
Information Gathering with Peers:
Submodular Optimization with Peer-Prediction Constraints

Goran Radanovic
Harvard University
Cambridge, USA

gradanovic@g.harvard.edu

Adish Singla
MPI-SWS

Saarbrücken, Germany
adishs@mpi-sws.org

Andreas Krause
ETH Zurich

Zurich, Switzerland
krausea@ethz.ch

Boi Faltings
EPFL

Lausanne, Switzerland
boi.faltings@epfl.ch

Abstract

We study a problem of optimal information gathering from
multiple data providers that need to be incentivized to pro-
vide accurate information. This problem arises in many real
world applications that rely on crowdsourced data sets, but
where the process of obtaining data is costly. A notable ex-
ample of such a scenario is crowd sensing. To this end, we
formulate the problem of optimal information gathering as
maximization of a submodular function under a budget con-
straint, where the budget represents the total expected pay-
ment to data providers. Contrary to the existing approaches,
we base our payments on incentives for accuracy and truth-
fulness, in particular, peer-prediction methods that score each
of the selected data providers against its best peer, while en-
suring that the minimum expected payment is above a given
threshold. We first show that the problem at hand is hard to
approximate within a constant factor that is not dependent on
the properties of the payment function. However, for given
topological and analytical properties of the instance, we con-
struct two greedy algorithms, respectively called PPCGreedy
and PPCGreedyIter, and establish theoretical bounds on their
performance w.r.t. the optimal solution. Finally, we evaluate
our methods using a realistic crowd sensing testbed.

Introduction
The recent success of various machine learning techniques
can partly be attributed to the existence of large sets of la-
beled data that can readily be used for training purposes.
In the past decade, the predominant form of obtaining use-
ful data is through crowdsourcing approaches, where human
subjects either directly label data or have private devices that
provide measurements about spatially distributed phenom-
ena.

One of the most important aspects of data is its accuracy,
which can only be established if data providers (e.g. crowd-
participants) report accurate information. To incentivize ac-
curate reporting, a data collector can provide incentives that
compensate data providers for their effort. In its simplest
form, this type of data elicitation process can be modeled
as a three step protocol:

• Data providers acquire accurate data experiencing a cost
of effort;
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Figure 1: An example of crowdsourcing with incentives:
Crowd-sensors (air-quality eggs1) report air-quality mea-
surements and a data collector rewards them with monetary
payments. An edge (black line) indicates that there is a suf-
ficient correlation between the measurements of two sensors
to verify accuracy.

• Data providers report the acquired data to a data collector;

• The data collector pays to the data providers a value that
compensates for the cost of effort.

An example scenario is shown in Figure 1.
The problem, however, arises if the data providers are

susceptible to moral hazard, that is, deviation to reporting
heuristically without obtaining the data in the first place. In
fact, such a behavior is expected for a rational participant
who aims to maximize their utility, since heuristic report-
ing typically carries no cost of effort. To avoid this prob-
lem, the data collector can design payment functions τ that
are dependent on the accuracy of the reported information,
for example, by installing random spot-checks that validate
some of the reports (Gao, Wright, and Leyton-Brown 2016).
While this approach has often been used in standard micro-
task crowdsourcing, it is often too costly to apply it in a
more complex elicitation setting. Consider, for example, a
crowd-sensing scenario shown in Figure 1, where sensors
measure spatially distributed phenomenon that is highly lo-
calized. To apply a spot-checking procedure, the data col-
lector would need to have mobile sensors that would change
their locations at each time-step. Furthermore, due to the lo-
calized nature of the measured phenomenon, the density of
the spot-check sensor network has to be relatively large.

1https://airqualityegg.wickeddevice.com



Instead of evaluating data providers against trusted re-
ports, Dasgupta and Ghosh (2013), Jurca and Faltings
(2011), Radanovic, Faltings, and Jurca (2016), Shnayder
et al. (2016), Witkowski et al. (2017), and Baillon (2017),
propose peer-prediction mechanisms for incentivizing dis-
tributed information sources. Peer-prediction mechanisms
reward data providers by measuring consistency among their
reports—thus, if a data provider believes that others are
honest, she is also incentivized to report truthfully.1 The
most important condition to hold when applying a peer-
prediction mechanism is that a data provider and her peer
have correlated private information. Furthermore, this corre-
lation, when expressed through expected payments, should
be greater than the cost of effort. The latter property can
always be achieved by scaling, provided that a considered
peer-prediction method provides strict incentives for truth-
fulness. The scaling approach, however, neglects potential
budget concerns that are important when collecting large
data sets.

Overview of Our Approach
We, therefore, focus on the limited budget concern in a dis-
tributed data collection process that uses peer-prediction in-
centives. There are two important aspects to this problem:
• which data providers to select given that we only have a

limited budget to spend on incentives—thus, only those
data providers who received incentives can be considered
to be reliable;

• how to ensure that all of the selected data providers have
a proper peer—this constrains the selection problem to
always include a proper peer of each data provider that is
to be selected.

To quantify the usefulness of each data provider, we adopt
a submodular utility function, which can, for example, mea-
sure the information gain of the data collector for obtain-
ing the reports of the selected data-providers. We will insist
that each data provider can be scored against a peer report
with resulting expected payment being greater than a given
threshold. Furthermore, the total expected payment should
be bounded by a budget, while a data provider should be al-
ways scored against the best peer among the selected data
providers. Our main contributions are:
• A formal model of information gathering with budget and

peer-prediction constraints that is based on submodular
maximization.

• Showing that the studied optimization problem is hard to
approximate within a constant factor independent of the
properties of the applied payment function.

• Novel algorithms for maximizing submodular functions
with peer-prediction constraints that have provable guar-
antees for given topological and analytical properties of
payments.
1Peer-predictions are in general susceptible to collusion, but in

many cases one can establish relatively strong incentive properties
for a wide variety of reporting strategies (Kong and Schoenebeck
2016). We do not focus on collusion resistance, so we use standard
peer-predictions in our setting.

• Experimental evaluation of the proposed algorithms on a
crowd-sensing test-bed.

Notice that we do not focus on a particular peer-prediction
mechanism, but rather we allow a wide range of possible
mechanisms (those that are robust in terms of the number
of peers and produce bounded expected payments); thus, we
complement the prior work on peer-predictions by examin-
ing orthogonal aspects of elicitation without direct verifica-
tion. We provide the proofs to our formal claims in the ex-
tended version of the paper (Radanovic et al. 2017).

Problem Statement
We now formalize the problem addressed in this paper. We
model data providers as nodes in a graph, whereas the under-
lying peer-prediction dependencies are modeled via edges
whose weights are defined by the expected payments. The
overall goal is to select a set of nodes that maximize a sub-
modular utility function, while satisfying the constraint that
the cost of the data collector (i.e., the total expected pay-
ment to nodes) is within a predefined budget. The following
subsections provide more precise modeling details.

Set of Nodes and the Utility Function
We consider a set of nodes (e.g., a population of peo-
ple or sensors deployed in a city) denoted by set V =
{v1, v2, . . . , v|V |}, of size |V |. Hereafter, we denote a
generic node by v. We associate a function over the set of
nodes f : 2V → R≥0 that quantifies their utility (e.g., in-
formativeness). That is, given a set of selected nodes S, the
utility achieved from this set is equal to f(S). Furthermore,
for given set S, and a node v ∈ V \S, we define the marginal
utility of adding v to S as follows:

f(v|S) = f(S ∪ {v})− f(S). (1)

Here, the function f is assumed to be submodular and
monotone. Submodularity is an intuitive notion of dimin-
ishing returns, stating that, for any sets S ⊆ S′ ⊆ V , and
any given node v /∈ S′, it holds that f(v|S) ≥ f(v|S′).
Monotonicity requires that the function f increases as we
add more elements to set S. That is, for any sets S ⊆
S′ ⊆ V , it holds that f(S) ≤ f(S′). These conditions
are relatively general, and are satisfied by many realistic,
as well as complex utility functions for information gather-
ing (Krause and Guestrin 2011; Krause and Golovin 2012;
Singla and Krause 2013; Singla et al. 2014; Tschiatschek,
Singla, and Krause 2017). W.l.o.g., we assume that function
f is normalized, i.e., f(∅) = 0.

Peer-prediction Constraints (PPC)
The nodes in general exhibit dependencies with other nodes.
We consider a particular form of constraints that is associ-
ated with information elicitation via peer-prediction mecha-
nisms (Miller, Resnick, and Zeckhauser 2005). A canonical
peer-prediction τ : V × V → R scores the information re-
ported by node v using the information of a peer node vp.
Mechanism τ(v, vp) is said to be proper if node v’s best re-
sponse to accurate reporting of node vp is to report accu-
rately, where the quality of a response is measured in terms



of node v’s expected payoff over possible (accurate) reports
of node vp.2 We denote node v’s expected payoff for accu-
rate reporting by E(τ(v, vp)). To establish the properness of
τ , one needs to ensure that peer vp provides statistically cor-
related information to that of node v, so that the expected
payoff E(τ(v, vp)) is strictly greater than the cost of accu-
rate reporting (which models, for example, participants’ ef-
fort exertion). Therefore, node v has only a limited number
of peers defined as nodes that lead to the expected payoff
E(τ(v, vp)) ≥ τmin, where τmin > 0 is a problem specific
threshold dependent on the cost of accurate reporting. We
will further require that the same holds for node v’s peers,
i.e., E(τ(vp, v)) ≥ τmin, and assume that mechanism τ
provides bounded payments, so that E(τ(v, vp)) ≤ τmax.
Notice that as τmin increases, a node is expected to have a
smaller number of peers, which makes the problem of se-
lecting an optimal set of nodes more constrained. In Section
’Experimental Evaluation’, we confirm this observation by
showing the drop in the obtained utility.

Example: Output Agreement (OA). Arguably the sim-
plest peer prediction method is the output agreement of von
Ahn and Dabbish (2004), which gives a strictly positive pay-
ment only for matching reports. In our experiments, reported
information can in general take real values. In that case, as
explained by Waggoner and Chen (2014), the OA mecha-
nism can be defined as:

τ(v, vp) = 1− d(v, vp)
2, (2)

where d is Euclidian distance between reported values of v
and vp. Note that more complex designs are also allowed
by our framework, such as the one proposed in (Faltings,
Li, and Jurca 2014). For more information on the properties
of different minimal peer-predictions and their relationships,
we refer the reader to (Frongillo and Witkowski 2016).

With this in mind, we can model the dependencies among
nodes using an undirected graph G = (V,E), where edges
are defined as E = {{v, u} : v, u ∈ V, v 6= u,E(τ(v, u)) ≥
τmin,E(τ(u, v)) ≥ τmin}. We require that each node in a
selected set S has a neighboring node G that is also in S,
which implies that we can properly evaluate the reported in-
formation of each selected node. We denote the set of neigh-
boring nodes to node v asNv , i.e.,Nv = {u ∈ V : {v, u} ∈
E}. W.l.o.g. we can assume that every node inG has at least
one peer node vp, i.e., |Nv| ≥ 1. Namely, nodes that do not
have a peer cannot be incentivized to report accurately in our
setting, so they bring 0 utility in terms of f . Finally, let us
denote by ω the maximum number of peers that a node in
graph G has, i.e., ω(G) = maxv∈V |Nv|.

Cost of Incentivizing Accuracy
Given a selected set of nodes S, an information elicitation
procedure needs to spend a certain amount of budget, here-
after denoted by B, to incentivizing accurate reporting. To
quantify the cost of accurate elicitation, one needs to spec-
ify a peer selection procedure when a node v has multiple
peers. We take the approach of selecting the best peer, that

2Therefore, properness is here defined as Bayes-Nash incentive
compatibility in game-theoretic sense.

is the peer that has the most correlated information to that of
the considered node according to the expected payoffs—this
leads to the strongest incentives in terms of the separation
between the expected payoffs for accurate and inaccurate re-
porting. With this choice of peer selection procedure, we can
define the cost of selecting nodes S as function c : 2Vφ → R:

c(S) =
∑
v∈S

max
vp∈S∩Nv

E(τ(v, vp)). (3)

Here, 2Vφ contains only sets S such that each node v ∈ S has
a peer node vp ∈ S, which makes c well defined.

Optimization Problem
Our goal is to select a feasible set S ∈ 2Vφ that maximizes
the utility f(S) given budget B, i.e., c(S) ≤ B. More pre-
cisely, the budget denotes the total expected payment that a
data collector is willing to provide for incentivizing accu-
rate reporting. We therefore pose the following optimization
problem:

S∗ = arg max
S∈2Vφ s.t. c(S)≤B

f(S). (4)

Ignoring the computational constraints, we denote the opti-
mal solution to this problem as OPT.

Methodology
Instead of operating directly on optimization problem (4),
we reformulate it so that the budget constraint is expressed
through a cost function defined over all subsets of nodes 2V ,
not just the feasible set 2Vφ . We first show that the new op-
timization problem is equivalent to (4). Unfortunately, it is
hard to approximate without any dependency on the struc-
ture of the cost function. We then relax it to an optimization
problem that uses a modular approximation to the cost func-
tion, but operates with reduced budget to satisfy the original
budget constraint. This relaxation is the basis for our algo-
rithms developed in the next section, and is sound if the cost
function of the original problem has certain topological and
analytical constraints. The following subsections explain our
methodology in more details.

Expansion of the Cost Function
We start by expanding the domain of cost function c to
power-set 2V , which will provide us with better insights
on the computational complexity of the original problem. In
particular, we consider the following expansion ce : 2V →
R:

ce(S) = c(Sp) +
∑

v∈S\Sp

min
vp∈V ∩Nv

E(τ(v, vp)), (5)

where Sp is a set of all nodes in S who also have a peer in S,
i.e., Sp = {v ∈ S : ∃vp ∈ S s.t. vp ∈ Nv }. In other words,
cost function ce acts as if all the nodes in S who have a peer
in S are rewarded as usual, while those that do not have a
peer in S are rewarded with the expected payoff they obtain
when scored against the worst peer. Notice that ce(S) =
c(S) for all S ∈ 2Vφ , which makes the expansion sound. We



denote by ce(v|S) the marginal increase of cost ce for adding
an element v to S, i.e., ce(v|S) = ce(S ∪ {v}) − ce(S).
We establish the monotonicity of cost function ce with the
following lemma; notice, however, that the cost function is
not necessarily sub/super-modular.
Lemma 1. Cost function ce defined by (5) is monotone. Fur-
thermore: ce({v}) ≤ ce(v|S), for all S ∈ 2V \{v}.

Hardness Result
To prove the complexity of our initial problem, we adapt op-
timization problem (4) to use the extended cost function ce.
In particular, we consider the optimization problem defined
as:

S∗ = arg max
S∈2Vφ s.t. ce(S)≤B

f(S) (6)

Clearly, any feasible solution to the problem (6) is also a fea-
sible solution to the original problem due to the constraint
S ∈ 2Vφ , while the optimality alignment is ensured by hav-
ing the same objective value. Now, to show the hardness re-
sult for approximating OPT, we reduce the maximum clique
problem to optimization problem (6) in a computationally
efficient way, thus, obtaining:
Theorem 1. For any ε > 0, it is NP-hard to find a solu-
tion S to optimization problem (6) (and thus (4)) such that
f(S)
f(OPT) ≥

1
|V |1−ε .

Proof. Consider an arbitrary undirected unweighted graph
G′ = (V,E′) for which we wish to compute the maximum
clique. To reduce the maximum clique problem to (6): 1)
define function f as f(S) = |S|, which is clearly monotone
and submodular; 2) define payment function as: τ(v, vp) =
τ(vp, v) = τmax if (v, vp) /∈ E′, and τ(v, vp) = τ(vp, v) =
τmin otherwise; 3) set budgetB toB = |V |·τmin; 4) and set
τmax > B. Notice that such an arrangement induces a fully
connected graph G. Furthermore, we defined deterministic
payment functions τ(v, vp) and τ(vp, v), but one can use
E(τ(v, vp)) and E(τ(vp, v)) instead. Points 2 and 4 ensure
that any solution to optimization problem (6) is a clique in
graph G′; otherwise, the budget constraints would be vio-
lated in solving (6). Likewise, points 2 and 3 ensure that
any clique is permitted as a potential solution w.r.t. the bud-
get constraint. Finally, point 1 ensures that we search for a
clique with the maximum number of vertices. Since the re-
duction is computationally efficient (polynomial in the graph
size, i.e. |V | and E), optimization (4) is at least as hard as
the maximum clique problem. Using the fact that the max-
imum clique problem is hard to approximate within factor

1
|V |1−ε (Hastad 1999), we obtain the claim.

Structural Properties of the Cost Function
To cope with the computational hardness of the problem
at hand, we identify two structural properties of cost func-
tion ce (or equivalently, the structural properties of payment
function τ ). The first one is related to topological properties
of graph G, and can be quantified with the maximum num-
ber of peers that a node in the graph can have. As explained
earlier in this section, we denote this number by ω.

The second property is similar to the notion of curvature
of a submodular function (Iyer, Jegelka, and Bilmes 2013),
but now defined over cost function ce that is not necessarily
sub/super-modular. In particular, we define the slope α of
cost function ce as:

α = 1− min
v∈V,S∈2V \{v}

ce({v})
ce(v|S)

.

The slope of cost function ce, as defined above, measures
how much marginal gains of ce change as we add more to
initially empty set of selected nodes.3 Intuitively, it measures
the deviation of ce from modularity. A specific case of our
interest is when α = 0, which indicates that cm is modular
and, thus, can be decomposed into a sum of costs cm de-
pendent only on one vertex, i.e.,

∑
v∈S cm(v). In the next

subsection, we discuss how to utilize modular approxima-
tions of ce when ce itself is not modular. First, let us upper
bound the slope α using the fact that payments are bounded.

Lemma 2. The slope of cost function ce is upper-bounded
by α ≤ 1− τmin

ω·τmax .

Relaxed Optimization Problem
To make use of the structural constraints of cost function ce,
let us consider a relaxed version of optimization problem (6)
with budget constraints defined via a modular lower bound
to cost function ce, denoted by cM . As we show in the next
section, for such a relaxation, one can develop a greedy ap-
proach that has provable approximation guarantees on the
quality of the obtained solution relative to OPT. More pre-
cisely, consider the modular function cM : 2V → R defined
via a cost function cm : V → R:

cM (S) =
∑
v∈S

cm(v) (7)

where cm(v) = min
vp∈Nv

E(τ(v, vp)).

Clearly, cM (S) lower bounds ce(S) as it calculates the ex-
pected payoffs of nodes in S when they are scored against
their worst peers (not necessarily in S). Now, we relax opti-
mization problem (6) to:

S∗ = arg max
S∈2Vφ s.t. cM (S)≤B′

f(S). (8)

In order to make the relaxation sound, any selected set S∗ in
problem (8) should also be feasible in problem (6) (and thus
(4)). We can ensure this by reducing the available budget,
i.e., by making B′ appropriately smaller than B. Using the
slope of cost ce, we can obtain that the following budget
reduction satisfies our requirement.

Lemma 3. Any feasible solution S to optimization problem
(8) is also a feasible solution to optimization problem (6)
(and thus (4)) for B′ ≤ (1− α) ·B, where α is the slope of
cost function ce.

3That is, α quantifies the maximum increase in ce for adding a
node v (see Lemma 1).



Algorithm 1: Algorithm PPCGREEDY

1 Input:
2 PPC graph: G(V,E);
2 Utility function : f ; budget B;
2 Cost function : c, slope α, modular approx. cM ;

2 Output: selected set S̃∗;
3 Initialize:

2 t = 0; S̃∗ = ∅; budget Bt = (1− α) ·B ;
2 COUPLESUPERSET Z = ∅;

4 //Create COUPLESUPERSET Z
5 foreach v ∈ V do
6 Nv ← {u : {v, u} ∈ E} ;
7 foreach u ∈ Nv do
8 z = {v, u}; Z = Z ∪ {z} ;

end
end

9 //Compute S̃∗

10 while Bt > 0 do
11 z∗t = arg max

z∈Z,z\S̃∗ 6=∅,cM (z\S̃∗)≤Bt
f(z|S̃∗)
cM (z\S̃∗)

;

12 if z∗t = NULL then
break;

end
13 Bt+1 = Bt − cM (z∗t \S̃∗) ;
14 S̃∗ = S̃∗ ∪ z∗t ;
15 t = t+ 1 ;

end
16 Output: S̃∗

Algorithm
We now present a new greedy algorithm for solving the op-
timization problem with peer-prediction constraints (PPC),
called PPCGreedy (Algorithm 1). It is similar to standard
greedy approaches for submodular maximization with bud-
get constraints (e.g., Nushi et al. (2015)), but it additionally
ensures that a tentative output S̃∗ at a certain iteration is an
element of 2Vφ . To do so, it initially constructs a set of cou-
ples Z that contains all the peer pairs and selects at each it-
eration t either a node that already has a peer in the selected
set or a pair of nodes that are peers. The selection proce-
dure makes a choice z∗ that maximizes the ratio between
the utility gain and the cost increase, while not exceeding a
given budget B′ = (1−α) ·B. If there are multiple choices
that maximize this ratio, the selection procedure selects one
of them, whereas if there is no choice that fits the budgets
constraints, z∗ is set to NULL, which ends the search and
outputs the current solution S̃∗.

Analysis
We will now show the main property of our algorithm: its
near optimality when cost function ce has a low slope α, i.e.,
when the difference between τmax and τmin is small. Notice
that parameters τmax and τmin are controllable through our

design of a peer-prediction method τ and the requirements
on minimal expected payments, which implies that α can
be tuned. For all practical reasons, it is also reasonable to
assume that (1−α)·B

τmax
> 2, which simply states that our algo-

rithm is always able to initially select any pair of nodes.
Theorem 2. Let the maximal relative difference between
modular costs of two peer nodes be bounded by r, i.e.,
r ≥ maxv∈V,vp∈Nv

cm(v)
cm(vp) , and let γ = maxv∈V

cm(v)
B′ ∈

(0, 1
2 ). Then, the output S̃∗ of Algorithm 1 has the following

guarantees on the utility:

f(S̃∗) ≥
(

1− e−
(1−α)·(1−2·γ)

1+r

)
· f(OPT). (9)

Proof (Sketch). The proof of the theorem is non-trivial, so
we outline only its basic steps (see (Radanovic et al. 2017)
for more details). Using the fact that f is submodular, while
Algorithm 1 is greedy in terms of f/cM ratio, we show that:

f(z∗t |St) ≥
cM (z∗t \St)
(1 + r) ·B

· [f( ¯OPT)− f(St)],

where St is equal to S̃∗ at time-step t, while ¯OPT is the
optimum solution to optimization problem (8) when bud-
get B′ = B. Now, following the the proofs of related results
for submodular maximization under budget constraints (e.g.,
Sviridenko (2004), Nushi et al. (2015)), and adapting them
to our setting, we obtain that:

f(S̃∗) ≥
(

1− e−
(1−α)·(1−2·γ)

1+r

)
f( ¯OPT).

As we argue in the full proof, f( ¯OPT) ≥ f(OPT) because
¯OPT is obtained for the same budget as OPT, but the cost cM

that lower bounds c. Together with the above inequality, this
implies the statement of the theorem.

We see that the quality of the approximation ratio depends
on the structural properties of the cost function, including
slope α, the maximum cost discrepancy between two nodes
measured by r, and the maximum fraction of the budget as-
signed to a node, measured by γ. As α approaches its maxi-
mum value, i.e., α→ 1, the approximation ration goes to 0.
This is consistent with the hardness result presented in Sec-
tion ’Methodology’, which shows the necessity of imposing
structural constraints. One can reach a similar conclusion by
analyzing r as it goes to its maximal value, i.e., r →∞.

To see this more clearly, we can express the results of the
theorem in terms of the original optimization problem and
the structural properties of payment function τ . Using the
bound on slope α (Lemma 2), the boundedness of payments,
which imply r ≤ τmax

τmin
, we obtain:

Corollary 1. Assuming B > 2 · ω·τ
2
max

τmin
, the output S̃∗ of

Algorithm 1 has the following guarantees on the utility:

f(S̃∗) ≥

(
1− e

− τ2min
ωτ2max

·
(

1
2−

ω·τ2max
B·τmin

))
· f(OPT). (10)

Therefore, whenever the maximum payment τmax or the
number of possible peers ω go to large values, the approxi-
mation factor becomes negligible. Notice that the number of



Algorithm 2: Algorithm PPCGREEDYITER

1 Output: selected set S̃∗;
2 Initialize:

2 t = 1; S̃∗ = ∅; budget B0 = B + ε; B1 = B ;

3 //Compute S̃∗

4 while Bt < Bt−1 do
5 S̃∗t = PPCGreedy(f(· ∪ S̃∗), c(· ∪ S̃∗), Bt, S̃∗) ;
6 Bt+1 = B − c(S̃∗t ∪ S̃∗) ;
7 S̃∗ = S̃∗ ∪ S̃∗t ;
8 t = t+ 1 ;

end
9 Output: S̃∗

possible peers ω is dependent on τmin, so we can alterna-
tively say that for small values of τmin, i.e., τmin ≈ 0, the
quality of the obtained greedy solution is relatively low. In
practice, however, we can often avoid these corner cases by
adjusting the payment function, and thus τmax and τmin.

More Efficient Budget Expenditure
The PPCGreedy algorithm, as described by Algorithm 1
does not necessarily spend the full budget on incentivizing
nodes. This is because we use a reduced budget B′ when
running the main steps of the algorithm. One can achieve
a better budget efficiency by iteratively calling PPCGreedy
method, as shown in Algorithm 2, that we refer to as PPC-
GreedyIter. It is important to note that in the sub-procedure
PPCGreedy we take into account the current set of se-
lected nodes S̃∗ when examining the feasibility of a solu-
tion and evaluating the utility and cost functions. The budget
reduction in the PPCGreedy subroutine can, on the other
hand, be done with the same (initial) α. The procedure ter-
minates when no new node is added, which is equivalent to
the budget not changing between two consecutive iterations.

The utility function f is always evaluated with the se-
lected set of nodes S̃∗ from previous iterations, in the al-
gorithm denoted by f(· ∪ S̃∗). The same is true for cost
function c, denoted by c(· ∪ S̃∗), and its modular approx-
imation cM . Due to monotonicity of f , this means that the
reached solution is always as good as the one obtained by
PPCGreedy. Furthermore, the cost of the solution is within
the budget constraints: this is because ce({v}) ≤ ce(v|S)
(Lemma 1), so the slope α defined on ce(·) upper bounds the
one defined on c(· ∪ S̃∗), which implies that the subroutine
PPCGreedy makes a proper budget reduction. Therefore,
the results of Theorem 2 and Corollary 1 are preserved.

Experimental Evaluation
To evaluate our approach, we use a crowd sensing test-bed of
Singla (2017), constructed from real measurements of CO2

and user locations across an urban area. The concentrations
of CO2 in the city of Zurich were acquired with a NODE+4

4http://www.variableinc.com/node1

sensor. These measurements were used to fit a Gaussian var-
iogram whose parameters indicate that the relevant corre-
lation range between two measurement locations is about
R = 236 meters. We use this distance to define a disk cov-
erage function—for a set of points of interest, we count how
many of these are within R meters away from the set of se-
lected points. More formally, given a set of points S that rep-
resent the location of the selected sensors and set of points
Spoi that represent locations for which we would like to ob-
tain CO2 measurements, the objective function f is defined
as: f(S) =

∑
s∈Spoi 1mins′∈Sd(s,s′)≤R. Here, 1cond is an

indicator variable, evaluating to 1 when cond is satisfied,
and is 0 otherwise, while d(s, s′) measures the distance in
meters between locations s and s′. The function f is a cov-
erage function, which is monotone and submodular (Krause
and Golovin 2012).

Points of interest Spoi are predefined, and in total, there
are 300 of them. These were obtained using a publicly avail-
able data (OpenStreetMap5), from which we randomly se-
lected 300 locations from an area in the center of New York
City. To identify the locations of available crowd-sensors,
i.e., the ground set V , we use the population statistics of the
test-bed, which give us the likelihood of a user appearing in
one of the 300 points. This statistics is inferred from a pub-
licly accessible dataset (Strava6) that contains the mobility
patterns of cyclists for a period of 6 days. We sample from
the likelihood 1000 points to obtain sensing locations and
then we perturb them by 50 meters.

As a peer prediction scoring rule, we use the output agree-
ment mechanism as described in Section Problem Statement.
The expected score of this mechanism for two points s and s′
in truthful reporting regime is equal to E(d(s, s′)2). We ap-
proximate the expected value of OA for two sensors s and s′
by using the variogram of the test-bed. More precisely, given
the range parameterR = 236, we estimate the expected pay-

off between two sensors as: E(τ(s1, s2)) = 1− e−
d(s1,s2)2

a·R2 ,
where a is set to 1

3 .
Results. We test our approaches, PPCGreedy and PPC-

GreedyIter, against two other baselines: (a) a random selec-
tion (denoted by Random) that satisfies peer-prediction con-
straints, (b) a greedy approach (denoted by Greedy) that as-
sumes it suffices to reward each sensor with τmin, without
providing incentives for accurate reporting. Clearly, the lat-
ter baseline represents an optimistic approach whose perfor-
mance upper bounds that of the proposed algorithms, while
the former one is likely to lower bound their performance.
In all the cases, the expected budget is at most B.

We perform two different tests. In the first test, we vary
the total available budget B from 5 to 25 at steps of size 5.
At the same time, we keep the minimal expected payment
to τmin = 0.5. As we can see from Figure 2a, as the total
budget increases, all the methods perform better. However,
the increase is more notable for non-random algorithms. The
performance of PPCGreedyIter is generally better than the
one of PPCGreedy, and this is due to the spent budget —

5http://wiki.openstreetmap.org/wiki/Node
6http://metro.strava.com/
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Figure 2: Experimental results show how the utility f(S̃∗) changes as we increase budgetB or the minimum expected payments
τmin. S̃∗ is the output of different methods. Increasing B is beneficial as it allows more sensors to be selected. On the other
hand, as we increase τmin, the sensors have less peers and they need to be payed more. Random is run 10 times and we show
the means and standard deviations.

as explained in the previous section, PPCGreedy is only the
first step of PPCGreedyIter, which further iteratively runs
PPCGreedy on the remaining budget.

In the second test, we vary the minimal expected payment
τmin, which now takes values in {0.1, 0.25, 0.5, 0.75, 0.9}.
Budget B is set to 15. The results are given in Figure 2b.
Except for Random, a general trend is that increasing the
minimal payments leads to lower performance, which is not
surprising given that the number of peers and the budget per
sensor decrease in that case. Random in general performs
much worse than other techniques for all values of τmin.
Moreover, notice that the discrepancy in performance be-
tween PPCGreedy, PPCGreedyIter, and Greedy, increases
with τmin. Initially, all the non-random algorithms find an
optimum of function f , achieving the utility equal to 300.

Related Work
Information elicitation. A standard incentives for qual-
ity are typically categorized into gold standard tech-
niques, such as proper scoring rules (Gneiting and Raftery
2007) or prediction markets (Chen and Pennock 2007),
or peer-prediction techniques, such as the classical peer-
prediction (Miller, Resnick, and Zeckhauser 2005) or
Bayesian truth serums (Prelec 2004; Witkowski and Parkes
2012; Radanovic and Faltings 2013). We focus in this pa-
per on peer-prediction techniques due to the scalability of
elicitation without verification for acquiring large amounts
of highly distributed information. Recently, several peer-
predictions were proposed for various crowdsourcing sce-
narios. These included micro-task crowdsourcing (Dasgupta
and Ghosh 2013), opinion polling (Jurca and Faltings 2011),
information markets (Baillon 2017), peer grading (Shnay-
der et al. 2016), and most importantly for this work, crowd-
sensing (Radanovic, Faltings, and Jurca 2016). The pro-
posed mechanisms for these domains follow the standard
principles of the classical peer-prediction, e.g., incentivizing
participants by comparing their reports and placing higher
scores for a priori less likely matches. However, they also
often extend the design of the original methods by making
them more robust in terms of the required number of partic-
ipants and the knowledge about them, the heterogeneity of
users and tasks, or susceptibility to collusive behaviors (Falt-
ings and Radanovic 2017). We analyze orthogonal charac-

teristics important for deploying such mechanisms in prac-
tice, i.e., budget and cost acquisition constraints. Although
the prior work (e.g., Liu and Chen (2016)) does study meta-
mechanisms that make peer-predictions proper in terms of
effort exertion, it is often based on scaling techniques, which
either ignore budget limitations or the cost of effort.

Submodular function maximization. From the techni-
cal side, the most important aspect relates to submodular
function maximization. While there is a sizeable literature
on this topic (e.g., Krause and Guestrin (2011), Krause and
Golovin (2012)), we mostly focus on the prior work that is
closely related to the techniques used in this paper. Our ba-
sic objective is a subset selection under budget (knapsack)
constraints (e.g., Sviridenko (2004)), and we base our algo-
rithmic techniques on a simple greedy approach (Nushi et al.
2015). Notice that we additionally have a graph based con-
straint, which is in spirit similar to Singla et al. (2015), al-
though we are solving a different optimization problem. Ar-
guably, this paper is most related to submodular maximiza-
tion with submodular budget constraints (Iyer and Bilmes
2013); contrary to this work, our budget constraints are not
necessarily sub/super-modular. It is also worth mentioning
the hardness results that relate to the ones obtained in this
paper, such as the inapproximability of the maximum of a
submodular non-monotone, possibly negative, profit func-
tion (Feige et al. 2008).

Conclusion
In this paper, we have introduced an information elicita-
tion model for data collection from distributed sources when
the incentive mechanism is based on peer-predictions. We
have shown that optimal information gathering is compu-
tationally infeasible in that even approximating the optimal
solution is NP-hard. However, given structural constraints
on peer-prediction incentives, we have proposed two greedy
methods that achieve good performance relative to the op-
timum, and have tested their performance empirically on a
realistic crowd-sensing test-best.
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Appendix: Information Gathering with Peers
Proof of Lemma 1
Statement: Cost function ce defined by (5) is monotone.
Furthermore: ce({v}) ≤ ce(v|S), for all S ∈ 2V \{v}.

Proof. Denote by Svp a set of nodes in V who have peers in
S ∪ {v}. Notice that Sp ⊆ Svp . For a given set S ∈ 2V and
v /∈ S, we have:

ce(S ∪ {v}) = c(Svp )

+
∑

v′∈(S∪{v})\Svp

min
vp∈V ∩Nv′

E(τ(v′, vp))

=
∑

v′∈(S∪{v})∩Svp

max
vp∈(S∪{v})∩Nv′

E(τ(v′, vp))

+
∑

v′∈(S∪{v})\Svp

min
vp∈V ∩Nv′

E(τ(v′, vp))

≥
∑

v′∈S∩Sp

max
vp∈S∩Nv′

E(τ(v′, vp))

+
∑

v′∈(S∩Svp )\Sp

min
vp∈V ∩Nv′

E(τ(v′, vp))

+ min
vp∈V ∩Nv

E(τ(v, vp))

+
∑

v′∈S\Svp

min
vp∈V ∩Nv′

E(τ(v′, vp))

=
∑

v′∈S∩Sp

max
vp∈S∩Nv′

E(τ(v′, vp))

+
∑

v′∈S\Sp

min
vp∈V ∩Nv′

E(τ(v′, vp))

+ min
vp∈V ∩Nv

E(τ(v, vp))

≥ c(Sp) +
∑

v′∈S\Sp

min
vp∈V ∩Nv′

E(τ(v′, vp))

+ τmin = ce(S) + τmin > ce(S).

Furthermore, from the proof we see that ce(v|S) ≥
minvp∈V ∩Nv τ(v, vp) = ce(v), thus proving the second part
of the statement.

Proof of Theorem 1
Statement: For any ε > 0, it is NP-hard to find a solu-
tion S to optimization problem (6) (and thus (4)) such that
f(S)
f(OPT) ≥

1
|V |1−ε .

Proof. We prove the statement by reducing the maximum
clique problem to optimization (6). Consider an arbitrary
undirected unweighted graph G′ = (V,E′) for which we
wish to compute the maximum clique. To reduce the maxi-
mum clique problem to (6):

1. define function f as f(S) = |S|, which is clearly mono-
tone and submodular;

2. define payment function as: τ(v, vp) = τ(vp, v) = τmax
if (v, vp) /∈ E′, and τ(v, vp) = τ(vp, v) = τmin other-
wise;

3. set budget B to B = |V | · τmin;
4. and set τmax > B.

Notice that such an arrangement induces a fully connected
graph G. Furthermore, we defined deterministic payment
functions τ(v, vp) and τ(vp, v), but one can use E(τ(v, vp))
and E(τ(vp, v)) instead. Points 2 and 4 ensure that any so-
lution to optimization problem (6) is a clique in graph G′;
otherwise, the budget constraints would be violated in solv-
ing (6). Likewise, points 2 and 3 ensure that any clique is
permitted as a potential solution w.r.t. the budget constraint.
Finally, point 1 ensures that we search for a clique with the
maximum number of vertices. Since the reduction is com-
putationally efficient (polynomial in the graph size, i.e. |V |
and E), optimization (4) is at least as hard as the maximum
clique problem. Using the fact that the maximum clique
problem is hard to approximate within factor 1

|V |1−ε (Has-
tad 1999), we obtain the claim.

Proof of Lemma 2
Statement: The slope of cost function ce is upper-bounded
by:

α ≤ 1− τmin
ω · τmax

.

Proof. Notice that the slope is maximized when there exist
a node v such that:

• the expected payoff of v when it’s scored against its worst
peer vp,min is τmin,

• the expected payoff of v increases to τmax whenever any
other peer vp′ 6= vp,min is used for scoring,

• any v’s peer vp′ (including vp,min
7) achieves expected

payoff τmax when scored against v and otherwise, when
scored against some other peer, they achieve τmin.

This gives us:

α ≤ 1− τmin
τmax + (ω − 1) · τmax − (ω − 1) · τmin

≤ 1− τmin
ω · τmax

Proof of Lemma 3
Statement: Any feasible solution S to optimization prob-
lem (8) is also a feasible solution to optimization problem
(6) (and thus (4)) for B′ ≤ (1−α) ·B, where α is the slope
of cost function ce.

7The analysis slightly changes if vp is required to have the same
payoff as v when they are mutual peers, but the main result stays
the same.



Proof. Since both problems require that S ∈ 2Vφ , we only
need to show that the budget constraint in (6) is not violated
when S is selected. Let us enumerate the elements of S, so
that each element is assigned an index i. We have:

cM (S) =
∑
v∈S

cm(v) =
∑
v∈S

ce({v})

=

|S|∑
i=1

ce({vi})
ce({vi}| ∪j<i {vj})

· ce({vi}| ∪j<i {vj})

≥ (1− α)

|S|∑
i=1

ce({vi}| ∪j<i {vj})

= (1− α) · ce(S).

The (first) inequality is due to the slope of ce. Now, since
cM (S) ≤ B′, it follows that ce(S) ≤ cM (S)

1−α ≤
B′

1−α ≤ B,
which proves the statement.

Proof of Theorem 2
Statement: Let the maximal relative difference between
modular costs of two peer nodes be bounded by r, i.e.,
r ≥ maxv∈V,vp∈Nv

cm(v)
cm(vp) , and let γ = maxv∈V

cm(v)
B′ ∈

(0, 1
2 ). Then, the output S̃∗ of Algorithm 1 has the following

guarantees on the utility:

f(S̃∗) ≥
(

1− e−
(1−α)·(1−2·γ)

1+r

)
· f(OPT). (11)

Proof. Let OPT′ denote an optimal solution to optimiza-
tion problem (8) when budget B′ = (1 − α) · B, ¯OPT de-
note an optimal solution to optimization problem (8) when
budget B′ = B. Cleary f( ¯OPT) ≥ f(OPT′). Further-
more, f( ¯OPT) ≥ f(OPT), where OPT is an optimal so-
lution to optimization problem (6) (and (4)), because cost
function ce(S) is lower bounded by its modular approxima-
tion cM (S). Therefore, it suffices to lower bound f(S̃∗) with
f( ¯OPT) modulated by the approximation factor in the state-
ment of the theorem.

Let St represent the current solution S̃∗ of the greedy al-
gorithm at time step t and assume w.l.o.g. that z∗t is not
NULL.8 Due to monotonicity and submodularity of func-
tion f and the fact that Algorithm 1 is greedy in terms of
f/c ratio, we have:

f( ¯OPT) ≤mon. f( ¯OPT ∪ St) ≤sub. f(St) +
∑

v∈ŌPT\St

f(v|St)

≤mon.:adding a peer f(St) +
∑

v∈ŌPT\St

f({v, vv,p}|St)

= f(St) +
∑

v∈ŌPT\St

cM ({v, vv,p})
cM ({v, vv,p})

· f({v, vv,p}|St),

8This is true for at least t = 1 due to the assumption on the
boundedness of modular payments, i.e. γ < 1

2
.

where vv,p is any peer of v. Using the fact that Algorithm 1
is greedy in terms of f/c ratio, we further obtain:

f( ¯OPT) ≤ f(St) +
f(z∗t |St)
cM (z∗t \St)

·
∑

v∈ŌPT\St

cM ({v, vv,p}).

Now, r ≥ maxv,vp∈V :vp∈Nv
cm(v)
cm(vp) and

∑
v∈ŌPT cm(v) ≤

B give us:

f( ¯OPT) ≤ f(St) +
f(z∗t |St)
cM (z∗t \St)

· (1 + r)
∑

v∈ŌPT\St

cm(v)

≤ f(St) +
f(z∗t |St)
cM (z∗t \St)

· (1 + r) ·B

By rearranging, we get:

f(z∗t |St) ≥
cM (z∗t \St)
(1 + r) ·B

· [f( ¯OPT)− f(St)],

and further since f(St+1) − f(St) = f(z∗t |St) and f(∅) =
0:

f(St+1)− f( ¯OPT) ≥
(

1− cM (z∗t \St)
(1 + r) ·B

)
· [f(St)− f( ¯OPT)]

≥ ... ≥ −
t+1∏
i=1

(
1−

cM (z∗i−1\Si−1)

(1 + r) ·B

)
· f( ¯OPT),

where we used an inductive argument. In other words:

f(St) ≥

(
1−

t∏
i=1

(
1−

cM (z∗i−1\Si−1)

(1 + r) ·B

))
f( ¯OPT),

where we for notational convenience considered St instead
of St+1. Now, because:

t∏
i=1

(1 + xi) = (e
1
t

∑t
i=1 ln(1+xi))t

≤e is convex

(
1

t

t∑
i=1

eln(1+xi)

)t
=

(
1 +

t∑
i=1

xi
t

)t
,

for xi ∈ (−1, 1), we obtain:

f(St) ≥

1−

(
1−

t∑
i=1

cM (z∗i−1\Si−1)

t · (1 + r) ·B

)t f( ¯OPT)

≥

(
1−

(
1− cM (St)

t · (1 + r) ·B

)t)
f( ¯OPT),

where we used the fact that
∑t
i=1 cM (z∗i−1\Si−1) =

cM (St). Finally, we transform B to B′ = (1 − α) · B to
obtain:

f(St) ≥

(
1−

(
1− cM (St) · (1− α)

t · (1 + r) ·B′

)t)
f( ¯OPT).

Now, at a certain time step t∗, Algorithm 1 cannot find
any node or a pair of nodes that could be added. Because



modular costs are bounded by cm(v) ≤ γ ·B′, we know that
at time step t∗, Algorithm 1 spent at least B′ − 2 · γ · B′
budget.9 Hence, cM (St) ≥ (1 − 2 · γ) · B′, which gives us
that:

f(St∗) ≥

(
1−

(
1− (1− 2 · γ) · (1− α)

t∗ · (1 + r)

)t∗)
f( ¯OPT)

≥
(

1− e−
(1−α)·(1−2·γ)

1+r

)
f( ¯OPT).

Finally, using the fact that f( ¯OPT) ≥ f(OPT) and S̃∗ = St∗
we obtain:

f(S̃∗) ≥
(

1− e−
(1−α)·(1−2·γ)

1+r

)
· f(OPT).

9Otherwise, there would be a node or a pair of nodes that could
be added, or all of the elements are selected, which is the optimal
choice and thus trivially proves the statement.


