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ABSTRACT
Increasing user comfort and reducing operation costs have
always been two primary objectives of building operations
and control strategies. Current building control strategies
are unable to incorporate occupant level comfort and meet
the operation goals simultaneously. In this paper, we present
a novel utility-based building control strategy that optimizes
the tradeoff between meeting user comfort and reduction in
operation cost by reducing energy usage. We present an
implementation of the proposed approach as an intelligent
lighting control strategy that significantly reduces energy
cost. Our approach is based on a principled, decision the-
oretic formulation of the control task. We demonstrate the
use of mobile wireless sensor networks to optimize the trade-
off between fulfilling different occupants’ light preferences
and minimizing energy consumption. We further extend
our approach to optimally exploit external light sources for
additional energy savings, a process called daylight harvest-
ing. Also we demonstrate that an active sensing approach
can maximize the mobile sensor network’s lifetime by sens-
ing only during most informative situations. We provide
efficient algorithms for solving the underlying complex op-
timization problems, and extensively evaluate our proposed
approach in a proof-of-concept testbed using MICA2 motes
and dimmable lamps. Our results indicate a significant im-
provement in user utility and reduced energy expenditure.

Categories and Subject Descriptors: C.3 [Special-
purpose and application-based systems]: Real-time
and embedded systems; G.3 [Probability and Statistics]:
Experimental design, Markov processes; I.2.11 [Artificial
Intelligence]: Distributed Artificial Intelligence - Intelli-
gent Agents; J.2 [Physical Science and Engineering] :
Engineering; J.5 [Arts and Humanities] : Architecture

General Terms: Algorithms, Management, Measurement,
Performance, Design, Experimentation, Verification.

Keywords: Sensor Networks, Light Control, Intelligent
Buildings, Active Sensing.
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1. INTRODUCTION
Increasing user comfort and reducing energy costs have

always been two primary objectives of intelligent buildings
[35, 15]. Typically the trade-off between meeting user pref-
erences for indoor environmental condition and reduction in
energy usage leads to a difficult optimization problem. This
optimization task becomes more complex as occupants have
different preferences over the the state of the indoor environ-
ment and these preferences change with time. For example,
people prefer different light levels, even when performing the
same task. In addition, the state and usage of the indoor en-
vironment changes over time, e.g., due to to changing levels
of sunlight and tasks being performed by users.

1.1 Current energy centric strategies
The present generation of intelligent buildings aims to uti-

lize computer technology to autonomously govern the build-
ing environment and try to optimize user comfort, energy
consumption, safety and monitoring-functions [39]. Signifi-
cant progress has been made in integrating advanced com-
puter science concepts in developing building control strate-
gies [7, 23]. The current control strategies can actively adapt
to the changing outdoor or indoor environment of the build-
ing, which amounts to significant energy cost savings. How-
ever, these control strategies are often unable to adapt to the
requirements at the occupant level due to limited knowledge
about occupants’ preferences and the state of their imme-
diate environment. This leads to uncomfortable work envi-
ronments, sick building syndrome and various other work re-
lated diseases [44]. In most commercial buildings, the cost of
salaries and benefits exceeds energy, maintenance, and annu-
alized construction costs or rent, by approximately a factor
of 100 [43, 34]. Estimates for the United States show po-
tential annual savings and productivity gains from improved
indoor environments are about $10 to $30 billion from re-
duced sick building syndrome symptoms, and $20 to $160
billion from direct improvements in occupant performance
that are unrelated to health [14]. These facts highlight sig-
nificant problems in selecting building control strategies that
focus only on energy concerns, while not addressing occu-
pant preferences.

1.2 Current occupant centric strategies
There are various standards available that recommend

certain levels for various indoor parameters [3], including
lighting, heating, etc. However, they fail to capture the per-
sonal preferences that an individual might have and thus



provide a gross approximation of occupant needs. Address-
ing the desire of increasing occupant productivity, many
new buildings are now equipped with Personal Environment
Modules (PEMs) [4]. The goal of providing PEMs is to en-
able occupants to control their own environment. This often
can lead to conflicts as occupants have different preferences
for various environmental parameters such as light levels.
Studies have shown that people tend not to use the personal
control modules if they perceive conflict with the other oc-
cupants sharing their workspace [30]. This kind of behavior
is common in commercial buildings with open space plans.
Also, providing occupants with the entire control leaves few
options for the building operator whose goal is to efficiently
manage energy usage. As a result the overall benefits in
building operation are decreased.

1.3 Our approach: An optimal trade-off
There is thus a trade-off in benefits, choosing between an

energy efficient and a user-centered control strategy. Typi-
cally these two strategies are seen as two ends of the avail-
able control strategy spectrum. These opposing interests
indicate that there is a need for a bilateral or user medi-
ated central control strategy, which fits in the middle of the
control strategy spectrum. Such a control strategy would in-
tegrate occupants’ preferences, the state of their immediate
indoor and outdoor environment and the operation goals, in
terms of reduction in energy usage.

The challenges to develop such a balanced control strategy
are threefold: First, we need to identify the preferences of in-
dividual occupants in indoor environments continuously, as
preferences change over time and as the occupants move in
the building. The second challenge is to gather information
about the immediate indoor and outdoor environment of the
occupants. The third challenge is to optimize the trade-off
between meeting occupants preferences and reducing energy
usage.

To address these challenges, we present a building con-
trol strategy based on a principled, decision theoretic for-
mulation of the complex optimization task. Our control
strategy integrates individual occupants’ preferences and the
real state of indoor and outdoor environment through a net-
work of wireless sensors. The control strategies quantify the
trade-off between meeting occupant preferences and the cor-
responding energy utilization. We present an implementa-
tion of the control strategy as an intelligent lighting system.
Our intelligent lighting system adapts to occupant prefer-
ences, trading-off energy consumption with user satisfaction.
Additionally, we optimally exploit external light sources in
a process called daylight harvesting, to significantly reduce
energy usage. We address the issue of sustaining long-term
deployment of wireless sensors by developing active sensing
algorithms that exploit the correlation in the natural light
intensity and significantly increase the lifetime of the sen-
sors.

1.4 Contributions
In this paper, we provide the following contributions to

the complex problem described above.

• We provide a principled, decision theoretic basis for in-
telligent light management using mobile wireless sen-
sor networks.

• We present an efficient coordinated illumination al-
gorithm for optimizing the trade-off between meeting

user preferences and reducing energy consumption.

• Additionally, we extend our method to optimally ex-
ploit external light sources. This daylight harvesting
strategy significantly reduces energy usage.

• We propose an active sensing strategy which exploits
spatial and temporal correlation in natural light inten-
sity to schedule sensing. Our results indicate a drastic
decrease in the amount of sensing necessary per day.
This leads to a significant increase in battery lifetime
of the deployed sensors.

• Furthermore, we extend our methods to adapt to the
dynamics of moving occupants of the building. This
extension uses probabilistic models for movement which
naturally fit into our decision theoretic framework.

• All our proposed novel methods are extensively eval-
uated in an actual deployed testbed. In addition to
the empirical evaluation provided in this paper, we
created videos demonstrating the performance of our
system. These videos are accessible at the website:
www.cs.cmu.edu/∼guestrin/Publications/SenSys05.

2. COORDINATED ILLUMINATION
Lighting is a major factor affecting both occupants’ com-

fort and energy costs in a building. With a total area of
12 billion square feet, U.S. office buildings use over 86 bil-
lion kWh for lighting each year. At the 2003 U.S. average
energy cost of $0.08 per kWh, the potential savings from
implementing energy efficient lighting in 50% of office build-
ing is more than $2.1 billion each year [10]. However, at
the same time, energy efficient lighting is typically associ-
ated with reduced lighting which can affect the productivity
of the occupants. Reduced productivity and costs incurred
due to loss of work can outweigh energy savings.

Many commercial buildings have installed intelligent light
controls that enable occupants to adjust levels according to
their preferences. However, research has shown that occu-
pants avoid using such controls if they perceive conflict with
other occupants [30]. This is the case in many commercial
offices with open floor plans. Achieving occupants’ light
preferences and reducing energy usage requires solving a
multi-criterion optimization problem for which the complex-
ity grows exponentially with the number of light fixtures.

Fortunately, we can exploit architectural design principle
to solve the optimization problems efficiently and optimally.
The key concept we will utilize is zoning : the process of
dividing the floor plan in smaller zones which have separate
light controls. However, in open floor plans it is difficult to
separate the effect of a light source in one zone from the
adjacent zones. This leads to a situation where a single
light source affects multiple zones, making it difficult to find
a mutually acceptable setting across adjacent zones.

In this section, we present a coordinated illumination ap-
proach, which exploits the zoning concept, in lighting system
design, to solve the described multi-criterion trade-off prob-
lem optimally and efficiently. We first formalize the control
strategy in a decision theoretic way. We then propose an
efficient algorithm for solving the arising optimization prob-
lem, and evaluate the proposed method using our testbed.

2.1 Problem definition
Typically, building occupants prefer environmental condi-

tions in which they are more productive than the conditions



0 100 200 300 400 500
0

0.2

0.4

0.6

0.8

1

Light intensity (Lux)

N
or

m
al

iz
ed

 u
se

r u
til

ity

(a) Utility function (b) Zoning scheme

Figure 1: Utility function, zoning/locality concept.

in which they feel uncomfortable. We capture this pref-
erences ordering by representing them as utility functions,
which can be different for each occupant. Higher utility
function value means higher satisfaction for the occupant.

In our formulation, each building occupant i has a utility
function Φi(xi,a), representing their preference at a given
location xi for a given light setting a, where a = (a1, . . . , am)
is a vector specifying settings for each lamp. For example,
a particular setting a will lead to a particular light inten-
sity at position xi, Φi will indicate how happy the ith user
is with this light intensity. Specifying this utility function,
thus, requires us to learn a mapping from lamp settings a to
Lux levels at each location xi. We learn such mappings from
data using standard techniques, as described in Section 2.3.
More generally, the utility function may depend on other
considerations that affect user comfort, such as glare, even-
ness of light, and so on.

A building has multiple occupants with varying prefer-
ences and hence with varying utility functions Φ1, . . . , Φn.
When considering only user satisfaction, our objective is to
find the joint setting a of the lamps that maximizes the sum
of the values of the utility functions of the occupants that
are being affected by those lamp settings:

argmax
a

nX
i=1

Φi(a, xi).

In some applications, the preferences of some users may be
weighed higher than others.

This simple formulation, however, does not consider en-
ergy costs. To address this issue, we define the building
operator utility function Ψ, which decreases monotonically
with the amount of energy expended. We must thus trade-
off operator utility Ψ with user utilities

Pn
i=1 Φi. A common

technique for solving such multi-criterion optimization prob-
lems is scalarization [8]: A new objective value is computed
as a linear combination of the individual objective functions.
In this setting, the scalarized total utility is defined as

U(a,x) =

nX
i=1

Φi(a, xi) + γΨ(a),

where γ is the scalarization, or trade-off, parameter regu-
lating the penalty for high energy expenditure, and x =
(x1, . . . , xn) is the vector of occupant locations. For a fixed
vector of locations x, the optimal deterministic control strat-
egy is to maximize

a∗ = argmax
a

U(a,x). (1)

We initially address the static case where x is assumed
to be known and constant. This assumption is relaxed in

Section 5. We furthermore assume that the lamps can be
actuated within a discrete set of d distinct settings. Hence,
the maximum utility in (1) is only over a finite set of dm val-
ues. Note that this quantity is exponential in the number m
of lamps, and enumeration of all possible settings is infeasi-
ble – in our experimental setup, we deployed m = 10 lamps,
with d = 10 settings each, which is already beyond scope of
enumeration. Even if the total utility function is concave,
we are dealing with a discrete optimization problem, and
any continuous solution would only be an approximation.

2.2 An efficient algorithm
A simple heuristic for optimizing light settings – corre-

sponding to greedy interactions of occupants with building
light systems – would be to, for some fixed order, iterate
over the building occupants and have each of them adjust
the light settings to maximize their own comfort. Unfortu-
nately, since the preferences of the occupants are not con-
sidered simultaneously, this greedy approach is suboptimal.

Fortunately, we are not required to rely on such heuris-
tics: we can use locality, or zoning, in our problem struc-
ture to solve the discrete optimization problem efficiently
and exactly. The key observation is, due to the use of the
zoning concept in lighting design, a lamp only influences
occupants in the small area of space around it. For exam-
ple, in Fig. 1(b) L6 only affects the occupant represented
by his utility function Φ4, whereas L3 has a larger influence
and affects occupants 1, 2 and 3 represented by their util-
ity function Φ1, Φ2 and Φ3 respectively. Hence, we utilize
the fact that the occupants’ utility functions Φi only depend
on a smaller subset of lamps, which drastically reduces the
complexity of the problem.

Additionally, the operator’s utility Ψ is also local, repre-
sented as a sum of costs of actuating the individual lamps,
i.e.,

Ψ(a) =

mX
j=1

Ψj(aj),

Using locality, we rewrite (1) as

a∗(x) = argmax
a

nX
i=1

Φi,x(ai1 , . . . , aik ) + γ

mX
j=1

Ψj(aj). (2)

where i1, . . . , ik refer to the lamps that influence the util-
ity of occupant i. To make this notation more explicit, we
write Φi,xi(ai1 , . . . , aik ) instead of Φi(a, xi) to indicate the
dependencies of Φi on the light level xi at location i.

We thus observe that (2) requires the maximization of a
sum of local factors, each of which depends only on a small
number of variables, i.e., on the setting of only a small sub-



Input: Local factors Fi, . . . , Fk, elimination ordering
{i1, . . . , im}

Output: Optimal action selection a
begin

for j = 1 to m do
select all factors depending on Aij , let
Dj ∪ dom Aij be the union of their domains and
let Gj be their sum;
foreach d ∈ Dj do

compute Ej(d) = maxaij
Gj(aij ,d);

compute Êj(d) = argmaxaij
Gj(aij ,d);

end
replace all factors depending on Aij by Ej .

end
for j = m downto 1 do

Let aij := Êj(aij+1 , . . . , aim).
end

end

Algorithm 1: Optimal action selection.

set of the lamps. We exploit this locality by using the co-
ordination methodology developed in [6, 19] to obtain the
optimal setting for the lights. The coordination methodol-
ogy maximizes the sum of the utility function of the occu-
pants by minimally violating the occupant preferences rep-
resented by individual utility functions. Consider the follow-
ing example where We want to maximize F (y1, y2, y3, y4) =
F1(y1, y2) + F2(y1, y3) + F3(y3, y4) + F4(y2, y4). F1 and F2

do not depend on the value of y4, hence we can “push the
maximization with respect to y4 through the sum” and write

max
y

F (y) = max
y1,y2,y3

(F1(y1, y2) + F2(y1, y3)+

max
y4

F3(y3, y4) + F4(y2, y4)

�
.

For any value of y2, y3, the maximization over y4 can be car-
ried out independently of the value of y1. Letting E(y2, y3) :=
maxy4 F3(y3, y4) + F4(y2, y4), we find

max
y

F (y) = max
y1,y2,y3

F1(y1, y2) + F2(y1, y3) + E(y2, y3),

from which y4 has been “eliminated”. This process is re-
peated, eliminating the variables yi one at a time. The
values of y1, y2, y3, y4 maximizing F can be recovered by
computing and plugging in the partial solutions in reverse
order. Note that for this example, only a maximization over
three variables had to be carried out by enumeration, not
over four. In the general case, the maximal domain size of
the local factors (as F1, F2) and intermediate factors (as E
in the above example), called the treewidth, depends on the
order in which variables are eliminated. Picking the optimal
elimination ordering is NP-complete [2]. Fortunately, there
is a large literature [5, 25, 26] on heuristics for finding good
elimination orderings, of which we expect many to apply to
the locality exhibited by a typical building.

Fig. 1(b) indicates the structure for our testbed. Here, the
treewidth is three. Hence the exact optimization can be car-
ried out in order 103 steps instead of 1010 required by naive
enumeration. The algorithm is presented as Algorithm 1.

2.3 Evaluation of our algorithm
We created a testbed to emulate the real situation at a

smaller scale to test our light control strategy. Our testbed
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Figure 2: Testbed characteristics.

consists of twelve MICA2 motes [42] and ten 60 Watt table
lamps, arranged on a 146 inches by 30 inches table. The
lamps are actuated by the X10 system [45], which wirelessly
communicates with a single desktop PC, and uses power
lines for controlling the lamps. Each lamp can be actuated
to produce ten different light intensities. The lamps are
arranged in a triangular pattern which corresponds to the
zoning concept as introduced in Section 2. Each of the seven
triangular zones is affected by three lamps, and each lamp
affects up to three regions. The motes are distributed over
the different zones, and communicate with the base station
over the wireless network.

An important aspect of the evaluation is the reliable pre-
diction of the light levels in each zone, for each combination
of lamp settings. We used TinyDB [1] to query the sen-
sor values for various lamp settings. To calibrate sensors
(convert the raw ADC to Lux), an external light meter [29]
was used to measure ground truth Lux levels at varios lo-
cations. Piecewise linear regression on a log-scale was then
used to calibrate the sensors. Fig. 2(b) shows how the ADC
responses varied over the different motes.

Once the sensors are calibrated, we need to determine
how light settings affect light intensities in each zone. Note
that each zone is affected by multiple lamps, thus, a naive
approach would require us to search through all possible
combinations of settings for all lamps for each location. For-
tunately, since light intensities in Lux are additive, not all
possible combinations of lamp settings have to be consid-
ered. We, thus, learn how each lamp affects a region, and
the combined effect is simply the sum of the intensity gen-
erated by each lamp.

In order to determine power consumption, we measured
the amount of power required by the lamp for each setting
using a power meter. Power consumption scales approxi-
mately linearly with the ten discrete lamp settings.

Since we want to optimize user comfort, we needed to se-
lect a functional form for the user utility functions. We chose
simple Gaussian kernels with varying centers and bandwidths
for the different occupants, each represented by a mote.
Fig. 2(a) presents the variety of utility functions we chose.
The bell shape of the Gaussian kernel corresponds to the
assumption that each user has a particular light intensity
which is most comfortable; exceeding or falling short of the
appropriate value will decrease the comfort. The choice in
different bandwidths corresponds to the idea that some oc-
cupants can work well under a larger variety of conditions
than others. We understand that the problem of eliciting ap-
propriate utility functions is a difficult problem of its own.
However, we believe that our particular choices of utility
functions represents a variety of different preferences, which
we expect to at least qualitatively correspond to real occu-



pants’ needs. Our optimization method does not make any
assumption about the form of these utility functions.

Since the decision theoretic objective function proposed
in Section 2.1 depends on the trade-off parameter γ, we per-
formed an initial experiment to determine an appropriate
value for our setup. Selecting an appropriate trade-off para-
meter is in general a difficult problem, and depends on the
units in which energy and user comfort are measured. It is
general practice to look for “knees” in the trade-off curves,
values for which a small increase in either quantity leads to a
drastic decrease of the other. Using this guideline, Fig. 3(c)
shows that γ can be increased to a value of about 0.3 with-
out any decrease of user comfort, decreasing energy cost by
approximately 25%. A value of γ = 0.4 leads to a small
reduction in comfort (about 7%), but achieves a significant
reduction (about 33%) in energy cost. These graphs also
indicate that the predicted utilities based on our regression
model closely corresponds to the measured values.

We compared our optimal coordination strategy with the
simple greedy heuristic mentioned in Section 2.1, in terms of
total utility achieved for varying parameters of γ. Fig. 3(a)
illustrates a setting in which occupants with conflicting util-
ity functions were collocated in the same zones, while Fig. 3(b)
shows the result for a setting in which sensors with conflict-
ing utility functions are placed in adjacent zones. In both
settings, the optimal, coordinated algorithm achieves signif-
icantly higher utility than the simple greedy heuristic.

2.4 Description of Video 1
We documented the experiment for optimizing the trade-

off parameter γ in Video 1. As seen in the video, the occu-
pants of each zone have different desire light intensities. In
this video, γ gradually increases from 0 to 1.4. The video
shows how the lamp settings adjust in order to maximize the
total utility, dimming more and more as energy consumption
is increasingly penalized.

3. ADAPTIVE, CLOSED-LOOP CONTROL
Electric lighting consumes 30% to 50% of the energy used

in a typical commercial building [28]. Utilizing daylight of-
fers a natural possibility for reducing the electric energy us-
age. In addition to energy savings, some evidence indicates
that exposure to daylight reduces stress and stimulates oc-
cupants in the building [22]. An interesting study [20] shows
that introduction of daylighting in retail buildings (shopping
malls, grocery stores) stimulates buying behavior of the cus-
tomers, increasing the sales.

The concept of utilizing sunlight for illumination is called
daylight harvesting. Daylight harvesting is a difficult strat-
egy to adopt in a building as daylight is highly variable and
affects different locations of a building in different ways at
different times. A post-occupancy evaluation of daylit build-
ings found that over 90% of those with offices near windows
had the right amount of sunlight as opposed to 61% of people
with interior offices [28]. For any daylight harvesting strat-
egy, it is essential to have a pervasive network of sensors to
measure the varying effect of daylight on different parts of
the building. While construction costs of commercial build-
ings are typically around $150/ft2 and total utility costs are
about $1/ft2 per year, the salaries and overhead for office
workers are estimated at $150/ft2 per year. Thus, it is im-
portant that a daylight harvesting strategy either enhances,
or at the very least, does not reduce worker productivity.

3.1 Closed-loop coordinated illumination
The approach described in Section 2.2 is open-loop, since

we assume that the light intensities at each position are
uniquely determined by the lamp settings, and no sensing
is needed. For daylight harvesting, however, sun light will
affect the light levels at each location, and, thus, the lamp
settings must adapt to changing weather conditions and time
of the day in a closed-loop fashion. In such settings, sens-
ing is required at each time step to determine the effects of
external light sources on the environment.

To incorporate daylight in our approach, we assume a
mapping Θ : T × X → R+, such that Θ(t, x) represents the
sunlight intensity at time t and point in space x. The func-
tion Θ incorporates sensor readings measuring light levels.
In general, we may not be able to measure sunlight levels di-
rectly, but the combination of the sun light with the lamps.
Fortunately, since light levels are additive, we obtain sun-
light levels by simply subtracting the intensity caused by the
lamps, which can be determined as described in Section 2.2,
from the total light.

We modify the local utility functions Φi to take day-
light into account in our optimization process, and write
Φi,xi(a, y), where y = Θ(t, xi). The optimization problem
then becomes to maximize

a∗(t,x) = argmax
a

U(a, t,x), (3)

where

U(a, t,x) =

nX
i=1

Φi,xi(a, Θ(t, xi)) + γ

mX
j=1

Ψj(aj).

The algorithm presented in Section 2.2 applies to this dy-
namic setting exactly as to the static setting – the only dif-
ference is that the local utility functions Φi depend on the
sensed sun intensities.

3.2 Evaluation in our testbed
We extended the testbed described in Section 2.3 by five

lamps, which we used to simulate daylight. The setup is
displayed in Fig. 4(a). The sun lamps are also controlled by
X10 and can be set to ten different intensities. To simulate
realistic relative variations in sun intensity, we used sun tra-
jectories for Pittsburgh, PA from the National Solar Radi-
ation Data Base provided by the Renewable Resource Data
Center [36]. We modulated the trajectories using piecewise
linear functions to achieve a spatial gradient similar to the
effect where the sun rises in the East and sets in the West.
Fig. 4(b) shows 30 trajectories from the database for June
1990, and Fig. 4(c) shows the corresponding measurements
from the testbed for the most central sensor.

To evaluate the accuracy of our closed-loop adaptive con-
troller as sun intensities change, we ran experiments over
several simulated days. The sun intensity was estimated
by subtracting the light intensity produced by the lamps
from the measured total light intensity. After estimating
the amount of sunlight at each time step, the lamps were
actuated accordingly, and the total utility was computed
from a light measurement following the actuation.

Fig. 5(a) shows the average measured and predicted user
utility as well as the power consumption, for a very small
value of the trade-off parameter, γ = 0.01. It can be seen
that the measured utility corresponds closely to the pre-
dicted utility. Furthermore, there are significant power sav-
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Figure 3: Comparison of greedy heuristic with coordinated illumination.

ings during the hours where sun is shining. In total, about
15 percent of energy could be saved on average compared
to the amount of energy required if sunlight is not taken
into account. Fig. 5(b) shows the results of the same ex-
periment for the setting γ = 0.4 which was determined to
be appropriate in Section 2. In this more energy-conscious
setting, about 55 percent of the energy cost could be saved
using daylight harvesting. This experiment showed the same
absolute savings in energy during sunshine, but on a much
lower base level: in total, about 70 percent energy could be
saved in direct comparison to the setting of γ = 0.01.

The slightly reduced user utility during daytime is due
to the particular selection of utility functions: Two sen-
sors were assigned a very narrow preference (c.f. curve 2
in Fig. 2(a)) for a light intensity exceeded by sunlight (even
with all lamps switched off). This corresponds to the as-
sumption that sunlight can sometimes slightly blind build-
ing occupants and make them less productive. An easy ex-
tension of our model could include the actuation of blinds,
dimming sunlight and avoiding this reduction in user utility.
Overall, this experiment shows that, consistently over sev-
eral values of the trade-off parameter, daylight harvesting
achieves a significant reduction in energy usage.

3.3 Description of Video 2
We demonstrate our closed-loop control strategy in Video 2.

In this video, four complete day-night cycles were recorded,
and played back in increased pace. It can be seen how the ta-
ble lamps adjust to varying sun intensities. A special notice

can be given to the rightmost lamp, which is often switched
on even when the sun is shining, since the rightmost region
requires particularly high light intensity due to our choice
of utility functions.

4. ACTIVE SENSING
To achieve the benefits of the adaptive control strategy

described in Section 3, we continuously require knowledge
of the daylight intensity in all areas of the building where
occupants are located. In our mobile sensor network vi-
sion, all building occupants are equipped with sensors, and
hence this information is easily accessible. Unfortunately,
continuous sensing and communication costs quickly deplete
batteries and hence diminish the lifetime of the sensor net-
work. To overcome this problem, we propose an active sens-
ing strategy which schedules the sensors to sense at times
that maximize the expected utility. Our approach builds on
a recent sensor network tasking approach that uses proba-
bilistic models to select a subset of sensors to observe [13].

4.1 Basic foundation for sensor scheduling
The key observation is that the distribution of daylight is

highly correlated, both spatially across the building, and
over time. This implies that sensors can sense coopera-
tively, requiring drastically fewer observations each. To sim-
plify the discussion, we assume a discretization of space
X = {ξ1, . . . , ξr} and time T = {τ1, . . . , τl}. We model
the spatial and temporal variation in sun intensity Θ de-
fined in Section 3 as a stochastic process. This means that
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Figure 4: Closed loop experimental setup.
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Figure 5: Adaptive, Closed-Loop control.

we consider the sunlight at each time τi and point xi as a
random variable Θ(τi, ξi), and specify a joint (prior) distri-
bution over light intensity

P [Θ(τ1, ξ1) = θ1,1, . . . , Θ(τl, ξr) = θl,r] . (4)

This joint distribution models stochastic temporal and spa-
tial relationships among the random variables. These depen-
dencies are very strong – during a dark day, most sensors
are expected to measure lower values than during brighter
days, mostly independently of the sensors’ positions. Also,
at noon it will generally be brighter than in the late after-
noon or even at night. These correlations allow us to observe
only a subset of the sensors at each time step.

After observing a subset of sensors, we obtain a probabil-
ity distribution over light levels at unsensed locations. Since
sunlight levels are now uncertain, instead of working with
local utility functions Φi,x as deterministic quantities (as in-
troduced in Section 3), these utilities now become random
variables. In such cases, we address users’ expected utility :

E[Φi,x(a, Θ(xi, t))] =
X

θ

P (Θ(t, xi) = θ)Φi,x(a, θ), (5)

and the optimization problem for light settings becomes the
maximization of expected utility

a∗(t,x) = argmax
a

EU(a, t,x), (6)

where

EU(a, t,x) =

nX
i=1

E[Φi,x(a, Θ(xi, t))] + γ

mX
j=1

Ψj(aj).

Note that this linear decomposition of expected utilities al-
lows us to use the coordination mechanism introduced in

Section 2 to find optimal light settings, assuming the ex-
pectations can be computed efficiently. The computation of
expected utilities requires probabilistic inference in the sto-
chastic process Θ, i.e., the computation of P (Θ(t, xi) = θ),
the probability that the sunlight Θ(t, xi) at position xi at
time t has light level θ. These probabilities can often be
computed efficiently. Even if no efficient exact inference is
possible, there are efficient approximate inference algorithms
available [9].

The prior distribution respresented in Eq. (4) does not
take observed sensor values into account. If we observe a
particular light intensity Θ(ξ, τ) = θ̂ at some time τ and
position ξ, we can use Bayes rule to compute the posterior
distribution:

P
h
Θ(τ1, ξ1) = θ1,1, . . . , Θ(τl, ξr) = θl,r | Θ(ξ, τ) = θ̂

i
,

representing the distribution over possible sunlight levels at
each location at each time point, given the measurements.
More generally, after observing a value o for some sensors
O, we compute the posterior distribution P (Θ(t, xi) = θ |
O = o). Using this posterior distribution we can obtain the
conditional expected utility :

EU(a, t,x | O = o) =Pn
i=1

P
θ P (Θ(t, xi) = θ | O = o)Φi,x(a, θ)

+γ
Pm

j=1 Ψj(aj).

The posterior distribution reflects our updated belief about
the sun intensity distribution after the observations have
been made by the sensors. This implies that updating our
belief also changes the optimal lamp settings to choose in
(6). Intuitively, if we are certain about the amount of nat-
ural light at a particular location, we can allocate the artifi-



cial light more economically. More generally, we would like
to schedule sensing times that lead to more effective deci-
sions. This concept is formalized by the maximum expected
utility framework: We want to find the set of observations
O∗ that yields best decisions (light settings) in expectation
after making these observations. Specifically, we want to
maximize

O∗ = argmax
O

J (O), (7)

where

J (O) =
X
o

P (O = o)

 X
t∈T

max
a

EU(a, t,x | O(1:t) = o(1:t))

!
,

O is a set of observations, and O(1:t) = o(1:t) is the subset
of observations up to time t. Note that we are dealing with
a dynamic system, thus, when computing the expected util-
ity at time t, we only consider measurements made up to
this time. The quantity J is the expected value of the ex-
pected utility, where the first expectation is computed over
all possible outcomes of the measurements O, and the sec-
ond expectation is taken over the sunlight intensity proba-
bility distribution. For example, if in Fig. 1(b), the sensor
Φ2 makes an observation, we will be more certain about the
light intensity at the location of Φ1 at the same time step,
than if we had observed sensor Φ4 three time steps back.

The more certain we are about the light intensity, the
more accurately we can coordinate the lamp settings, and
the more comfort the occupants will have. We are more
certain about the sunlight level when more observations are
made. In contrast, more observations will use up the sen-
sors batteries faster. A natural approach is to constrain
the number of observations made by sensors, for example,
be providing a certain budget B of energy each sensor can
spend for sensing during each day. Since in our proposed
system, the light sensors are mobile and collocated with the
building occupants, and the sensing and communication cost
is assumed to be uniform over the day, we define our active
sensing goal as that of specifying a schedule of B sensing
times for each sensor.

4.2 Algorithms for sensor tasking
In the following, we adopt a Markov assumption for our

stochastic sunlight intensity process, which states, that the
state of the process at time t is conditionally independent
of all states at times t′ for t′ < t − 1, given the state at
time t − 1. This is a very natural assumption for sensor
networks [13].

Unfortunately, even in Markovian settings, the optimiza-
tion problem (7) is intractable [27], even for the case of two
sensors. In [27], it is however shown that for one single
sensor, the problem of finding the optimal B observations
can be solved efficiently. We first review this approach. For
a single sensor, the light intensity process forms a Markov
chain over time. Their algorithm uses a dynamic program-
ming approach, leveraging the fact, that the objective func-
tion in (7) decomposes along time, i.e., the total utility is
the sum of all sub-chains separated by the times of observa-
tion. Fig. 6(a) illustrates this idea. In this graph, the sensor
is scheduled to only observe at times t1 and t3, indicated as

S
(1)
1 and S

(1)
3 . The sunlight intensity distribution at times

t4 and t5 only depend on the observation at time t3, and not
on the observation at time t1.

Using this dynamic programming approach, we can com-
pute the expected utilities for all possible sub-chains – and
hence for the total Markov chain – efficiently. If no observa-
tion is made, the following formula computes the maximum
expected utility for the sub-chain from ta to tb as

J (i)
a:b (0) =

b−1X
j=a+1

EU(a, tj ,x | Θ(ta, xi)).

If k observations can be made, the maximum expected util-
ity achievable for the sub-chain starting at time ta and end-
ing at time tb can be recursively computed by

J (i)
a:b (k) = max

j:a<j<b
{

EU(a, tj ,x | Θ(tj , xi)) + J (i)
a:j (0) + J (i)

j:b (k − 1)}.

Finally, the maximum expected utility schedule from time 1

to tmax can be obtained by maxO J (i)(O) = J (i)
0:tmax+1. We

refer the reader to [27] for details and proofs.

Input: Budget B
Output: Optimal selection O of observation times
begin

for 0 ≤ a < b ≤ tmax + 1 do
rew := 0;
for j = a + 1 to b− 1 do

rew := rew + EU(a, tj ,x | Θ(ta, xi));
end
J (i)

a:b (0) := rew;
end
for k = 1 to B do

for 0 ≤ a < b ≤ n + 1 do
for j = a + 1 to b− 1 do

sel(j) := EU(a, tj ,x |
Θ(tj , xi)) + J (i)

a:j (0) + J (i)
j:b (k − 1);

end
J (i)

a:b (k) = maxa<j<b sel(j);dJ (i)
a:b(k) = argmaxa<j<b sel(j);

end
end
a := 0; b := tmax + 1; k := B; O := ∅;
for k = B downto 1 do

a := dJ (i)
a:b(k);

O := O ∪ {ta};
end

end

Algorithm 2: Optimal observation selection for a single
sensor. tmax denotes the maximum number of time steps
considered for scheduling.

In the case of multiple sensors, this decomposition does
not hold anymore, since influence can flow across chains.
Fig. 6(b) visualizes this problem – there, the sun intensity
distribution for sensor (2) depends on all three observations

S
(1)
1 and S

(1)
4 from sensor (1) and S

(2)
2 from sensor (2). Ex-

act computation of EU is in general not possible, because
computing the expectation requires the summation over a
number of terms exponential in the number of observations.

We address this complexity issue using an (approximate)
extension of the decomposition approach used for single chains.
More specifically, for sensor selection purposes, we only al-
low a sensor to take into account the most recent observa-
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Figure 6: Scheduling sensors in dynamic processes.

tions. Intuitively, this appears to be a reasonable approx-
imation, especially if the potential scheduling times in T
are reasonably far apart. Formally, we replace the set of
observations up to time t, O(1:t) by a subset O′(1:t), and ap-
proximate J (O) by J (O′). In Fig. 6(b) for example, the
total expected utility at time t4 would be computed using
only observations from time t3 for sensor one, and time t2
for sensor two, ignoring influence originating from observa-

tion S
(1)
1 and flowing through the chains as indicated by the

dashed arrow. The following proposition proves that this
approximation, while not exact, leads to the maximization
of a lower bound:

Proposition 1.

J (O) ≥ J (O′)

for all O′ ⊆ O.

Proof. This bound follows from the fact that maximiza-
tion over a is convex, and an application of Jensen’s inequal-
ity. Using an induction argument, we simply need to show
that

J (O) ≥ J (∅).

J (O) =
X
o

P (O = o)

 X
t∈T

max
a

EU(a, t,x | O(1:t) = o(1:t))

!

≥
X
t∈T

max
a

 X
o

P (O = o)EU(a, t,x | O(1:t) = o(1:t))

!
=
X
t∈T

max
a

EU(a, t,x) = J (∅)

Proposition 1 proves that conditioning only on the most
recent observations can only decrease our objective function,
hence maximizing this simplified objective implies maximiz-
ing a lower bound on the true objective.

We propose the following heuristic for maximizing the
lower bound on the expected utility. The basic algorithm
will be a coordinate ascent approach, scheduling observa-
tions for each sensor individually. The maximization for
the individual sensors uses the same dynamic programming
trick introduced above. Since all sensors maximize the same
global objective, the local optimization is guaranteed to
monotonically increase the global objective, and hence must
converge (to a local optima) after a finite number of steps.
The procedure is formalized in Algorithm 3.

Several remarks are required in order to implement Algo-
rithm 3. First of all, in a naive implementation, the com-
putation EU(a, tj ,x | O(1:t)) requires time exponential in

Input: Budget B
Output: Selection O(i) of observation times for each

sensor
begin

while not converged do
Select 1 ≤ i ≤ n at random;
Use Algorithm 2 to select observations Oi for
sensor i, but conditioning on current sensor
scheduling O for remaining sensors (i.e.

computing EU(a, tj ,x | O(1:t)) instead of
EU(a, tj ,x | Θ(t, xi));
Compute difference in total expected utility;

end
end

Algorithm 3: Multi-Sensor scheduling.

the number of chains. This can be avoided using a sam-
pling approximation, using Hoeffding’s inequality to derive
polynomial bounds on sample complexity. Details are omit-
ted here due to lack of space. In practice, a small number
of samples appears to provide reasonable performance. Sec-
ondly, inference itself becomes intractable with an increasing
number of sensors. Approximate inference algorithms such
as the algorithm proposed by Boyen and Koller [9] provide
a viable way around this problem.

Although we cannot in general provide performance guar-
antees for the procedure, we are building on an algorithm
that provides an optimal schedule for each sensor in isola-
tion, which should benefit from observations provided by
the remaining sensors. Algorithm 3 will always converge,
and always compute a lower bound on the expected total
utility. Considering the intractability of the general prob-
lem (NPPP-completeness [27]), these properties are reassur-
ing. In our experiments, the coordinated sensor scheduling
performed very well, as discussed in Section 4.3. It is also
possible to generalize this algorithm to compute conditional
plans, for which the selection of observations depends on the
observations already made. For details please refer to [27].

4.3 Experimental evaluation in our testbed
To evaluate our active sensing strategy, we first learned a

probabilistic model for predicting sun intensities. We used
75 trajectories from the day-night cycles using our sunlight
lamps as presented in Fig. 4(c) as training data, and 3 sep-
arate trajectories as testing data. From this training data,
we learned a discrete, non-stationary dynamical Bayesian
network for three sensors, with nodes for one measurement
every hour per sensor, starting at 6 am till 22 am. The dis-
cretization was done using eight 50 Lux bins and the transi-
tion probabilities were computed using a Gaussian approx-
imation to avoid overfitting. We used data from the two
sensors at both far ends (East and West) of our testbed and
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Figure 7: Active sensing results.

the central sensor (South) to capture changes in the sun in-
tensities. We then used our sensor scheduling Algorithm 3
to select informative times for querying each sensor. Us-
ing this probabilistic model, we executed day-night cycles
from the test set, and continuously measured light intensi-
ties from the sun lamps and the table lamps. However, we
only provided the sensor measurements taken at the times
selected by Algorithm 3 to the prediction routine, and actu-
ated the lamps to maximize the expected utility as defined
in Section 4.1. We used the trade-off parameter γ = 0.4 as
identified in Section 2.

Fig. 7(a) presents the mean total utility achieved using no
observations, one observation or ten observations per sensor
each day. It can be seen that even a single observation in-
creases the total utility close to the level achieved by contin-
uous sensing. Fig. 7(b) shows the mean energy consumption
required for the same experiment. Here, the single sensor
observation strategy comes even closer to the power sav-
ings achieved for continuous sensing. Fig. 7(c) shows the
mean user utility and energy savings achieved, for a number
of observations varying from no observations to continuous
sensing. These results imply that using the predictive model
and our active sensing strategy, even a very small number of
observations achieves results approximately as good as the
results achieved by continuous sensing. Since the sensor net-
work battery lifetime is in general inversely proportional to
the amount of power expended for sensing and communica-
tion, we conclude that our active sensing strategy promises
to lead to drastic increases in sensor network lifetime, de-
ployment permanence and reduced maintenance cost.

5. PREDICTIVE LIGHT CONTROL
Thus far we have assumed that occupants are static. We

now generalize our approach to dynamic settings, where ac-
cupants may move throughout the building. In such set-
tings, the adaptive light control has to behave proactively
in order to be acceptable for the user, e.g., a hallway has to
be lit even before people enter it.

To simplify the discussion, we will again assume a dis-
cretization of the space X . This assumption is also moti-
vated by the idea that buildings usually have only a finite
number of places of interest, such as office cubicles, cafeteria
tables, hallway segments etc. We assume full observability,
i.e., that our tracking system is able to exactly locate the
discrete position of every building occupant. In our scenario,
where the occupants are equipped with sensor badges, it is
possible to achieve relatively accurate localization using, for

example, RFID tags [33]. For our application, we consider
tracking as a black-box problem for which many existing
techniques can be utilized.

We assume that the occupants’ movements can be for-
malized using a probabilistic model and that people move
independently of each other. The adjacency of the loca-
tions implies a graph structure G with nodes X and edges
E ⊂ X × X . This means that two locations are connected
by an edge if they are physically next to each other. In
Fig. 1(b), the locations Φi and Φi+1 for 1 ≤ i < 4 would
hence be connected by an edge each.

Using this graph formalization, each building occupant
performs a random walk on this graph, with certain transi-
tion probabilities. These random walks are naturally mod-
eled by a Markov chain. Instead of using the locations X
themselves as states in the Markov chain, we perform our
random walk on the edges E of G. For a location x, the
graph will always contain the “loop” (x, x), which corre-
sponds to the action of remaining at a particular location.
This random walk on the edges is equivalent to a second
order Markov process on the locations X , and allows us to
capture the intuitive modeling requirement that a person is
more likely to move if they moved immediately before.

Since we assume full observability, at each time step t we

have a distribution P (x
(t+1)
i = · | x(t)

i , x
(t−1)
i ) which we can

use for predicting occupant i’s position at time t + 1. We
can easily integrate this model into our maximum expected
utility framework, by computing the expected utility as

EU(a, t,x(t),x(t−1)) = γ

mX
j=1

Ψj(aj)+

nX
i=1

X
x

P (x
(t+1)
i = xi)E[Φi,xi(a, Θ(xi, t))].

Note that this computation is tractable; the complexity only
increases by a factor proportional to the number of outgoing

edges at position x
(t)
i . We can also extend this simple model

to handle occupants entering or exiting the building.
A more general approach would be to model the positions

of the building occupants as a partially observable stochas-
tic process. This formalization allows, for example, uncer-
tainty about the tracking process, but is often intractable
(c.f. [37]). Since we do not need extremely precise local-
ization of the occupants in the building automation setting,
the full observability assumption is often realistic.

5.1 Evaluation in our testbed



0 5 10 15 20
 

 

 

 

 

 

Time

Zo
ne

s 
(M

ov
em

en
t)

(a) Random walk

0

0.2

0.4

0.6

0.8

1
Measured utility
Energy cost
Total utility

No prediction Using prediction

(b) Effect of prediction

0 0.1 0.2 0.3 0.4
0

0.2

0.4

0.6

0.8

1

Trade−off parameter

User utility

Normalized
energy cost

(c) Trade-off curve

Figure 8: Results using predictive model.

To evaluate our predictive light control strategy, we sim-
ulated movements of a single occupant following a random
walk. The random walk was based on a second order Markov
process: If the simulated occupant moved in the last tran-
sition, we assumed that the probability of continuing the
movement in the same direction was 0.4; with probability
0.5 it would stop moving and with probability 0.1 it would
move in the opposite direction. If the occupant did not move
in the last step, the probability of remaining static was set to
0.6, and with probability 0.2 it would start to move in either
direction. The discrete locations the occupant would move
among were the centers of the sequence of triangular regions
defined in our testbed as indicated in Fig. 1(b). We provided
the transition probabilities to the coordinated illumination
algorithm, and then measured the utility at the actual next
position using the MICA2 motes. Our experiments con-
sisted of a fixed 20 step random trajectory generated from
our movement model.

We first compared the predictive model with the simple
non-predictive version. Fig. 8(b) shows a drastic increase
in mean user and total utility, along with an increase in
energy consumption used for lighting up areas adjacent to
the occupants current position. In spite of the increase in
energy consumption, the total utility increased by more than
25%.

We also performed another experiment to explore the trade-
off curve between user utility and energy consumption for
varying values of γ. In interpreting these results, it has
to be noted that the trade-off parameter γ is not normal-
ized by the number of occupants, hence the values presented
here cannot be directly compared to the values in Section 2.
Fig. 8(c) shows a similar dynamics as observed in Fig. 3(c)
in Section 2 – Increased user comfort incurs increased en-
ergy cost. It is again interesting to look for “knees” in the
trade-off curve, the most prominent of which appears for
γ = 0.025. For this setting, there is almost no reduction in
user utility but a large decrease in cost. This experiment
also indicates that the utility trade-off can be very different
for a dynamic setting compared to a static situation.

During the experiments, it was also possible to observe in-
teresting qualitative behavior of the light management strat-
egy. For very low values of the trade-off parameter (γ ≈
0.025), the system chose to favor occupants utility by strongly
illuminating all possible adjacent regions which the occupant
might enter. For medium values (γ ≈ 0.1), the system chose
to save energy by not illuminating regions which the occu-

pant just left, since the modeled probability of an immediate
return was only 0.1. For large values of γ > 0.3, the light
management strategy simply chose to completely switch off
all lights, in order to maximize the expected total utility.

5.2 Description of Video 3
We documented the movement experiment using our pre-

dictive model in Video 3. In this video, the lights adjust,
following the trajectory of the simulated building occupant.
The actual trajectory is presented for reference in Fig. 8(a).

6. CONCLUSIONS
Simultaneously optimizing user comfort and reducing en-

ergy usage in building automation is of enormous economic
importance. Implementing an effective control strategy poses
a complex optimization problem. In this paper, we pre-
sented a decision theoretic formalization of this optimiza-
tion problem, and provided efficient algorithms for optimally
trading off these two main conflicting goals. Our algorithms
presented in Section 2 utilize building structure for efficient
and effective coordinated illumination.

The intelligent lighting implementation presented in our
paper requires the nodes to send the data to the central
controller. The proposed approach though tested on a small
scale with a central controller can be further extended for
a large scale implementation using the distributed architec-
ture presented in [32, 18]. The authors present a distributed
architecture for solving inference problem similar to the ones
formulated in this paper. The distributed architecture is
able to handle the inference and control problems that is
robust to unreliable communication and node failures. In
this architecture, the nodes of the sensor network assem-
ble themselves into a junction tree and exchange messages
between neighbors to solve the inference problem efficiently
and exactly.

Our proposed system provides a novel use of wireless sen-
sors to capture the real state of the indoor and outdoor
environment and use that information to intelligently con-
trol lights to meet user preferences. The closed-loop control
strategy developed in Section 3 adapts to the presence of
natural light sources and provides a significant reduction in
electric light usage by harvesting daylight.

A major challenge in deploying wireless sensors in a build-
ing is caused by high maintenance cost due to quickly drain-
ing battery life. Our active sensing algorithms presented in
Section 4 significantly reduce the sensing required to pro-
vide sufficient information to the control strategy, and hence



drastically increases the life of the wireless sensor network.
This novel approach towards reducing the maintenance ef-
fort makes mobile, wireless sensor networks a more attrac-
tive solution even for large scale, long-term deployments.

As presented in the paper, utility theory provides a ratio-
nal basis of decision making in building control. However, it
also highlights various challenges which need to be addressed
in further studies. The preferences of occupants as modeled
by their utility functions change over time and also with the
task the occupants perform. It is impractical to expect users
to continuously and reliably provide their preferences to the
system. Utility elicitation in complex environments is gen-
erally considered a difficult problem, and in the competitive
setting of user preferences it also involves game theoretic as-
pects [17]. There are many elicitation techniques available
which often disagree even when applied to the same person
[16]. There are however promising results for using deci-
sion theoretic techniques for reliable utility elicitation [11,
12]. We expect these techniques to be a natural fit to our
proposed mobile sensor network solution. In our vision, the
sensor network is not only used for providing information
to the building control strategy, but also to learn about the
preferences of individual occupants based on their interac-
tion with the environment. We envision a system, in which
any interactions of the occupants with the building controls
automatically affect their respective utility functions. The
mobile sensor information can then be used to learn not only
a fixed set of utility functions, but also a predictive model
of how the utility functions change over time.

Building automation is an intriguing application of sensor
networks. We furthermore believe that the methods pro-
posed in this paper, as well as our proof-of-concept study,
will significantly advance the applicability of sensor networks
to such complex real world control problems.
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