Structures in Optimization - Convexity useful for continuous functions - $f(\boldsymbol{x}+\theta \boldsymbol{h})-f(\boldsymbol{x}) \leq \theta(f(\boldsymbol{x}+\boldsymbol{h})-f(\boldsymbol{x}))$ - Similar Submodular discrete functions: - Domain of f : subsets of finite set E - $f(A \cup B \cup C)-f(A \cup B) \leq f(A \cup C)-f(A)$ - Minimization tractable if submodular Submodular Minimization Examples Many important Machine Learning problems require $A^{*} \in \arg \min _{A \subset E} f(A)$ - Maximum A Posteri Inference of Hidden Variables - Factorizing random variables. Mutual Information is - Clustering ${ }_{\text {Narasisimhan eta } 2 \text { 2005 }}$ submodular: $f(A)=I\left(X_{A} ; X_{E \backslash A}\right)$ Algorithms - General case: $O^{*}\left(n^{5}\right)$ function evaluations. - Min-norm algorithm. Often practical, unknown complexity. FFisisige etal. - More efficient special cases: Pairwise potentials eg. MAP for Ising model. - Queyranne's algorithm. - Only symmetric functions $f(A)=f(E \backslash A)$. $\stackrel{-}{-2 u n n i n g ~ t i m e ~} O^{-}\left(n^{3}\right)$ Sum Subrodular Functions kolmogorov 2000 Each term in sum must be relatively low-order (function of few elements). Our work: Decomposable functions!

