain utility.

3.2 Personalized Location Recommendation

Nowadays, many mobile apps collect geolocation data of their users. To comply with privacy concerns,
some let their customers have control over their data, i.e., users can mark some part of their data
private and disallow the app to share it with other users. In the personalized location recommendation,
a user is interested in identifying a set of locations that are correlated with the places she visited and
popular places everyone else visited. Note that as close by locations are likely to be similar it is very
typical to define a kernel matrix K capturing the similarity between data points. A commonly used
kernel in practice is the squared exponential kernel K(ei, ej) = exp(−||ei − ej ||22/h2). To define the
information gain of a set of locations indexed by S, it is natural to use f(S) = log det(I + σKS,S).
The information gain objective captures the diversity and is used in many ML applications, e.g., active
set selection for nonparametric learning [6], sensor placement [13], determinantal point processes,
among many others. Then, the personalized location recommendation can be modeled by

fu(S) = αuf(S ∩ Vu) + (1− αu)f(S ∩ VP), (4)

where Vu is the set of locations that user u does not want to share with others and VP is the collection
of all publicly disclosed locations. Again, the parameter αu lets the user indicate to what extent she
is willing to receive recommendations based on her private information. The objective is to find
the smallest set of locations to recommend to all users such that each reaches a desired threshold.
Note that private data is usually small and private functions are fast to compute. Thus, the function
evaluation is mainly affected by the amount of public data. Moreover, for many objectives, e.g.,
information gain, each machine can evaluate fu(S) by using its own portion of the private data.

3.3 Dominating Set in Social Networks

Probably the easiest way to define the influence of a subset of users on other members of a social
network is by the dominating set problem. Here, we assume that there is a graph G = (V, E) where
V and E indicate the set of nodes and edges, respectively. LetN (S) denote the neighbors of S. Then,
we define the coverage size of S by f(S) = |N (S)∪S|. The goal is to find the smallest subset S such
that the coverage size is at least some fraction of |V|.This is a trivial instance of public-private data
summarization as all the data is public and there is a single utility function. We use the dominating
set problem to run a large-scale application for which DISCOVER terminates in a reasonable amount
of time and its performance can be compared to our algorithm FASTCOVER.

3Two private lists may point to similar movies, but for now we treat the items on each list as unique entities.

4

4 FASTCOVER for Fast Distributed Submodular Cover

In this section, we explain in detail our fast distributed Algorithm FASTCOVER shown in Alg. 1. It
receives a universe of items V and an integer-valued, non-negative, monotone submodular function
f : 2V → R+. The objective is to find the smallest set S that achieves a value L ≤ f(V).
FASTCOVER starts with S = ∅, and keeps adding those items x ∈ V to S whose marginal values
∆(e|S) are at least some threshold τ . In the beginning, τ is set to a conservative initial value
M

.
= maxx∈V f(x). When there are no more items with a marginal value τ , FASTCOVER lowers τ

by a factor of (1− ε), and iterates anew through the elements. Thus, τ ranges over τ0 = M, τ1 =
(1 − ε)M, · · · , τ` = (1 − ε)`M, · · · . FASTCOVER terminates when f(S) ≥ L. The parameter ε
determines the size of the final solution. When ε is small, we expect to find better solutions (i.e.,
smaller in size) while having to spend more number of rounds.

One of the key ideas behind FASTCOVER is that finding elements with marginal values τ = τ` can
be done in a distributed manner. Effectively, FASTCOVER partitions V into m sets T1, . . . , Tm, one
for each cluster node/machine. A naive distributed implementation is the following. For a given set
S (whose elements are communicated to all machines) each machine i finds all of its items x ∈ Ti
whose marginal values ∆(x|S) are larger than τ and send them all to a central machine (note that
S is fixed on each machine). Then, this central machine sequentially augments S with elements
whose marginal values are more than τ (here S changes by each insertion). The new elements of S
are communicated back to all machines and they run the same procedure, this time with a smaller
threshold τ(1− ε). The main problem with this approach is that there might be many items on each
machine that satisfy the chosen threshold τ at each round (i.e., many more than |OPT|). A flood of
such items from m machines overwhelms the central machine. Instead, what FASTCOVER does is to
enforce each machine to randomly pick only k items from their potentially big set of candidates (i.e.,
THRESHOLDSAMPLE algorithm shown in Alg. 2). The value k is carefully chosen (line 7). This way
the number of items the central machine processes is never more than O(m|OPT|).

1 Input: V, ε, L, and m
2 Output: S ⊆ V where f(S) ≥ L
3 Find a balanced partition {Ti}mi=1 of V;
4 S ← ∅;
5 τ ← maxx∈V f(x);
6 while τ ≥ 1 do
7 k ← d(L− f(S))/τe;
8 forall the 1 ≤ i ≤ m do
9 <Si, Fulli>←ThresholdSample(i,τ,k,S);

10 forall the x ∈ ∪mi=1Si do
11 if f({x} ∪ S)− f(S) ≥ τ then
12 S ← S ∪ {x};
13 if f(S) ≥ L then Break;
14 if ∀i : Fulli = False then
15 if τ > 1 then τ ← max{1, (1− ε)τ};
16 else Break;
17 Return S;

Algorithm 1: FASTCOVER

1 Input: Index i, τ , k, and S
2 Output: Si ⊂ Ti with |Si| ≤ k
3 Si ← ∅;
4 forall the x ∈ Si do
5 if f(S ∪ {x})− f(S) ≥ τ then
6 Si ← Si ∪ {x};
7 if |Si| ≤ k then
8 Return < Si, False >;
9 else

10 Si ← k random items of Si;
11 Return < Si, T rue >;

Algorithm 2: THRESHOLDSAMPLE

Theorem 4.1. FASTCOVER terminates with at most log3/2(n/(|OPT|m))(1+log(M)/ε)+log2(L)

rounds (with high probability) and a solution of size at most |OPT| ln(L)/(1− ε).

Although FASTCOVER is distributed and unlike centralized algorithms does not enjoy the benefits of
accessing all items together, its solution size is truly competitive with the greedy algorithm and is
only away by a factor of 1/(1− ε). Moreover, its number of rounds is logarithmic in n and L. This
is in sharp contrast with the previously best known algorithm, DISCOVER [12], where the number of
rounds scales with

√
min(m, |OPT |)4. Thus, FASTCOVER not only improves exponentially over

4Note that
√

min(m, |OPT |) can be as large as n1/6 when |OPT | = n1/3 and the memory limit of each
machine is n2/3 which results in m ≥ n1/3.

5

DISCOVER in terms of speed but also its number of rounds decreases as the number of available
machines m increases. Even though FASTCOVER is a simple distributed algorithm, its performance
analysis is technical and is deferred to the supplementary materials. Below, we provide the main
ideas behind the proof of Theorem 4.1.
Proof sketch. We say that an item has a high value if its marginal value to S is at least τ . We define
an epoch to be the rounds during which τ does not change. In the last round of each epoch, all
high value items are sent to the central machine (i.e., the set ∪mi=1Si) because Fulli is false for all
machines. We also add every high value item to S in lines 11 − 12. So, at the end of each epoch,
marginal values of all items to S are less than τ . Since we reduce τ by a factor of (1− ε), we can
always say that τ ≥ (1− ε) maxx∈V ∆(x|S) which means we are only adding items that have almost
the highest marginal values. By the classic analysis of greedy algorithm for submodular maximization,
we can conclude that every item we add has an added value that is at least (1− ε)(L− f(S))/|OPT|.
Therefore, after adding |OPT| ln(L)/(1− ε) items, f(S) becomes at least L.

To upper bound rounds, we divide the rounds into two groups. In a good round, the algorithm adds
at least k2 items to S. The rest are bad rounds. In a good round, we add k/2 ≥ (L − f(S))/(2τ)
items, and each of them increases the value of S by τ . Therefore in a good round, we see at least
(L− f(S))/2 increase in value of S. In other words, the gap L− f(S) is reduced by a factor of at
least 2 in each good round. Since f only takes integer values, once L− f(S) becomes less than 1,
we know that f(S) ≥ L. Therefore, there cannot be more than log2 L good rounds. Every time we
update τ (start of an epoch), we decrease it by a factor of 1 − ε (except maybe the last round for
which τ = 1). Therefore, there are at most 1 + log 1

1−ε
(M) ≤ 1 + log(M)

log(1/(1−ε)) ≤ 1 + log(M)
ε epochs.

In a bad round, a machine with more than k high value items, sends k of those to the central machine,
and at most k/2 of them are selected. In other words, the addition of these items to S in this bad
round caused more than half of high value items of each machine to become of low value (marginal
values less than τ). Since there are n/m items in each machine, and Fulli becomes False once there
are at most k high value items in the machine, we conclude that in expectation there should not be
more than log2(n/km) bad rounds in each epoch. Summarizing the upper bounds yields the bound
on total number of rounds. Finer analysis leads to the high probability claim.

5 Experiments
In this section, we evaluate the performance of FASTCOVER on the three applications that we
described in Section 3: personalized movie recommendation, personalized location recommendation,
and dominating set on social networks. To validate our theoretical results and demonstrate the
effectiveness of FASTCOVER, we compare the performance of our algorithm against DISCOVER and
the centralized greedy algorithm (when possible).

Our experimental infrastructure was a cluster of 16 quad-core machines with 20GB of memory
each, running Spark. The cluster was configured with one master node responsible for resource
management, and the remaining 15 machines working as executors. We set the number of reducers
to m = 60. To run FASTCOVER on Spark, we first distributed the data uniformly at random to
the machines, and performed a map/reduce task to find the highest marginal gain τ = M . Each
machine then carries out a set of map/reduce tasks in sequence, where each map/reduce stage
filters out elements with a specific threshold τ on the whole dataset. We then tune the parameter τ ,
communicate back the results to the machines and perform another round of map/reduce calculation.
We continue performing map/reduce tasks until we get to the desired value L.

5.1 Personalized Location Recommendation with Spark
Our location recommendation experiment involves applying FASTCOVER to the information gain
utility function, described in Eq. (4). Our dataset consists of 3,056 GPS measurements from 20 users
in the form of (latitude, longitude, altitude) collected during bike tours around Zurich [23]. The size
of each path is between 50 and 500 GPS coordinates. For each pairs of points i and j we used the
corresponding GPS coordinates to calculate their distance in meters d(i, j) and then formed a squared
exponential kernel Ki,j = exp(−d(i, j)2/h2) with h = 1500. For each user, we marked 20% of her
data private (data points are chosen consecutively) selected from each path taken by the biker. The
parameter αu is set randomly for each user u.

Figures 1a, 1b, 1c compare the performance of FASTCOVER to the benchmarks for building a
recommendation set that covers 60%, 80%, and 90% of the maximum utility of each user. We

6

considered running DISCOVER with different values of parameter α that makes a trade off between
the size of the solution and number of rounds of the algorithm. It can be seen that by avoiding the
doubling steps of DISCOVER, our algorithm FASTCOVER is able to return a significantly smaller
solution than that of DISCOVER in considerably less number of rounds. Interestingly, for small values
of ε, FASTCOVER returns a solution that is even smaller than the centralized greedy algorithm.

5.2 Personalized Movie Recommendation with Spark

Our personalized public-private recommendation experiment involves FASTCOVER applied to a set
of 1,313 movies, and 20,000,263 users’ ratings from 138,493 users of the MovieLens database [24].
All selected users rated at least 20 movies. Each movie is associated with a 25 dimensional feature
vector calculated from users’ ratings. We use the inner product of the non-normalized feature vectors
to compute the similarity si,j between movies i and j [25]. Our final objective function consists of
138,493 coverage functions -one per user- and a global sum-coverage function defined on the whole
pool of movies (see Eq. (3)). Each function is normalized by its maximum value to make sure that all
functions have the same scale.

Fig 1d, 1e, 1f show the ratio of the size of the solutions obtained by FASTCOVER to that of the greedy
algorithm. The figures demonstrate the results for 10%, 20%, and 30% covers for all the 138,493
users’ utility functions. The parameter αu is set to 0.7 for all users. We scaled down the number of
iterations by a factor of 0.01, so that the corresponding bars can be shown in the same figures. Again,
FASTCOVER was able to find a considerably smaller solution than the centralized greedy. Here, we
couldn’t run DISCOVER because of its prohibitive running time on Spark.

Fig 1g shows the size of the solution set obtained by FASTCOVER for building recommendations
from a set of 1000 movies for 1000 users vs. the size of the merged solutions found by finding
recommendations separately for each user. It can be seen that FASTCOVER was able to find a much
smaller solution by covering all the functions at the same time.

5.3 Large Scale Dominating Set with Spark

In order to be able to compare the performance of our algorithm with DISCOVER more precisely,
we applied FASTCOVER to the Friendster network consists of 65,608,366 nodes and 1,806,067,135
edges [26]. This dataset was used in [12] to evaluate the performance of DISCOVER.

Fig. 1j, 1k, 1l show the performance of FASTCOVER for obtaining covers for 50%, 40%, 30%
of the whole graph, compared to the centralized greedy solution. Again, the size of the solution
obtained by FASTCOVER is smaller than the greedy algorithm for small values of ε. Note that
running the centralized greedy is impractical if the dataset cannot fit into the memory of a single
machine. Fig. 1h compares the solution set size and the number of rounds for FASTCOVER and
DISCOVER with different values of ε and α. The points in the bottom left correspond to the solution
obtained by FASTCOVER which confirm its superior performance. We further measured the actual
running time of both algorithms on a smaller instance of the same graph with 14,043,721 nodes. We
tuned ε and α to get solutions of approximately equal size for both algorithms. Fig. 1i shows the
speedup of FASTCOVER over DISCOVER. It can be observed that by increasing the coverage value
L, FASTCOVER shows an exponential speedup over DISCOVER.

6 Conclusion
In this paper, we introduced the public-private model of data summarization motivated by privacy
concerns of recommender systems. We also developed a fast distributed algorithm, FASTCOVER,
that provides a succinct summary for all users without violating their privacy. We showed that
FASTCOVER returns a solution that is competitive to that of the best centralized, polynomial-time
algorithm (i.e., greedy solution). We also showed that FASTCOVER runs exponentially faster than
the previously proposed distributed algorithms. The superior practical performance of FASTCOVER
against all the benchmarks was demonstrated through a large set of experiments, including movie
recommendation, location recommendation and dominating set (all were implemented with Spark).
Our theoretical results combined with the practical performance of FASTCOVER makes it the only
existing distributed algorithm for the submodular cover problem that truly scales to massive data.

Acknowledgment: This research was supported by Google Faculty Research Award and DARPA
Young Faculty Award (D16AP00046).

7

Number of rounds
10 20 30 40

So
lu

tio
n

se
t s

iz
e

380

390

400

410

420

430

440

450
FastCover
DisCover
Greedy,=1.0

0=0.6

0=0.9

,=0.2

,=0.10=0.4 0=0.3

(a) Location data (60%)
Number of rounds

10 20 30 40 50 60

So
lu

tio
n

se
t s

iz
e

1250

1300

1350

1400

1450

1500
FastCover
DisCover
Greedy

,=1.0

,=0.4

0=0.9

0=0.6

,=0.2

,=0.1

0=0.4 0=0.3

(b) Location data (80%)
Number of rounds

10 20 30 40 50

So
lu

tio
n

se
t s

iz
e

2100

2150

2200

2250

2300

2350

2400
FastCover
DisCover
Greedy

0=0.9
,=1.0

,=0.4

0=0.6

0=0.4
0=0.3

,=0.1
,=0.2

(c) Location data (90%)

0=0.5 0=0.3 0=0.1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
Number of iterations
Normalized solution set size

(d) Movies (10%)
0=0.7 0=0.5 0=0.3

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35
Number of iterations
Normalized solution set size

(e) Movies (20%)
0=0.7 0=0.5 0=0.3

0

0.05

0.1

0.15

0.2

0.25

0.3 Number of iterations
Normalized solution set size

(f) Movies (30%)

Coverage
0.1 0.2 0.3 0.4 0.5

So
lu

tio
n

se
t s

iz
e

100

200

300

400

500

600

700

800

900 Union of the summaries for each user
Single summary for all users

(g) Movie (1K)
Number of rounds

0 50 100 150 200

So
lu

tio
n

se
t s

iz
e

#105

2.6

2.8

3

3.2

3.4

3.6

3.8

4 DisCover ,=0.1
DisCover ,=0.2
DisCover ,=0.4
DisCover ,=1.0
FastCover 0=0.5
FastCover 0=0.3
FastCover 0=0.1

(h) Friendster (50%)
Solution set size

1M 2M 3M 4M 5M 6M 7M

Fa
st

C
ov

er
 s

pe
ed

up

0

1

2

3

4

5

6

7

8

(i) Friendster (14M)

Number of rounds
10 20 30

So
lu

tio
n

se
t s

iz
e

#104

4.4

4.5

4.6

4.7

4.8

4.9

5

5.1
FastCover
Greedy

0=0.3

0=0.5

0=0.1

(j) Friendster (30%)
Number of rounds

10 20 30 40

So
lu

tio
n

se
t s

iz
e

#105

1.05

1.1

1.15

1.2

1.25

1.3

1.35
FastCover
Greedy

0=0.3

0=0.1

0=0.5

(k) Friendster (40%)
Number of rounds

10 20 30 40 50

So
lu

tio
n

se
t s

iz
e

#105

2.7

2.75

2.8

2.85

2.9

2.95

3

3.05

3.1
FastCover
Greedy

0=0.1

0=0.3

0=0.5

(l) Friendster (50%)

Figure 1: Performance of FASTCOVER vs. other baselines. a), b), c) solution set size vs. number of rounds for
personalized location recommendation on a set of 3,056 GPS measurements, for covering 60%, 80%, 90% of the
maximum utility of each user. d), e), f) same measures for personalized movie recommendation on a set of 1000
movies, 138,493 users and 20,000,263 ratings, for covering 10%, 20%, 30% of the maximum utility of each user.
g) solution set size vs. coverage for simultaneously covering all users vs. covering users one by one and taking
the union. The recommendation is on a set of 1000 movies for 1000 users. h) solution set size vs. the number of
rounds for FASTCOVER and DISCOVER for covering 50% of the Friendster network with 65,608,366 vertices. i)
Exponential speedup of FASTCOVER over DISCOVER on a subgraph of 14M nodes. j), k), l) solution set size vs.
the number of rounds for covering 30%, 40%, 50% of the Friendster network.

8

References
[1] Sebastian Tschiatschek, Rishabh Iyer, Haochen Wei, and Jeff Bilmes. Learning Mixtures of Submodular

Functions for Image Collection Summarization. In NIPS, 2014.

[2] Khalid El-Arini and Carlos Guestrin. Beyond keyword search: discovering relevant scientific literature. In
KDD, 2011.

[3] Ian Simon, Noah Snavely, and Steven M Seitz. Scene summarization for online image collections. In
ICCV, 2007.

[4] Delbert Dueck and Brendan J Frey. Non-metric affinity propagation for unsupervised image categorization.
In ICCV, 2007.

[5] Ryan Gomes and Andreas Krause. Budgeted nonparametric learning from data streams. In ICML, 2010.

[6] Baharan Mirzasoleiman, Amin Karbasi, Rik Sarkar, and Andreas Krause. Distributed submodular maxi-
mization: Identifying representative elements in massive data. In NIPS, 2013.

[7] Hui Lin and Jeff Bilmes. A class of submodular functions for document summarization. In North American
chapter of the Assoc. for Comp. Linguistics/Human Lang. Tech., 2011.

[8] Ruben Sipos, Adith Swaminathan, Pannaga Shivaswamy, and Thorsten Joachims. Temporal corpus
summarization using submodular word coverage. In CIKM, 2012.

[9] Laurence A. Wolsey. An analysis of the greedy algorithm for the submodular set covering problem.
Combinatorica, 1982.

[10] Uriel Feige. A threshold of ln n for approximating set cover. Journal of the ACM, 1998.

[11] J. Dean and S. Ghemawat. Mapreduce: Simplified data processing on large clusters. In OSDI, 2004.

[12] Baharan Mirzasoleiman, Amin Karbasi, Ashwinkumar Badanidiyuru, and Andreas Krause. Distributed
submodular cover: Succinctly summarizing massive data. In NIPS, 2015.

[13] Andreas Krause, Brendan McMahan, Carlos Guestrin, and Anupam Gupta. Robust submodular observation
selection. JMLR, 2008.

[14] Rishabh K Iyer and Jeff A Bilmes. Submodular optimization with submodular cover and submodular
knapsack constraints. In NIPS, 2013.

[15] Flavio Chierichetti, Alessandro Epasto, Ravi Kumar, Silvio Lattanzi, and Vahab Mirrokni. Efficient
algorithms for public-private social networks. In KDD, 2015.

[16] Baharan Mirzasoleiman, Ashwinkumar Badanidiyuru, and Amin Karbasi. Fast constrained submodular
maximization: Personalized data summarization. In ICML, 2016.

[17] Bonnie Berger, John Rompel, and Peter W Shor. Efficient nc algorithms for set cover with applications to
learning and geometry. Journal of Computer and System Sciences, 1994.

[18] Guy E. Blelloch, Richard Peng, and Kanat Tangwongsan. Linear-work greedy parallel approximate set
cover and variants. In SPAA, 2011.

[19] Stergios Stergiou and Kostas Tsioutsiouliklis. Set cover at web scale. In SIGKDD, 2015.

[20] Erik D Demaine, Piotr Indyk, Sepideh Mahabadi, and Ali Vakilian. On streaming and communication
complexity of the set cover problem. In Distributed Computing. 2014.

[21] Ravi Kumar, Benjamin Moseley, Sergei Vassilvitskii, and Andrea Vattani. Fast greedy algorithms in
mapreduce and streaming. TOPC, 2015.

[22] Emmanuel J Candès and Benjamin Recht. Exact matrix completion via convex optimization. Foundations
of Computational mathematics, 2009.

[23] https://refind.com/fphilipe/topics/open-data.

[24] Grouplens. movielens 20m dataset. http://grouplens.org/datasets/movielens/20m/.

[25] Erik M Lindgren, Shanshan Wu, and Alexandros G Dimakis. Sparse and greedy: Sparsifying submodular
facility location problems. NIPS, 2015.

[26] Jaewon Yang and Jure Leskovec. Defining and evaluating network communities based on ground-truth.
Knowledge and Information Systems, 2015.

9

https://refind.com/fphilipe/topics/open-data.
http://grouplens.org/datasets/movielens/20m/

A Omitted Proofs

Before proving Theorem 4.1, we need to prove a few Lemmas to upper bound the size of final solution
and the number of rounds separately.
Lemma A.1. FASTCOVER returns a solution S with at most |OPT| ln(L)/(1− ε) items and f(S) ≥
L.

Proof. We remind that an epoch ends when the if condition of line 14 holds, and therefore we update
τ . We prove that at this point all items with marginal value at least τ have been added to S. Therefore
the marginal value of every item to S is less than τ at the end of an epoch. Since Fulli = False
for every i, all items with marginal value at least τ are in selected sets {Si}mi=1. In lines 10 − 12,
FASTCOVER makes sure that every item in {Si}mi=1 with marginal value at least τ is added to S. So at
the end of each epoch all marginal values are less than τ . We should also note that by submodularity
the marginal values to set S can only decrease, and τ is unchanged during an epoch, therefore all
marginal values are still less than τ at the end of the epoch.

We now prove that f(S) ≥ L. The algorithm terminates either at the Break operation of lines 13
in which f(S) ≥ L or line 16. At line 16, we are at the end of an epoch, and the else condition
holds only if τ = 1. Since all marginal values are less than τ = 1 in this stage, and f only takes
integer values, we conclude that all marginal values should be equal to zero. Using submodularity, we
conclude that f(S) in this case is equal to f(V) ≥ L because f(V)− f(S) ≤

∑
x∈V ∆(x|S) = 0

where ∆(x|S) is f(S ∪ {x})− f(S).

We are ready to upper bound |S|. Since every time we update τ , it is at least 1 − ε times its
old value, and at the end of each epoch τ is greater than maximum marginal value to S, we
can say that throughout the entire algorithm (not just the end of epochs), τ is always at least
(1 − ε) maxx∈V ∆(x|S). This is in particular true at the beginning of the algorithm that we set
τ = maxx∈V f({x}). Using submodularity of f , we know that

∑
x∈OPT ∆(x|S) ≥ f(OPT)−f(S).

So maxx∈V ∆(x|S) should be at least (f(OPT) − f(S))/|OPT|. Since every item we add has
marginal value at least τ ≥ (1 − ε) maxx∈V ∆(x|S), we conclude that each item adds at least
a value of (1−ε)(f(OPT)−f(S))

|OPT| . After adding t items, the gap f(OPT) − f(S) becomes at most
(f(OPT) − f(∅))(1 − 1−ε

|OPT|)
t. With t = |OPT| ln(L)/(1 − ε), this gap becomes less than 1, and

since f is integral, f(S) should be at least f(OPT) = L with |S| = |OPT| ln(L)/(1− ε) items.

To upper bound the number of rounds, we categorize all rounds into two groups. We say a round is
good if the algorithm adds at least k2 items to S. Otherwise we call it a bad round. We upper bound
the number of good and bad rounds separately to reach a unified bound on the total number of rounds
of FASTCOVER.
Lemma A.2. The number of good rounds in all epochs is at most log2 L.

Proof. In a good round, at least k/2 items are added to S, and each addition increases the value of
f(S) by τ . So in a good round, f(S) is increased by at least kτ/2. On the other hand, we define k to
be d(L− f(Sbefore))/τe where Sbefore is set S just before starting this round. So f(S) is increased
by at least L− f(Sbefore)/2 in this good round. In other words, the difference L− f(S) is reduced
by at least a multiplicative factor of 2 in each good round. Once this difference goes below 1, we
know f(S) ≥ L, and the algorithm terminates. Therefore there are at most log2 L good rounds in
total.

Next we bound the total number of bad rounds. Since in each epoch, we reduce τ by a factor of
(1 − ε) until it becomes at most 1, the number of epochs is upper bounded by 1 + log 1

1−ε
(M) ≤

log(M)
log(1/(1−ε)) ≤

log(M)
ε . Therefore we need to upper bound the number of bad rounds in each epoch.

Lemma A.3. The number of bad rounds in each epoch is at most log3/2(n/km) with high probability.

Proof. In an epoch, the value of τ is unchanged, and we keep adding items to S. So the set of items
that each machine could potentially send to the central machine (items with marginal value at least τ
to set S) only shrinks. We call these items candidate items. At the beginning of an epoch, there are at

10

most n/m such candidate items in each machine since Ti has n/m items. The epoch ends when each
machine has at most k candidate items. We show that in each bad round, this set of candidate items
shrinks by at least a factor of 2/3 with high probability, and therefore the number of bad rounds in
each epoch is no more than log3/2(n/km).

Now we focus on a bad round, and how it changes the set of candidate items in a machine i. Let
Sbefore and Safter be the values of set S before and after a bad round. We note that Safter \Sbefore
has less than k/2 items. We define Sbeforei to be {x|x ∈ Ti & f(Sbefore ∪ {x})− f(Sbefore) ≥ τ}
which is the set of candidate items of machine i before this round. We note that set Si is a random
subset of Sbeforei with size at most k.

We similarly define Safteri to be {x|x ∈ Ti & f(Safter ∪ {x})− f(Safter) ≥ τ} which is the set
of candidate items in machine i in the next round. We prove that with high probability the size of
|Safteri | ≤ 2|Sbeforei |/3.

If there are at most k items in Sbeforei , the whole set Sbeforei is sent to the central machine, and
each item in it is either added to S or its marginal value to S becomes less than τ after this round.
So Safteri is empty in this case. In the other case, k random items in Sbeforei are selected to
be sent to the central machine. For the sake of analysis, we define an intermediary hypothetical
set Shypi which is a set sandwiched between Safteri and Sbeforei . Let Shypi be the set {x|x ∈
Sbeforei AND f(Safter ∪ {x}) − f(Safter \ {x}) ≥ τ}. This is the set of items that either
they are candidate items in the next round (part of Safteri) or they were added to S, and if we
remove them from S, they become a candidate item in the next round. By definition, we have
Safteri ⊆ Shypi ⊆ Sbeforei . The significance of Shypi is that any item machine i chooses from it to
send to the central machine will be chosen by definition. So if Shypi has p fraction of Sbeforei for
some 0 ≤ p ≤ 1, in expectation pk items out of k items of Si will be selected in this round. Using

concentration bounds, we know that if |S
hyp
i |

Sbeforei

is at least 2
3 , with high probability at least k/2 selected

items in Si are in Shypi , and consequently will be added to S. However we know that we are in a
bad round, and less than k/2 items are added to S. Therefore with high probability |Shypi | is less
than 2|Sbeforei |/3, and consequently |Safteri | is also less than 2|Sbeforei |/3 which completes the
proof.

Next we summarize all lemmas and prove our main guarantees for the number of rounds of Algorithm
FASTCOVER.

Proof of Theorem 4.1 Lemma A.1 provides the desired upper bound on size of the solution. Us-
ing Lemmas A.2, and A.3, we know that there are at most log2(L) good rounds in total, and
log3/2(n/km) bad rounds in each epoch with high probability. We have also proved that there
are not more than log(M)/ε epochs. Therefore the total number of rounds is upper bounded by
log3/2(n/km) log(M)/ε+ log2(L). �

Remark A.4. Each machine sends back at most k items. In proof of Theorem 4.1, we showed that
τ is always at least (1− ε) times the maximum marginal value to set S. Using submodularity, we
know that L− f(S) ≤ f(OPT)− f(S) ≤

∑
x∈OPT ∆(x|S). So k = (L− f(S))/τ cannot be more

than |OPT|/(1 − ε). The space requirement for the central machine is km ≤ m|OPT|/(1 − ε),
and for each distributed machine is n/m. Therefore our overall space requirement is no more than
max{n/m,m|OPT|/(1− ε)}.

11

	Introduction
	Problem Statement: Public-Private Data Summarization
	Applications of Pubic-Private Data Data Summarization
	Personalized Movie Recommendation
	Personalized Location Recommendation
	Dominating Set in Social Networks

	FastCover for Fast Distributed Submodular Cover
	Experiments
	Personalized Location Recommendation with Spark
	Personalized Movie Recommendation with Spark
	Large Scale Dominating Set with Spark

	Conclusion
	Omitted Proofs

